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SPREADING OF CHARGED MICRO-DROPLETS

JOSEPH IAIA

Abstract. We consider the spreading of a charged microdroplet on a flat

dielectric surface whose spreading is driven by surface tension and electrostatic
repulsion. This leads to a third order nonlinear partial differential equation

that gives the evolution of the height profile. Assuming the droplets are circular

we are able to prove existence of solutions with infinite contact angle and in
many cases we are able to prove nonexistence of solutions with finite contact

angle.

1. Introduction

The interaction between a fluid and an electric field has received much attention
recently due to its connection to potential technological applications in microflu-
idics, inkjet printing, electrospinning, and electrospray ionization. See for example
[2]-[4]. The spreading of a charged droplet on an electrically insulating surface has
received less attention. However, this is relevant to spray painting of insulating
surfaces when the droplets are charged. A natural question is whether it is possible
to accelerate the spreading by charging the drops and what the influence of the
charge is on the shape of the drop [1].

We will study the spreading of a charged microdroplet using the lubrication
approximation which assumes that the fluid spreads over a solid surface and that
the droplet is thin so that the horizontal component of the velocity is much larger
than the vertical component and that the stresses are mostly due to gradients of
the velocity in the direction perpendicular to the surface. Using this approximation
it is shown in [1] that the height profile h(r, t) of a circular drop satisfies

ht +
1
r

∂

∂r

[ r
3µ
h3 ∂

∂r

( Q2

2ε0(4πa(t))2
1

a2(t)− r2
+ γ(hrr +

hr
r

)
)]

= 0 (1.1)

where a(t) is the radius of the drop and the boundary conditions are:

hr(0, t) = hrrr(0, t) = 0 (due to the circular symmetry), and (1.2)

h(a(t), t) = 0. (1.3)

Here γ is the free surface tension coefficient, ε0 is the permittivity of the gas above
the drop, µ is the viscosity, and Q is the total charge.
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We seek a self-similar solution such that the radius of the drop a(t) satisfies a
power law; i.e., a(t) = Atβ . The height profile will then, by conservation of mass,
be of the form

h(r, t) =
1
t2β

H
( r

a(t)
)

=
1
t2β

H
( r

Atβ
)

where ρ = r/a(t) and 0 ≤ ρ ≤ 1. This then gives for β = 1/10:[
ρH3

(
Hρρ +

Hρ

ρ
+

Y

1− ρ2

)
ρ

]
ρ

= Z(ρ2Hρ + 2ρH)

where:

Y =
Q2

32π2ε0γA2
, Z =

3µA4

10γ
.

Integrating once, using (1.2), and rewriting yields(
H ′′ +

H ′

ρ

)′
=
Zρ

H2
− 2Y ρ

(1− ρ2)2
for 0 < ρ < 1, (1.4)

H ′(0) = 0, (1.5)

H(1) = 0. (1.6)

Note that Y and Z are positive constants. Also, note that

H(ρ) =
√
Z/(2Y )(1− ρ2)

is one solution of (1.4)-(1.6). A natural question is whether there are other solutions
of (1.4)-(1.6).

In attempting to solve (1.4)-(1.6), we first thought of using the shooting method.
That is, we would solve (1.4) with:

H(0) = d > 0, (1.7)

H ′(0) = 0, (1.8)

H ′′(0) = k (1.9)

where k is arbitrary and then show that if k is sufficiently large then H > 0 on [0, 1)
and if k is sufficiently small then H must have a zero on [0, 1). Then making an
appropriate choice for k we could show that H(1) = 0. Therefore we conjectured
that for each d there would be at least one value of k such that H was a solution.
However, what we discovered is that the shooting method will not work for this
problem. In fact, what turns out to be true is the following theorem.

Theorem 1.1. Let H ∈ C3(ρ0, 1) be a solution of (1.4) such that 0 ≤ ρ0 < 1 and
H(ρ0) > 0. Then H > 0 on (ρ0, 1).

We were able to eventually show that if we look at a slightly different differential
equation then it is possible to solve this new problem by the shooting method. The
key turned out to be to look at the function

W = H −
√
Z/(2Y )(1− ρ2). (1.10)

Using (1.4) it is straightforward to see that(
W ′′ +

W ′

ρ

)′
=
−2Y ρW

(
H +

√
Z/(2Y )(1− ρ2)

)
H2(1− ρ2)2

=
−2Y ρW

(
W + 2

√
Z/(2Y )(1− ρ2)

)(
W +

√
Z/(2Y )(1− ρ2)

)2(1− ρ2)2

(1.11)
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for 0 < ρ < 1. The initial conditions for W are related to (1.7)-(1.9) by (1.10),

W (0) = d−
√
Z/(2Y ), (1.12)

W ′(0) = 0, (1.13)

W ′′(0) = k +
√

2Z/Y . (1.14)

Theorem 1.2. For each d ≥
√
Z/(2Y ) there is a C3[0, 1) solution of (1.11) with

W ′(0) = 0 and W (1) = 0. In addition, if d >
√
Z/(2Y ) then W > 0 on [0, 1) and

W ′(1) = −∞. (Thus W and hence H have infinite contact angle at ρ = 1). If
d =

√
Z/(2Y ) then W ≡ 0 is a solution of (1.11). (Thus W and hence H have

finite contact angle at ρ = 1 for this choice of d). So we see that there is a solution
of (1.4)-(1.6) for these values of d.

Note that if 0 < d <
√
Z/(2Y ), then it is not clear that the argument we used

in the proof of Theorem 1.2 can be extended to these values of d and it is not clear
whether (1.4)-(1.6) can be solved for these values of d.

Next we attempted to determine if there are solutions of (1.4)-(1.6) other than
H =

√
Z/(2Y )(1− ρ2) which have finite contact angle at ρ = 1.

Something which seemed feasible was to attempt to find a power series solution
of (1.4)-(1.6) centered at ρ = 1 in the form

H(ρ) =
∞∑
n=0

an(ρ− 1)n (1.15)

where of course

an =
H(n)(1)
n!

.

We eventually discovered that requiring H to be smooth on [0, 1] and hence with
finite contact angle at ρ = 1 allows there to be only one solution of (1.4)-(1.6). The
following theorem will be restated and proved as Theorem 4.4 in section 4.

Theorem 1.3. Let H ∈ C∞[0, 1] be a solution of (1.4)-(1.6) with H(0) > 0. Then

H(ρ) ≡
√
Z/(2Y )(1− ρ2). (1.16)

Despite the fact that there are no C∞[0, 1] solutions of (1.4)-(1.6) which are
positive on all of [0, 1) other than (1.16), we still thought that there might be a
power series solutions of (1.4) and (1.6) on (1− ε, 1] for some ε > 0. Interestingly,
there are some values of Y 3/2

(2Z)1/2 which appear to allow power series solutions and
others which do not. We will also prove the following result, which will be restated
and proved as Theorem 4.5 in section 4.

Theorem 1.4. Let ε > 0. If n(n− 1)(n− 2) 6= Y 3/2

(2Z)1/2 for every positive integer n
and H ∈ C∞(1− ε, 1] is a solution of (1.4) and (1.6) with H positive on (1− ε, 1)
then

H(ρ) ≡
√
Z/(2Y )(1− ρ2).

