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EXISTENCE RESULTS FOR n-TH ORDER MULTIPOINT
INTEGRAL BOUNDARY-VALUE PROBLEMS OF

DIFFERENTIAL INCLUSIONS

BASHIR AHMAD, SOTIRIS K. NTOUYAS, HAMED H. ALSULAMI

Abstract. In this article we study the existence of solutions for n-th order

differential inclusions with nonlocal integral boundary conditions. Our results

are based on some classical fixed point theorems for multivalued maps. Some
illustrative examples are discussed.

1. Introduction

In this article, we discuss the existence of solutions for the boundary value prob-
lem of n-th order differential inclusions with multi-point integral boundary condi-
tions

u(n)(t) ∈ F (t, u(t)), a.e. t ∈ [0, 1],

u(0) = 0, u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(1) + βu′(1) =
m∑
i=1

γi

∫ ηi

0

u(s)ds, 0 < ηi < 1,

(1.1)

where F : [0, 1] × R → P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R and α, β, γi, ηi (i = 1, 2, . . . ,m) are real constants to be
chosen appropriately.

Boundary-value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two, three, multi-point,
and nonlocal boundary-value problems as special cases. Integral boundary-value
problems occur in the mathematical modeling of a variety of physical and biological
processes, and have recently received considerable attention. For some recent work
on boundary-value problems with integral boundary conditions, we refer to [1]-[6],
[8, 13, 14, 15, 17, 18, 21, 22], [25]-[30] and the references cited therein.

The present work is motivated by [6] which deals with a single-valued case of the
problem (1.1). We aim to establish a variety of results for the inclusion problem
(1.1) by considering the multivalued map involved to be convex as well as non-
convex valued. The first result relies on Bohnenblust-Karlin fixed point theorem
and the second one is based on the nonlinear alternative of Leray-Schauder type.
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In the third result, we combine the nonlinear alternative of Leray-Schauder type for
single-valued maps with a selection theorem due to Bressan and Colombo for lower
semi-continuous multivalued maps with nonempty closed and decomposable values,
while the fourth result is obtained by using the fixed point theorem for contractive
multivalued maps due to Covitz and Nadler.

The paper is organized as follows. In Section 2, we present an auxiliary lemma
and recall some preliminary concepts of multivalued analysis that we need in the
sequel. Section 3 contains the main existence results for the problem (1.1). In
Section 4, some illustrative examples are discussed.

2. Preliminaries

2.1. An auxiliary result. In this subsection, we obtain an auxiliary result which
is pivotal to define the solution of the problem (1.1).

Lemma 2.1. Let α+(n−1)β 6= 1
n

∑m
i=1 γiη

n
i . For any y ∈ C([0, 1],R), the unique

solution of the boundary-value problem

u(n)(t) = y(t), t ∈ [0, 1],

u(0) = 0, u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(1) + βu′(1) =
m∑
i=1

γi

∫ ηi

0

u(s)ds, 0 < ηi < 1,

(2.1)

is given by

u(t) =
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
y(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
y(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
y(s)ds

}
,

(2.2)

where

Λ =
1

α+ (n− 1)β − 1
n

∑m
i=1 γiη

n
i

. (2.3)

Proof. We know that the solution of the differential equation in (2.1) can be written
as

u(t) =
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+ c0 + c1t+ c2t

2 + . . .+ cn−2t
n−2 + cn−1t

n−1, (2.4)

where ci, i = 0, 1, . . . n − 1 are arbitrary real constants. Using the given boundary
conditions, we find that c0 = c1 = c2 = . . . = cn−2 = 0, and

cn−1 = Λ
( m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
y(s)ds− α

∫ 1

0

(1− s)n−1

(n− 1)!
y(s)ds

− β
∫ 1

0

(1− s)n−2

(n− 2)!
y(s)ds

)
where Λ defined by (2.3). Substituting these values in (2.4), we get (2.2). This
completes the proof. �

In view of Lemma 2.1, we define the solutions for (1.1) as follows.
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Definition 2.2. A function x ∈ AC(n−1)([0, 1],R) is called a solution of problem
(1.1) if there exists a function g ∈ L1([0, 1],R) with g(t) ∈ F (t, x(t)), a.e. on
[0, 1] such that x(n)(t) = g(t), a.e. on [0, 1] and x(0) = 0, x′(0) = 0, x′′(0) =
0, . . . , x(n−2)(0) = 0, αx(1) + βx′(1) =

∑m
i=1 γi

∫ ηi
0
x(s)ds, 0 < ηi < 1.

2.2. Basic concepts of multivalued analysis. Here we outline some basic defi-
nitions and results for multivalued maps, [12, 16, 20].

Let C([0, 1],R) denote a Banach space of continuous functions from [0, 1] into
R with the norm ‖x‖ = supt∈[0,1] |x(t)|. Let L1([0, 1],R) be the Banach space of
measurable functions x : [0, 1] → R which are Lebesgue integrable and normed by
‖x‖L1 =

∫ 1

0
|x(t)|dt.

For a normed space (X, ‖ · ‖), let

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact},

Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multivalued map G : X → P(X) :

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X;
(ii) is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all

B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞);
(iii) is called upper semi-continuous (upper semi-continuous) on X if for each

x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for each
open set N of X containing G(x0), there exists an open neighborhood N0

of x0 such that G(N0) ⊆ N ;
(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B 6= ∅} is

open for any open set B in E;
(v) is said to be completely continuous if G(B) is relatively compact for every

B ∈ Pb(X);
(vi) is said to be measurable if for every y ∈ R, the function t 7→ d(y,G(t)) =

inf{|y − z| : z ∈ G(t)} is measurable;
(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set

of the multivalued operator G will be denoted by FixG.

For each x ∈ C([0, 1],R), define the set of selections of F by

SF,x := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and
recall two results for closed graphs and upper-semicontinuity.

Lemma 2.3 ([12, Proposition 1.2]). If G : X → Pcl(Y ) is upper semi-continuous
then Gr(G) is a closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X
and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then
y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph, then
it is upper semi-continuous.

Lemma 2.4 ([24]). Let X be a separable Banach space. Let F : [0, 1] × X →
Pcp,c(X) be measurable with respect to t for each x ∈ X and upper semi-continuous
with respect to x for almost all t ∈ [0, 1] and SF,x 6= ∅ for any x ∈ C([0, 1], X), and
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let Θ be a linear continuous mapping from L1([0, 1], X) to C([0, 1], X). Then the
operator

Θ ◦ SF : C([0, 1], X)→ Pcp,c(C([0, 1], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

Next, we state the well-known Bohnenblust-Karlin fixed point theorem and the
nonlinear alternative of Leray-Schauder for multivalued maps.

Lemma 2.5 (Bohnenblust-Karlin [7]). Let D be a nonempty subset of a Banach
space X, which is bounded, closed, and convex. Suppose that G : D → 2X \ {0} is
upper semi-continuous with closed, convex values such that G(D) ⊂ D and G(D)
is compact. Then G has a fixed point.

Lemma 2.6 (Nonlinear alternative for Kakutani maps [19]). . Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 ∈ U . Suppose
that F : U → Pc,cv(C) is a upper semi-continuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Definition 2.7. Let A be a subset of I × R. A is L ⊗ B measurable if A belongs
to the σ−algebra generated by all sets of the form J × D, where J is Lebesgue
measurable in I and D is Borel measurable in R.

Definition 2.8. A subset A of L1(I,R) is decomposable if for all u, v ∈ A and
measurable J ⊂ I, the function uχJ + vχI−J ∈ A, where χJ stands for the
characteristic function of J .

Lemma 2.9 ([9]). Let Y be a separable metric space and let N : Y → P(L1(I,R))
be a lower semi-continuous (l.s.c.) multivalued operator with nonempty closed and
decomposable values. Then N has a continuous selection, that is, there exists a
continuous function (single-valued) h : Y → L1(I,R) such that h(x) ∈ N(x) for
every x ∈ Y .