Note: The
Conjecture: Let ε > 0. If there is a positive integer n0 ≥ 3 such that n0(n0 −
1)(n0 − 2) = Y 3/2

(2Z)1/2 , then there are power series solutions of (1.4) and (1.6) which
are positive on (1− ε, 1) other than

H(ρ) =
√
Z/(2Y )(1− ρ2).
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What we show here is that a recurrence relation for the an in (1.15) can be solved
but proving the convergence of the series is not at all clear or obvious.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We suppose by the way of contradiction that there exists
z0 > 0 with ρ0 < z0 < 1 such that H(z0) = 0 and H(ρ) > 0 on [ρ0, z0). Integrating
(1.4) on (ρ1, ρ) where ρ0 < ρ1 gives for some constant C0,

H ′′ +
H ′

ρ
+

Y

1− ρ2
= C0 +

∫ ρ

ρ1

Zt

H2
dt. (2.1)

Multiplying (2.1) by ρ and integrating on (ρ1, ρ) gives for some constant C1,

ρH ′ =
Y

2
ln(1− ρ2) + C1ρ

2 +
∫ ρ

ρ1

t

∫ t

ρ1

sZ

H2
ds. (2.2)

The first two terms on the right-hand side of (2.2) have limits as ρ → z−0 (since
z0 < 1) and the integral term on the right-hand side is an increasing function. Thus
H ′ is bounded from below and in fact:

lim
ρ→z−0

H ′(ρ) exists (and is possibly +∞).

However, since H(z0) = 0 and H(ρ) > 0 on [ρ0, z0) we see that

lim
ρ→z−0

H ′(ρ) = −A ≤ 0 (and thus A is finite). (2.3)

It then follows from L’Hopital’s rule that

lim
ρ→z−0

H(ρ)
ρ− z0

= −A

and thus

lim
ρ→z−0

H2(ρ)
(ρ− z0)2

= A2.

Suppose now that A > 0. Then there is a ρ2 with ρ0 ≤ ρ2 < z0 such that

H2 ≤ 2A2(ρ− z0)2 for ρ2 ≤ ρ < z0.

Thus for t ∈ (ρ2, z0) we have∫ t

ρ2

Zs

H2
ds ≥ Zρ2

2A2

∫ t

ρ2

1
(s− z0)2

ds =
Zρ2

2A2

[ −1
t− z0

+
1

ρ2 − z0
]
.

Multiplying by t and integrating again gives∫ ρ

ρ2

t

∫ t

ρ2

Zs

H2
ds ≥ Zρ2

2

2A2

∫ ρ

ρ2

[ −t
t− z0

+
t

ρ2 − z0
]
dt

=
Zρ2

2

2A2

[
− (ρ− ρ2)− z0 ln(ρ− z0) + z0 ln(ρ2 − z0) +

ρ2 − ρ2
2

2(ρ2 − z0)
]
.

(2.4)

We see that the expression −z0 ln(ρ − z0) on the right-hand side of (2.4) goes to
+∞ as ρ→ z−0 which contradicts (2.2) and (2.3). Thus we see that it must be the
case that A = 0. Thus

lim
ρ→z−0

H ′(ρ) = lim
ρ→z−0

H(ρ)
ρ− z0

= 0. (2.5)
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Next, it is straightforward to show using (1.4) that[
H2(H ′′ +

H ′

ρ
)−HH ′2

]′ =
2HH ′2

ρ
+ ρ
[
Z − 2Y H2

(1− ρ2)2
]
−H ′3.

Integrating this on (ρ2, ρ) gives

H2
(
H ′′ +

H ′

ρ

)
−HH ′2

= H2(ρ2)
(
H ′′(ρ2) +

H ′(ρ2)
ρ2

)
−H(ρ2)H ′2(ρ2)

+
∫ ρ

ρ2

2HH ′2

t
dt+

∫ ρ

ρ2

t[Z − 2Y H2

(1− t2)2
] dt−

∫ ρ

ρ2

H ′3 dt.

(2.6)

It follows from (2.5) that H2H ′ → 0 and HH ′2 → 0 as ρ→ z−0 . Also the integrals
in (2.6) are finite because z0 < 1. Thus it follows that

lim
ρ→z−0

H2H ′′ = B.

We now want to show that B = 0. Suppose then that B 6= 0. Then integrating
on H2H ′′ on (ρ, z0) gives

H2(ρ)H ′(ρ) +
∫ z0

ρ

2HH ′2 dt = −
∫ z0

ρ

H2H ′′.

Dividing by z0 − ρ and taking limits as ρ → z−0 we see that the right-hand side
limits to −B 6= 0 and the left-hand side limits to 0 by (2.5). This is a contradiction
and therefore,

lim
ρ→z−0

H2H ′′ = 0. (2.7)

Next, multiplying (1.4) by H2, taking limits, and using (2.5) and (2.7) gives

lim
ρ→z−0

H2H ′′′ = Zz0 > 0. (2.8)

Now integrating H2H ′′′ on (ρ, z0) and using that H(z0) = 0, (2.5), and (2.7)
gives

−H2H ′′ +HH ′2 +
∫ z0

ρ

H ′3 dt =
∫ z0

ρ

H2H ′′′ dt.

Dividing by z0 − ρ and taking limits as ρ→ z−0 gives Zz0 on the right (from (2.8))
while from (2.5) and the fact that H(z0) = 0, the second and third terms on the
left have a limit of 0. Thus we see that

lim
ρ→z−0

−H2H ′′

z0 − ρ
= Zz0 > 0. (2.9)

Therefore near z0 we have

−H2H ′′ ≥ Zz0
2

(z0 − ρ),

and after integrating on (ρ, z0) and using (2.5) we see that

H2H ′ +
∫ z0

ρ

2HH ′2 dt ≥ Zz0
4

(z0 − ρ)2.
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Dividing by (z0 − ρ)2 gives

H2H ′ +
∫ z0
ρ

2HH ′2 dt

(z0 − ρ)2
≥ Zz0

4
. (2.10)

Finally, taking limits as ρ→ z−0 using (2.5) we see that the left-hand side of (2.10)
limits to 0 and thus Zz0 = 0 which contradicts that Z > 0 and z0 > 0. This
completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. We first prove existence of a solution of (1.11)-(1.14) on
(0, ρ0) for some ρ0 > 0. Assuming first that W ∈ C3[0, 1] is a solution of (1.11)-
(1.14) then by L’Hopital’s rule W ′′(0) = limρ→0+

W ′(ρ)
ρ . Using this, integrating

(1.11) on (0, ρ), and using (1.12)-(1.14) gives

W ′′ +
W ′

ρ
= 2W ′′(0)−

∫ ρ

0

2Y tW
(
H +

√
Z/(2Y )(1− t2)

)
H2(1− t2)2

dt. (2.11)

Multiplying by ρ and integrating on (0, ρ) gives

ρW ′ = W ′′(0)ρ2 −
∫ ρ

0

s

∫ s

0

2Y tW
(
H +

√
Z/(2Y )(1− t2)

)
H2(1− t2)2

dt ds. (2.12)

Dividing by ρ and integrating on (0, ρ) gives

W = W (0) +W ′′(0)
ρ2

2
−
∫ ρ

0

1
x

∫ x

0

s

∫ s

0

2Y tW
(
H +

√
Z/(2Y )(1− t2)

)
H2(1− t2)2

dt ds dx.

(2.13)
Denoting the right-hand side of (2.13) as T (W ), it is straightforward to show that
T is a contraction mapping on C3[0, ε] for some ε > 0 when W (0) > 0 and W ′′(0)
is arbitrary. Thus it follows from the contraction mapping principle [5] that there
is a solution of (1.4)-(1.6) on (0, ρ0) for some ρ0 > 0.

Next, let us denote (0, ρ1) as the maximal open interval of existence for this
solution. We claim now that ρ1 ≥ 1. So we suppose by the way of contradiction
that 0 < ρ1 < 1. Integrating (1.4) on (0, ρ) gives

H ′′ +
H ′

ρ
+

Y

1− ρ2
= 2k + Y +

∫ ρ

0

Zt

H2
dt.

Multiplying by ρ, integrating (0, ρ), and simplifying gives

H ′ =
Y

2
ln(1− ρ2)

ρ
+ (k +

Y

2
)ρ+

1
ρ

∫ ρ

0

s

∫ s

0

Zt

H2
dt ds. (2.14)

Integrating again on (0, ρ) gives

H = H(0) +
Y

2

∫ ρ

0

ln(1− t2)
t

dt+ (k+
Y

2
)
ρ2

2
+
∫ ρ

0

1
x

∫ x

0

t

∫ t

0

sZ

H2
ds dt dx. (2.15)

From (2.14) we see that
∫ ρ
0
s
∫ s
0
Zt
H2 dt ds is an increasing function and since ρ1 < 1

we see that limρ→ρ−1
H ′(ρ) exists (and is possibly +∞). Similarly from (2.15) we

see that
∫ ρ
0

1
x

∫ x
0
t
∫ t
0
sZ
H2 ds dt dx is increasing and thus limρ→ρ−1

H(ρ) exists (and is
possibly +∞). We claim now that limρ→ρ−1

H(ρ) exists and is finite.
First, if limρ→ρ−1

H ′(ρ) is finite then it follows that limρ→ρ−1
H(ρ) is also fi-

nite. So suppose limρ→ρ−1
H(ρ) = +∞. Then by contraposition it follows that

limρ→ρ−1
H ′(ρ) = +∞. On the other hand, if limρ→ρ−1

H(ρ) = +∞ then it follows
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that 1
H is bounded near ρ = ρ1 < 1. Then from (2.14) it follows that H ′ is bounded

contradicting that limρ→ρ−1
H ′(ρ) = +∞. So we see that limρ→ρ−1

H(ρ) exists and is
finite. As in the proof of Theorem 1.1 it is possible to show that limρ→ρ−1

H(ρ) > 0.
Therefore H(ρ) > 0 on [0, ρ1] and since H is continuous then there exists a c0 > 0
such that H ≥ c0 > 0 on [0, ρ1].

Using this estimate in (2.13) and using that ρ1 < 1 we obtain the existence of a
constant c2 so that

|W | ≤ |W (0)|+ |W ′′(0)|+ c2

∫ ρ

0

1
x

∫ x

0

s

∫ s

0

|W | dt ds dx.

Next, since 0 ≤ ρ ≤ 1 we see that∫ ρ

0

1
x

∫ x

0

s

∫ s

0

|W | dt ds dx ≤
∫ ρ

0

1
x

∫ x

0

s

∫ ρ

0

|W | dt ds dx

=
ρ2

4

∫ ρ

0

|W | dt

≤
∫ ρ

0

|W | dt

and therefore,

|W | ≤ |W (0)|+ |W ′′(0)|+ c2

∫ ρ

0

|W |.

Then by the Gronwall inequality [5] it follows that W remains bounded on [0, ρ1].
We can then apply the contraction mapping principle again and obtain existence on
a slightly larger interval contradicting the maximality of ρ1. Thus the assumption
that 0 < ρ1 < 1 must be false and therefore we see that ρ1 ≥ 1. Hence we see W
is a solution of (1.11) on the entire open interval (0, 1).

Next, we observe from Theorem 1.1 that H > 0 on [0, 1). Thus we see by (1.11)
that when W > 0 then (

W ′′ +
W ′

ρ

)′
< 0.

Integrating on (0, ρ) and using L’Hopital’s rule again we see W ′′(0) = limρ→0+
W ′(ρ)
ρ

and thus

W ′′ +
W ′

ρ
< 2W ′′(0).

Multiplying by ρ and integrating on (0, ρ) using (1.13) gives

ρW ′ < W ′′(0)ρ2 (2.16)

and thus
W ′ < W ′′(0)ρ. (2.17)

Integrating a final time on (0, ρ) gives

W < W (0) +
W ′′(0)

2
ρ2 =

(
d−

√
Z/(2Y )

)
+
(
k +

√
2Z/Y

)ρ2

2
. (2.18)

Now if W > 0 on [0, 1] then the left-hand side of (2.18) is positive but we see that
the right-hand side of (2.18) is negative if k is sufficiently negative. Thus we obtain
a contradiction and so we see that if k is sufficiently negative then W has a zero on
[0, 1].
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Next it follows from (2.15) that

H ≥ d+
Y

2

∫ ρ

0

ln(1− t2)
t

dt+ (k +
Y

2
)
ρ2

2
.

Thus by (1.10),

W ≥
(
d−

√
Z/(2Y )

)
+
Y

2

∫ ρ

0

ln(1− t2)
t

dt+
(
k +

Y

2
+
√

2Z/Y
)ρ2

2
. (2.19)

We see next by L’Hopital’s rule that

lim
ρ→0+

Y
2

∫ ρ
0

ln(1−t2)
t dt

ρ2
= −Y

4
.

Therefore it follows that

lim
ρ→0+

Y
2

∫ ρ
0

ln(1−t2)
t dt+ (k + Y

2 +
√

2Z/Y ))ρ
2

2

ρ2
=
k

2
+
√
Z/(2Y ). (2.20)

Also ln(1−t2)
t is integrable at t = 1 so we see that if (d −

√
Z/(2Y )) > 0 and k is

chosen sufficiently large then it follows from (2.19), (2.20), and the integrability of
ln(1−t2)

t that W > 0 on [0, 1).
We now define Wk to be the solution of (1.11)-(1.14). We have shown that

Wk > 0 on [0, 1] if k is sufficiently large and that Wk has a zero on [0, 1] if k is
sufficiently negative.

Now we choose k0 to be the infimum of all k such that Wk > 0 on [0, 1]. We
claim that Wk0 is a positive solution of (1.11) with W ′k0(0) = 0, Wk0(1) = 0 and
thus Hk0 = Wk0 +

√
Z/(2Y )(1− ρ2) is a solution of (1.4)-(1.6).

First we observe from (1.10), (2.14), and (2.17) that

Y

2
ln(1− ρ2)

ρ
+
(
k +

Y

2
+
√

2Z/Y
)
ρ ≤W ′k ≤W ′′k (0) = k +

√
2Z/Y .

Thus we see that there exists constants C1 and C2 (independent of k for k near k0)
such that |W ′k| ≤ C1| ln(1−ρ)|+C2 on [0, 1] and therefore there is a C3 (independent
of k for k near k0) such that ∫ 1

0

W ′k
2(t) dt ≤ C3.