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider
Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is
a metric space (see [23]).

Definition 2.10. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Lemma 2.11 ([11]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is
a contraction, then FixN 6= ∅.
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3. Existence results

We will use the following assumptions:
(H1) F : [0, 1]× R→ Pcp,c(R) is Carathéodory; i.e.,

(i) t 7→ F (t, x) is measurable for each x ∈ R;
(ii) x 7→ F (t, x) is upper semi-continuous for almost all t ∈ [0, 1];

(H2) for each ρ > 0, there exists ϕρ ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [0, 1] and

lim inf
ρ→∞

1
ρ

∫ 1

0

ϕρ(t)dt = µ.

(H3)

µ
{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}
< 1. (3.1)

Theorem 3.1 (Upper Semicontinuous case). Assume that (H1)–(H3) hold. Then
the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Define an operator F : C([0, 1],R)→ P(C([0, 1],R)) by

F(x) =
{
h ∈ C([0, 1],R) : h(t) =

∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds

+ Λtn−1
{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
g(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
g(s)ds

}
,

(3.2)

for g ∈ SF,x. Observe that the fixed points of the operator F correspond to the
solutions of the problem (1.1). We will show that F satisfies the assumptions of
the Bohnenblust-Karlin fixed point theorem (Lemma 2.5). The proof consists of
several steps.
Step 1. F(x) is convex for each x ∈ C([0, 1],R). This step is obvious since SF,x is
convex (F has convex values), and therefore we omit the proof.
Step 2. F maps bounded sets (balls) into bounded sets in C([0, 1],R). For a
positive number ρ, let Bρ = {x ∈ C([0, 1],R) : ‖x‖ ≤ ρ} be a bounded ball
in C([0, 1],R). We shall prove that there exists a positive number ρ′ such that
F(Bρ′) ⊆ Bρ′ . If not, for each positive number ρ, there exists a function xρ(·) ∈ Bρ,
however, ‖F(xρ)‖ > ρ for some t ∈ [0, 1] and

hρ(t) =
∫ t

0

(t− s)n−1

(n− 1)!
gρ(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
gρ(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
gρ(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
gρ(s)ds

}
,

for some gρ ∈ SF,xρ .
On the other hand,

ρ < ‖F(xρ)‖
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≤
∫ t

0

(t− s)n−1

(n− 1)!
ϕρ(s)ds+ |Λtn−1|

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
ϕρ(s)ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
ϕρ(s)ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
ϕρ(s)ds

}
≤
{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}∫ 1

0

ϕρ(s)ds.

Divide both sides of the above inequality by ρ, then taking the lower limit as ρ→∞,
we obtain

µ
{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}
> 1,

which contradicts (3.1). Hence it follows that there exists a positive number ρ′ such
that F(Bρ′) ⊆ Bρ′ .
Step 3. F maps bounded sets into equicontinuous sets of C([0, 1],R). Let t1, t2 ∈
[0, 1] with t1 < t2 and u ∈ Br, where Br is a bounded set of C([0, 1],R). For each
h ∈ F(u), we obtain

|h(t2)− h(t1)| ≤
∣∣∣ 1
(n− 1)!

∫ t1

0

[(t2 − s)n−1 − (t1 − s)n−1]g(s)ds

+
∫ t2

t1

(t2 − s)n−1g(s)ds
∣∣∣

+ |Λ||tn−1
2 − tn−1

1 |
( m∑
i=1

γi

∫ ηi

0

(ηi − s)n−1

n!
|g(s)|ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
|g(s)|ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
|g(s)|ds

)
≤ 1
n!
|2(t2 − t1)n + tn1 − tn2 |

∫ 1

0

ϕρ(s)ds

+ |Λ||tn−1
2 − tn−1

1 |
(∑m

i=1 |γi|ηni
(n+ 1)!