Then we see by the Holder inequality that

|Wk(x)−Wk(y)| = |
∫ y

x

W ′k(t) dt| ≤
√
|x− y|

√∫ 1

0

W ′2k (t) dt ≤
√
C3

√
|x− y|.

Thus the {Wk} are equicontinuous on [0, 1]. Now if Wk0 is ever negative then Wk

would have to be somewhere negative for some k > k0, but by assumption if k > k0

then Wk > 0. Thus we see that Wk0 ≥ 0.
If Wk0 > 0 on [0, 1] then Wk > 0 on [0, 1] for k < k0 contradicting that Wk has

a zero on [0, 1] for k < k0. Thus Wk0 must have a zero on (0, 1]. So suppose there
exists z0 with 0 < z0 ≤ 1 such that Wk0 > 0 on [0, z0). If z0 = 1 then we are done
with this part of the proof so we suppose z0 < 1.

Since we also know that Wk0 ≥ 0 we see that if z0 < 1 then it follows that Wk0

has a local minimum at z0 and so W ′k0(z0) = 0.
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Also, since Wk0(0) > 0 and Wk0(z0) = 0 it follows that Wk0 must have a local
maximum M with 0 ≤M < z0 < 1. Integrating (1.11) on (M,ρ) gives

W ′′k0 +
W ′k0
ρ

= B −
∫ ρ

M

2Y tWk0

(
Hk0 +

√
Z/(2Y )(1− t2)

)
H2
k0

(1− t2)2
dt (2.21)

where B = W ′′k0(M) if M > 0 or B = 2W ′′k0(0) if M = 0. Whether the local max is
at M > 0 or at 0 we see that in either case B ≤ 0.

Multiplying (2.21) by ρ and integrating on (M,ρ) gives

W ′k0 =
Bρ2

2
− 1
ρ

∫ ρ

M

x

∫ x

M

2Y tWk0

(
Hk0 +

√
Z/(2Y )(1− t2)

)
H2
k0

(1− t2)2
dt dx. (2.22)

Thus we see that

0 = W ′k0(z0) ≤ −1
ρ

∫ z0

M

x

∫ x

M

2Y tWk0

(
Hk0 +

√
Z/(2Y )(1− t2)

)
H2
k0

(1− t2)2
dt dx. (2.23)

But Wk0 > 0 on (M, z0) and also by Theorem 1.1 we know Hk0 > 0 on [0, 1)
and therefore the right-hand side of (2.23) must be negative. Thus we obtain a
contradiction and we see that z0 = 1.

We also see by (2.22) that W ′k0 < 0 on (M, 1). It also follows from (2.22) and that
Wk0 > 0 and Hk0 > 0 that limρ→1−W

′
k0

exists (and is possibly −∞). This limit
must be strictly negative because B ≤ 0 and the integrand in (2.22) is not identically
zero on (M, 1). If W ′k0(1) = −L > −∞ then H ′k0(1) = −L −

√
2Z/Y and since

Wk0(1) = Hk0(1) = 0 then limρ→1−
Wk0 (ρ)

1−ρ = L and limρ→1−
Hk0 (ρ)

1−ρ = L+
√

2Z/Y .
Using (2.22) and that Wk0 > 0 and Hk0 > 0 we see that there is a C4 > 0 and a
δ > 0 such that

W ′k0 ≤ −
C4

ρ

∫ ρ

1−δ
x

∫ x

1−δ

t

(1− t)2
dt dx.

This goes to −∞ as ρ→ 1− contradicting that W ′k0(1) = −L > −∞. Thus it must
be the case that W ′(1) = −∞. This completes the proof of Theorem 1.2. �

3. Facts about the behavior of H near ρ = 1

We now begin to investigate the behavior of (1.4) and (1.6) in a neighborhood
of ρ = 1 assuming H is a solution of (1.4) and (1.6) with finite contact angle at
ρ = 1.

So let us assume that H ∈ C3(1 − ε, 1] for some ε > 0 and that H is a positive
solution of (1.4) and (1.6) on (1− ε, 1). Since H(1) = 0,

H ′(1) = lim
ρ→1−

H(ρ)
ρ− 1

. (3.1)

Multiplying (1.4) by H2 gives

H2
(
H ′′′ +

H ′′

ρ
− H ′

ρ2

)
= Zρ− 2Y ρH2

(1− ρ2)2
. (3.2)

Taking limits as ρ→ 1−, using that H ∈ C3(1− ε, 1], H(1) = 0, and (3.1) gives

0 = Z − Y

2
H ′(1)2.
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Since H > 0 on (1− ε, 1) and H(1) = 0, it then follows that H ′(1) ≤ 0 and thus

H ′(1) = −
√

2Z/Y < 0. (3.3)

Next by Taylor’s theorem we have

H = H ′(1)(ρ− 1) +
H ′′(1)

2
(ρ− 1)2 + o(1)(ρ− 1)2.

Using this on the right-hand side of (3.2) we obtain

Zρ− 2Y ρH2

(1− ρ2)2
=

[2H ′(1)H ′′(1)Y − Z(3 + ρ)]ρ(ρ− 1)
(1 + ρ)2

+ o(1)(ρ− 1). (3.4)

Next dividing (3.2) and (3.4) by (ρ− 1) we obtain

H
H

ρ− 1
(
H ′′′ +

H ′′

ρ
− H ′

ρ2

)
=

[2H ′(1)H ′′(1)Y − Z(3 + ρ)]ρ
(1 + ρ)2

+ o(1).

Taking limits as ρ→ 1− using H(1) = 0 and (3.1) gives

0 =
2H ′(1)H ′′(1)Y − 4Z

4
.

Thus, using (3.3) we obtain

H ′′(1) = H ′(1) = −
√

2Z/Y . (3.5)

Now integrating (1.4) on (ρ, 1) and using (3.5) gives

2H ′(1)−
[
H ′′ +

H ′

ρ

]
=
∫ 1

ρ

[Zx
H2
− 2Y x

(1− x2)2
]
dx.

Multiplying by t and integrating on (ρ, 1) gives

−H ′(1)ρ2 + ρH ′ =
∫ 1

ρ

t

∫ 1

t

[Zx
H2
− 2Y x

(1− x2)2
]
dx dt. (3.6)

Dividing by ρ, integrating on (ρ, 1), and using (3.5) gives√
Z/(2Y )(1− ρ2)−H =

∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

[Zx
H2
− 2Y x

(1− x2)2
]
dx dt ds.

Rewriting we obtain

H −
√
Z/(2Y )(1− ρ2) =

∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

2Y x
[H2 − Z

2Y (1− x2)2

H2(1− x2)2
]
dx dt ds. (3.7)

Finally,

H −
√
Z/(2Y )(1− ρ2) =

∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

2Y x[H −
√
Z/(2Y )(1− x2)]

× [H +
√
Z/(2Y )(1− x2)]

/(
H2(1− x2)2

)
dx dt ds.

(3.8)
Often one can use an identity like (3.8) to prove local existence of a solution of

(1.4) and (1.6) near ρ = 1. The usual procedure is to define a mapping, T , as

T (H) =
√
Z/(2Y )(1− ρ2) +

∫ 1

ρ

1
s

∫ 1

s

t

×
∫ 1

t

[2Y x[H −
√
Z/(2Y )(1− x2)][H +

√
Z/(2Y )(1− x2)]

H2(1− x2)2
]
dx dt ds.
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If we could show that T is a contraction mapping then by the contraction mapping
principle T would have a unique fixed point which would be a solution of (1.4) and
(1.6). However, due to the singular nature of (1.4) near ρ = 1, it turns out that T is
not a contraction and so this method of proof of existence does not work. However,
we are able to draw some conclusions from (3.8) about the behavior of solutions of
(1.4).

Note 1: From (3.8) it follows that if there is an ε > 0 such that

H >
√
Z/(2Y )(1− ρ2) on (1− ε, 1)

then
H >

√
Z/(2Y )(1− ρ2) on [0, 1).

The reason for this is that if there were a ρ0 such that H(ρ0)−
√
Z/(2Y )(1−ρ2

0) = 0
and

H >
√
Z/(2Y )(1− ρ2) on (ρ0, 1)

then the left-hand side of (3.8) would be zero but the right-hand side of (3.8) would
be positive, yielding a contradiction.

Note 2: Similarly, if there is an ε > 0 such that H(0) > 0 and

H <
√
Z/(2Y )(1− ρ2) on (1− ε, 1)

then by Theorem 1.1, H > 0 on [0, 1) and then by (3.8),

H <
√
Z/(2Y )(1− ρ2) on [0, 1).

4. The case n(n− 1)(n− 2) 6= Y 3/2

(2Z)1/2 for all positive integers n

Our next attempt at solving (1.4)-(1.6) was to look for solutions of (1.4) with
H(1) = 0 and then trying to show H ′(0) = 0. Consequently we attempted to find
a power series solution of (1.4) and (1.6) centered at ρ = 1 in the form

H(ρ) =
∞∑
n=0

an(ρ− 1)n (4.1)

where

an =
H(n)(1)
n!

. (4.2)

Lemma 4.1. If H ∈ Ck0 [0, 1] is a solution of (1.4)-(1.6) with H(0) > 0 and k0 ≥ 3
then

H(n)(1) = 0 for all 3 ≤ n ≤ k0.

(In particular, if H ∈ C∞[0, 1] then H(n)(1) = 0 for all n ≥ 3).

Proof. Suppose H ∈ Ck0 [0, 1] with H(0) > 0, k0 ≥ 3, and H ′′′(1) 6= 0. Using
Taylor’s theorem and (3.5) we then have

H −
√
Z/(2Y )(1− ρ2) =

H ′′′(1)
3!

(ρ− 1)3 + o(1)(ρ− 1)3 (4.3)

and therefore if H ′′′(1) > 0 then we see from (4.3) that

H <
√
Z/(2Y )(1− ρ2) on (1− ε, 1) for some ε > 0

and thus (by Note 1 at the end of section 2),

H <
√
Z/(2Y )(1− ρ2) on [0, 1). (4.4)
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A similar argument shows that if H ′′′(1) < 0 then (by Note 2 at the end of section
2) we obtain

H >
√
Z/(2Y )(1− ρ2) on [0, 1). (4.5)

In addition, by (3.5) and (3.6) we have

H ′ +
√

2Z/Y ρ = −1
ρ

∫ 1

ρ

t

∫ 1

t

2Y x
[H2 − Z

2Y (1− x2)2

H2(1− x2)2
]
dx dt. (4.6)

Thus

ρH ′ +
√

2Z/Y ρ2 = −
∫ 1

ρ

t

∫ 1

t

2Y x
[H2 − Z

2Y (1− x2)2

H2(1− x2)2
]
dx dt.

Hence

lim
ρ→0+

ρH ′ = −
∫ 1

0

t

∫ 1

t

2Y x
[H2 − Z

2Y (1− x2)2

H2(1− x2)2
]
dx dt. (4.7)

However, since H ∈ Ck0 [0, 1] and H ′′′(1) 6= 0, then either (4.4) holds or (4.5) holds
and therefore the right-hand side of (4.7) is nonzero. However, if H ∈ Ck0 [0, 1]
then we see that the left-hand side of (4.7) is zero. Thus, we obtain a contradiction
and so we cannot find a Ck0 [0, 1] solution of (1.4)-(1.6) unless H ′′′(1) = 0.

Assuming now that H ′′′(1) = 0 and H ∈ Ck0 [0, 1] with k0 ≥ 4 then again using
Taylor’s theorem and (3.5) we see that

H −
√
Z/(2Y )(1− ρ2) =

H ′′′′(1)
4!

(ρ− 1)4 + o(1)(ρ− 1)4

and arguing in a similar way as before we can show that H ′′′′(1) = 0. Continuing
in this way we see that all the higher derivatives of H up through order k0 would
have to be zero at ρ = 1. This completes the proof. �

Lemma 4.2. Suppose H is a solution of (1.4) and (1.6) with H ∈ Ck0(1 − ε, 1]
and H > 0 on (1− ε, 1) for some ε > 0 and k0 ≥ 3. Also suppose that

n(n− 1)(n− 2) 6= Y 3/2

(2Z)1/2
for all positive integers n with 3 ≤ n ≤ k0. (4.8)

Then
H(n)(1) = 0 for all 3 ≤ n ≤ k0.

(In particular, if H ∈ C∞(1− ε, 1] and H > 0 on (1− ε, 1) for some ε > 0 and H
is a solution of (1.4) and (1.6) satisfying (4.8) then H(n)(1) = 0 for all n ≥ 3).

Proof. We will assume (4.8) and show that

H(n)(1) = 0 for all 3 ≤ n ≤ k0.

So suppose n ≥ 3, H ∈ Cn(1− ε, 1], and that H satisfies

H = a1(ρ− 1) + a2(ρ− 1)2 + an(ρ− 1)n + o(1)(ρ− 1)n. (4.9)

Then

H2 = a2
1(ρ− 1)2 + 2a1a2(ρ− 1)3 + a2

2(ρ− 1)4 + 2a1an(ρ− 1)n+1 + o(1)(ρ− 1)n+1.

Therefore,

H2

(1− ρ)2
= a2

1 + 2a1a2(ρ− 1) + a2
2(ρ− 1)2 + 2a1an(ρ− 1)n−1 + o(1)(ρ− 1)n−1.
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Then
2Y H2

(1− ρ2)2
=

2Y
(1 + ρ)2

[a2
1 + 2a1a2(ρ− 1) + a2

2(ρ− 1)2]

+
4Y a1an(ρ− 1)n−1

(1 + ρ)2
+ o(1)(ρ− 1)n−1.

Next,

2Y H2

(1− ρ2)2
− Z =

2Y
(1 + ρ)2

[
a2
1 + 2a1a2(ρ− 1) + a2

2(ρ− 1)2 − Z(1 + ρ)2

2Y
]

+
4Y a1an(ρ− 1)n−1

(1 + ρ)2
+ o(1)(ρ− 1)n−1.

(4.10)

Using (3.5) and (4.2) we see that the term in brackets on the right-hand side of
(4.10) is identically zero and thus (4.10) reduces to

2Y H2

(1− ρ2)2
− Z =

4Y a1an(ρ− 1)n−1

(1 + ρ)2
+ o(1)(ρ− 1)n−1. (4.11)

Now multiplying by ρ
H2 and using the fact that

lim
ρ→1−

H(ρ)
ρ− 1

= H ′(1) = a1 = −
√

2Z/Y (4.12)

as well as (1.4), (3.5), and (4.11) we obtain

−(H ′′′ +
H ′′

ρ
− H ′

ρ2
) =

2Y ρ
(1− ρ2)2

− Zρ

H2
=

4Y a1anρ(ρ− 1)n−3

(1 + ρ)2

(ρ− 1)2

H2
+ o(1)(ρ− 1)n−3.

(4.13)

First we consider the case n = 3. Taking limits as ρ→ 1− of (4.13) using (4.12)
we obtain

− 3!a3 = −H ′′′(1) =
Y a1a3

a2
1

=
Y a3

a1
= − Y 3/2

(2Z)1/2
a3. (4.14)

But from (4.8) we have that

Y 3/2

(2Z)1/2
6= 6 = 3 · 2 · 1

and thus from (4.14) it follows that

a3 =
H ′′′(1)

3!
= 0.

Now let us assume (4.8) with 3 < n ≤ k0 and suppose that

H ′′′(1) = H(4)(1) = · · · = H(n−1)(1) = 0. (4.15)

Then (4.9) holds and therefore from (4.13) we see that

H ′′′ + H′′

ρ −
H′

ρ2

(ρ− 1)n−3
=
−4Y a1anρ

(1 + ρ)2
(ρ− 1)2

H2
+ o(1). (4.16)

Taking limits as ρ→ 1− of the right-hand side of (4.16) and using (4.12) we obtain

lim
ρ→1−

H ′′′ + H′′

ρ −
H′

ρ2

(ρ− 1)n−3
=
−Y a1an

a2
1

=
Y 3/2

(2Z)1/2
an. (4.17)
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Next we observe that

lim
ρ→1−

H ′′′ + H′′

ρ −
H′

ρ2

(ρ− 1)n−3
= lim
ρ→1−

ρ2H ′′′ + ρH ′′ −H ′

(ρ− 1)n−3
. (4.18)

Using (4.15) and that H ∈ Cn(1 − ε, 1], we may apply L’Hopital’s rule (n − 3)
times to the limit on the right-hand side of (4.18), and it is straightforward to show
that

lim
ρ→1−

ρ2H ′′′ + ρH ′′ −H ′

(ρ− 1)n−3

= lim
ρ→1−

ρ2H(n) + (2n− 5)ρH(n−1) + (n2 − 6n+ 8)H(n−2)

(n− 3)!
=
H(n)(1)
(n− 3)!

.

(4.19)

Thus from (4.17)-(4.19) we get

Y 3/2

(2Z)1/2
an =

H(n)(1)
(n− 3)!

=
n!an

(n− 3)!
= n(n− 1)(n− 2)an. (4.20)

And again by (4.8) we see that since n ≥ 3 then

n(n− 1)(n− 2) 6= Y 3/2

(2Z)1/2

and therefore by (4.20),

an =
H(n)(1)
n!

= 0.

This completes the proof. �

Lemma 4.3. If H ∈ C∞(1− ε, 1] with H > 0 on (1− ε, 1) for some ε > 0 and H
is a solution of (1.4), (1.6), with H(n)(1) = 0 for every n ≥ 3 then

H ≡
√
Z/(2Y )(1− ρ2).

Proof. Let

W = H −
√
Z/(2Y )(1− ρ2).

Since H(1) = 0, it follows from (3.5) and by assumption that

W (n)(1) = 0 for all n ≥ 0.

Then by (3.8) we have

W =
∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

[2Y xW [H +
√
Z/(2Y )(1− x2)]

H2(1− x2)2
]
dx dt ds.

We rewrite this as follows:

W =
∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

W

(1− x)3
[ 2Y x
(1 + x)2

[ H
1−x +

√
Z/(2Y )(1 + x)]

( H
1−x )2

]
dx dt ds. (4.21)

It follows then from (3.1) and (3.3) that the limit as x→ 1− of the term in brackets
in (4.21) is Y 3/2

(2Z)1/2 and so there is a ρ0 with 0 < ρ0 < 1 such that the term in
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brackets in (4.21) is bounded by M where M = 2Y 3/2

(2Z)1/2 . Then on [ρ0, 1] we have

|W | ≤
∫ 1

ρ

1
s

∫ 1

s

t

∫ 1

t

M |W |
(1− x)3

dx dt ds

≤
∫ 1

ρ

1
s

∫ 1

ρ

t

∫ 1

ρ

M |W |
(1− x)3

dx dt ds

≤ M

ρ0
(1− ρ)2

∫ 1

ρ

|W |
(1− x)3

dx.

(4.22)

Now we let

U =
∫ 1

ρ

|W |
(1− x)3

dx for ρ0 < ρ < 1, (4.23)

and observe that

U ′ = − |W |
(1− ρ)3

.

It follows from (4.22) that

(1− ρ)U ′ +BU ≥ 0 where B =
M

ρ0
.

This implies
U(ρ)

(1− ρ)B

is increasing and thus if 0 < ρ0 < ρ < ρ2 < 1 then

U(ρ)
(1− ρ)B

≤ U(ρ2)
(1− ρ2)B

. (4.24)

Now we know from the beginning of the proof that W (1) = W ′(1) = W ′′(1) = 0
and by assumption we also know for n ≥ 3 that W (n)(1) = H(n)(1) = 0. Thus W
vanishes faster than any power of (1− ρ) at ρ = 1. That is,

lim
ρ→1−

W

(1− ρ)n
= 0 for every n ≥ 1.

It follows then from (4.23) that the same is true for U .
It follows then from (4.24) that

U(ρ)
(1− ρ)B

≤ lim
ρ2→1−

U(ρ2)
(1− ρ2)B

= 0.

Thus U ≤ 0 on (ρ1, 1) but clearly U ≥ 0 (by (4.23)) and thus U ≡ 0 which implies
W ≡ 0 and thus

H ≡
√
Z/(2Y )(1− ρ2).

This completes the proof. �

Theorem 4.4. Let H ∈ C∞[0, 1] be a solution of (1.4)-(1.6) with H(0) > 0. Then

H(ρ) ≡
√
Z/(2Y )(1− ρ2).

The above theorem follows from Lemmas 4.1 and 4.3.
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Theorem 4.5. Let ε > 0. If n(n− 1)(n− 2) 6= Y 3/2

(2Z)1/2 for every positive integer n
and H ∈ C∞(1− ε, 1] is a solution of (1.4) and (1.6) with H positive on (1− ε, 1)
then

H(ρ) ≡
√
Z/(2Y )(1− ρ2).

The above theorem follows from Lemmas 4.2 and 4.3.

5. The case n0(n0 − 1)(n0 − 2) = Y 3/2

(2Z)1/2 for some positive integer n0 ≥ 3

So the question now is whether there are any power series solutions of (1.4) and
(1.6) if

n0(n0 − 1)(n0 − 2) =
Y 3/2

(2Z)1/2
for some n0 ≥ 3.

Lemma 5.1. Let n0 be an integer with n0 ≥ 3 such that

n0(n0 − 1)(n0 − 2) =
Y 3/2

(2Z)1/2
.

Suppose that

H =
∞∑
n=1

an(ρ− 1)n

is a power series solution of (1.4) and (1.6). Let

bn = n(n− 1)(n− 2)an + (n− 1)(n− 2)(2n− 5)an−1 + (n− 2)2(n− 4)an−2 (5.1)

for n ≥ 3, and

cn =
n∑
k=1

akan+1−k for n ≥ 1. (5.2)

Then
a1 = −

√
2Z/Y and a2 = −1

2

√
2Z/Y . (5.3)

In addition [
6− Y 3/2

(2Z)1/2
]
a3 = 0, (5.4)

[
24− Y 3/2

(2Z)1/2
]
a4 = −18a3 −

5Y 2

2Z
a2a3 −

Y

2Z
b3c2, (5.5)

[
60− Y 3/2

(2Z)1/2
]
a5 = −60a4 − 9a3 −

Y 2

4Z

4∑
k=2

aka6−k −
Y

2Z

4∑
k=3

bkc6−k (5.6)

+
Y 2

4Z
[
− 2c4 −

3
4
c3 +

1∑
k=0

(−1)1−k(17− 7k)ck+1

24−k

]
, (5.7)

and[
n(n− 1)(n− 2)− Y 3/2

(2Z)1/2
]
an

= −(n− 1)(n− 2)(2n− 5)an−1 − (n− 2)2(n− 4)an−2 −
Y 2

4Z

n−1∑
k=2

akan+1−k (5.8)
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− Y

2Z

n−1∑
k=3

bkcn+1−k +
Y 2

4Z

[
− 2cn−1 −

3
4
cn−2 +

n−3∑
k=1

(−1)n−k(n− k − 5)ck
2n−k

]
(5.9)

for n ≥ 6.
Further, if n0 > 3 then H(n)(1) = 0 for 3 ≤ n ≤ n0− 1. Also, if n0 = 4 then the

right-hand side of (5.5) is zero. If n0 = 5 then the right-hand side of (5.6)-(5.7) is
zero. Finally, if n = n0 ≥ 6, then the right-hand side of (5.8)-(5.9) is 0.

Proof. We suppose

H =
∞∑
n=1

an(ρ− 1)n

where

an =
H(n)(1)
n!

. (5.10)

It follows from (3.5) that

a1 = −
√

2Z/Y , a2 = −1
2

√
2Z/Y . (5.11)

Then

H ′ =
∞∑
n=1

nan(ρ− 1)n−1,

H ′′ =
∞∑
n=1

n(n− 1)an(ρ− 1)n−2 =
∞∑
n=1

(n+ 1)nan+1(ρ− 1)n−1,

H ′′′ =
∞∑
n=1

n(n− 1)(n− 2)an(ρ− 1)n−3 =
∞∑
n=1

(n+ 2)(n+ 1)nan+2(ρ− 1)n−1.

(5.12)
Also

(ρ− 1)H ′′ =
∞∑
n=1

n(n− 1)an(ρ− 1)n−1.

Therefore,

ρH ′′ = H ′′ + (ρ− 1)H ′′ =
∞∑
n=1

[(n+ 1)nan+1 + n(n− 1)an](ρ− 1)n−1. (5.13)

Also

2(ρ−1)H ′′′ =
∞∑
n=1

2n(n−1)(n−2)an(ρ−1)n−2 =
∞∑
n=1

2(n+1)n(n−1)an+1(ρ−1)n−1

and

(ρ− 1)2H ′′′ =
∞∑
n=1

n(n− 1)(n− 2)an(ρ− 1)n−1.
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Therefore,

ρ2H ′′′ = (ρ− 1)2H ′′′ + 2(ρ− 1)H ′′′ +H ′′′

=
∞∑
n=1

[
(n+ 2)(n+ 1)nan+2 + 2(n+ 1)n(n− 1)an+1

+ n(n− 1)(n− 2)an
]
(ρ− 1)n−1.

(5.14)

Finally, combining (5.12)-(5.14), we obtain

ρ2H ′′′ + ρH ′′ −H ′ =
∞∑
n=1

bn+2(ρ− 1)n−1 (5.15)

where

bn+2 = (n+ 2)(n+ 1)nan+2 + (n+ 1)n(2n− 1)an+1 + n2(n− 2)an (5.16)

for n ≥ 1. After reindexing this is (5.1). Also, we have

H2 =
∞∑
n=2

cn−1(ρ− 1)n (5.17)

where

cn =
n∑
k=1

akan+1−k for n ≥ 1. (5.18)

This is (5.2). Multiplying (5.15) and (5.17) gives

H2(ρ2H ′′′ + ρH ′′ −H ′) =
∞∑
n=3

( n−2∑
k=1

bk+2cn−k−1

)
(ρ− 1)n−1. (5.19)

Next
H2

(ρ− 1)2
=
∞∑
n=2

cn−1(ρ− 1)n−2 =
∞∑
n=0

cn+1(ρ− 1)n. (5.20)

Also

1
1 + ρ

=
1

2 + (ρ− 1)
=

1
2(1 + ρ−1

2 )
=

1
2

∞∑
n=0

(−1)n
(ρ− 1

2
)n =

∞∑
n=0

(−1)n

2n+1
(ρ− 1)n

for |ρ− 1| < 2. Differentiating we obtain

− 1
(1 + ρ)2

=
∞∑
n=1

(−1)nn
2n+1

(ρ− 1)n−1 for |ρ− 1| < 2. (5.21)

Multiplying (5.20) and (5.21) we see that

− H2

(ρ2 − 1)2
=
∞∑
n=1

( n−1∑
k=0

(−1)n−k(n− k)ck+1

2n−k+1

)
(ρ− 1)n−1.

Thus

− 2Y H2

(ρ2 − 1)2
=
∞∑
n=1

( n−1∑
k=0

(−1)n−k(n− k)ck+1Y

2n−k
)

(ρ− 1)n−1.
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Next, using (3.5) we see that

Z − 2Y H2

(ρ2 − 1)2
=
∞∑
n=3

( n−1∑
k=0

(−1)n−k(n− k)ck+1Y

2n−k
)

(ρ− 1)n−1. (5.22)

Thus after reindexing,

3(ρ− 1)[Z − 2Y H2

(ρ2 − 1)2
] =

∞∑
n=4

( n−2∑
k=0

3(−1)n−1−k(n− 1− k)ck+1Y

2n−1−k

)
(ρ− 1)n−1

and

3(ρ− 1)2[Z − 2Y H2

(ρ2 − 1)2
] =

∞∑
n=5

( n−3∑
k=0

3(−1)n−2−k(n− 2− k)ck+1Y

2n−2−k

)
(ρ− 1)n−1

and

(ρ−1)3[Z− 2Y H2

(ρ2 − 1)2
] =

∞∑
n=6

( n−4∑
k=0

(−1)n−3−k(n− 3− k)ck+1Y

2n−3−k

)
(ρ−1)n−1. (5.23)

Now using that ρ3 = 1 + 3(ρ− 1) + 3(ρ− 1)2 + (ρ− 1)3, combining (5.22)-(5.23),
using (3.5), and (5.1) as well as some tedious algebra gives

ρ3[Z − 2Y H2

(ρ2 − 1)2
]

= −a1a3Y (ρ− 1)2 − [
1
2
c4 + 2a1a3]Y (ρ− 1)3

+
Y

2

[
− c5 − 2c4 −

3
4
c3 +

1∑
k=0

(−1)1−k(17− 7k)ck+1

24−k

]
(ρ− 1)4

+
∞∑
n=6

Y

2

[
− cn − 2cn−1 −

3
4
cn−2

+
n−4∑
k=0

(−1)n−1−k(n− k − 6)ck+1

2n−1−k

]
(ρ− 1)n−1.

(5.24)

So we see that a power series solution of (1.4) is equivalent to equating the
coefficients in (5.19) and (5.24) and so we obtain

n−2∑
k=1

bk+2cn−1−k

=
Y

2

[
− cn − 2cn−1 −

3
4
cn−2 +

n−4∑
k=0

(−1)n−1−k(n− k − 6)ck+1

2n−1−k

] (5.25)

for n ≥ 6. In addition, when n = 3,

b3c1 = −a1a3Y.

(Using (5.1), (5.2), and (5.11), this is (5.4)). When n = 4,

b3c2 + b4c1 = −1
2
c4Y − 2a1a3Y.
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(Using (5.1), (5.2), and (5.11), this is (5.5)). And when n = 5,

b3c3 + b4c2 + b5c1 =
Y

2

[
− c5 − 2c4 −

3
4
c3 +

1∑
k=0

(−1)1−k(17− 7k)ck+1

24−k

]
.

(Using (5.1), (5.2), and (5.11), this is (5.6) and (5.7)).
Next, rewriting and reindexing (5.25) we see that

bnc1 +
Y

2
cn

= −
n−1∑
k=3

bkcn+1−k +
Y

2

[
− 2cn−1 −

3
4
cn−2 +

n−3∑
k=1

(−1)n−k(n− k − 5)ck
2n−k

] (5.26)

for n ≥ 6.
From (5.2) and (5.3) we recall that a1 = −

√
2Z/Y and c1 = a2

1. Therefore,
multiplying both sides of (5.26) by 1

c1
= Y

2Z we see that

bn +
Y 2

4Z
cn =

(
− Y

2Z

n−1∑
k=3

bkcn+1−k +
Y 2

4Z

[
− 2cn−1 −

3
4
cn−2

+
n−3∑
k=1

(−1)n−k(n− k − 5)ck
2n−k

])
for n ≥ 6.

(5.27)

Rewriting (5.2) gives

cn = 2a1an +
n−1∑
k=2

akan+1−k. (5.28)

Combining (5.1) and (5.28) we see that the left-hand side of (5.27) can be written
as

bn +
Y 2

4Z
cn

=
[
n(n− 1)(n− 2)− Y 3/2

(2Z)1/2
]
an + (n− 1)(n− 2)(2n− 5)an−1

+ (n− 2)2(n− 4)an−2 +
Y 2

4Z

n−1∑
k=2

akan+1−k.

(5.29)

Finally combining (5.27) and (5.29) we obtain[
n(n− 1)(n− 2)− Y 3/2

(2Z)1/2
]
an

= −(n− 1)(n− 2)(2n− 5)an−1 − (n− 2)2(n− 4)an−2 −
Y 2

4Z

n−1∑
k=2

akan+1−k

− Y

2Z

n−1∑
k=3

bkcn+1−k +
Y 2

4Z

[
− 2cn−1 −

3
4
cn−2 +

n−3∑
k=1

(−1)n−k(n− k − 5)ck
2n−k

]
(5.30)

for n ≥ 6, which is (5.9).
We note that by (5.1)-(5.2) all the terms on the right-hand side of (5.5)-(5.9)

can be expressed in terms of ak where 1 ≤ k ≤ n− 1.
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Note that if n is an integer and 3 ≤ n < n0 then n(n − 1)(n − 2) 6= Y 3/2

(2Z) and
so in a completely analogous way as in the proof of Lemma 4.2 in section 4 we can
show that

a3 = a4 = · · · = an0−1 = 0. (5.31)
Thus if n0 > 3 then H(n)(1) = 0 for 3 ≤ n ≤ n0 − 1.

Next, we need to show that if n0 = 4 then the right-hand side of (5.5) is zero,
if n0 = 5 then the right-hand side of (5.7) is zero, and if n = n0 ≥ 6, then the
right-hand side of (5.9) is 0.

Suppose first that n0 = 4. Then Y 3/2

(2Z)1/2 = 4 · 3 · 2 = 24 and so we see from (5.5)
that a3 = 0. We also see from (5.1) and (5.3) that b3 = 6a3 + 2a2 − a1 = 0. Hence
the right-hand side of (5.5) is 0.

Next suppose n0 = 5. Then Y 3/2

(2Z)1/2 = 5 · 4 · 3 = 60 and so from (5.5) we see that
a3 = 0. We also see from (5.1) and (5.3) that b3 = 0. Then from (5.5) we see that
a4 = 0. Then (5.1) and (5.2) imply that b4 = 0 and c4 = 0.

Since a3 = 0 it follows then from (5.2) and (5.3) that

c1 = a2
1, c2 = 2a1a2 = a2

1, c3 = 2a1a3 + a2
2 =

1
4
a2
1. (5.32)

Substituting these values into the right-hand side of (5.6)-(5.7) gives

Y 2

4Z
[
− 3

4
c3 −

17
16
c1 +

5
4
c2
]

=
Y 2

4Z
[
− 3

16
a2
1 −

17
16
a2
1 +

5
4
a2
1

]
= 0. (5.33)

Thus, the right-hand side of (5.6)-(5.7) is zero.
Now suppose that n0 ≥ 6. It then follows from (5.31) that

n0−1∑
k=2

akan0+1−k = 0.

It addition, it also follows from (5.1) and (5.31) that

bk = 0 for 3 ≤ k ≤ n0 − 1

and therefore,
n0−1∑
k=3

bkcn+1−k = 0.

It also follows from (5.2) and (5.3) that (5.32) holds. In addition, by (5.31),

ck =
k∑
l=1

alak+1−l =
2∑
l=1

alak+1−l = a1ak + a2ak−1 = 0 (5.34)

for 4 ≤ k ≤ n0 − 1.
Then using (5.31), (5.32), and (5.34) we see that if n0 ≥ 6, then the right-hand

side of (5.8)-(5.9) reduces to
3∑
k=1

(−1)n0−k(n0 − k − 5)ck
2n0−k

=
(−1)n0

2n0
[−2(n0 − 6)c1 + 4(n0 − 7)c2 − 8(n0 − 8)c3]

=
(−1)n0

2n0
[−2(n0 − 6)a2

1 + 4(n0 − 7)a2
1 − 2(n0 − 8)a2

1] = 0.
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This completes the proof of the lemma. �

It follows then that we are free to choose an0 to be any nonzero value and this
appears to indicate that there might be power series solutions of (1.4)-(1.6) in the
case when n0(n0 − 1)(n0 − 2) = Y 3/2

(2Z)1/2 but we still need to show that the series
∞∑
n=1

an(ρ− 1)n

with the an chosen as in Lemma 4.1 of section 4 converges in some neighborhood
of ρ = 1.
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