+
|α|
n!

+
|β|

(n− 1)!

)∫ 1

0

ϕρ(s)ds.

Obviously the right hand side of the above inequality tends to zero independently
of u ∈ Br as t2 − t1 → 0. In view of steps 1-3, the Arzelá-Ascoli theorem applies
and hence F : C([0, 1],R)→ P(C([0, 1],R)) is completely continuous.
Step 4. F(x) is closed for each x ∈ C([0, 1],R). Let {un}n≥0 ∈ F(x) be such that
un → u (n→∞) in C([0, 1],R). Then u ∈ C([0, 1],R) and there exists gn ∈ SF,un
such that, for each t ∈ [0, 1],

un(t) =
∫ t

0

(t− s)n−1

(n− 1)!
gn(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
gn(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
gn(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
gn(s)ds

}
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that gn converges to g in L1([0, 1],R). Thus, g ∈ SF,u and for each t ∈ [0, 1], we
have

un(t)→ u(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
g(s)ds
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− α
∫ 1

0

(1− s)n−1

(n− 1)!
gds− β

∫ 1

0

(1− s)n−2

(n− 2)!
g(s)ds

}
.

Hence, u ∈ F(x). By Lemma 2.3, F will be upper semi-continuous (upper semi-
continuous) if we prove that it has a closed graph since F is already shown to be
completely continuous.
Step 5.F has a closed graph. Let xn → x∗, hn ∈ F(xn) and hn → h∗. Then
we need to show that h∗ ∈ F(x∗). Let us consider the linear operator Θ :
L1([0, 1],R)→ C([0, 1],R) given by

g 7→ Θ(g)(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
g(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
g(s)ds

}
.

Observe that

‖hn(t)− h∗(t)‖ =
∥∥∥∫ t

0

(t− s)n−1

(n− 1)!
(gn(s)− g∗(s))ds

+ Λtn−1
{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
(gn(s)− g∗(s))ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
(gn(s)− g∗(s))ds

− β
∫ 1

0

(1− s)n−2

(n− 2)!
(gn(s)− g∗(s))ds

}∥∥∥→ 0,

as n→∞.
Thus, it follows by Lemma 2.4 that Θ ◦ SF is a closed graph operator. Further,

we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g∗(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
g∗(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
g∗(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
g∗(s)ds

}
,

for some g∗ ∈ SF,x∗ .
Hence, we conclude that F is a compact multivalued map, upper semi-continuous

with convex closed values. In view of Lemma 2.5, we deduce that F has a fixed
point which is a solution of the problem (1.1). This completes the proof. �

For the next theorem we use the assumptions:
(H4) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and a

function p ∈ L1([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, 1]× R;

(H5) there exists a constant M > 0 such that

M

ψ(M)‖p‖L1

{
1
n! + |Λ|

(Pm
i=1 |γi|η

n+1
i

(n+1)! + |α|
n! + |β|

(n−1)!

)} > 1.
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Theorem 3.2. Assume that (H1), (H4), (H5) hold. Then (1.1) has at least one
solution on [0, 1].

Proof. Let x ∈ λF(x) for some λ ∈ (0, 1), where F is defined by (3.2). Then we
show there exists an open set U ⊆ C(I,R) with x /∈ F(x) for any λ ∈ (0, 1) and
all x ∈ ∂U . Let λ ∈ (0, 1) and x ∈ λF(x). Then there exists v ∈ L1([0, 1],R) with
v ∈ SF,x such that, for t ∈ [0, 1], we have

x(t) = λ

∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+ λΛtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
g(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
g(s)ds

}
.

In view of (H4), we have for each t ∈ [0, 1],

|x(t)| ≤
∫ t

0

(t− s)n−1

(n− 1)!
|g(s)|ds+ |Λ|

{ m∑
i=1

|γi|
∫ ηi

0

(ηi − s)n

n!
|g(s)|ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
|g(s)|ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
|g(s)|ds

}
≤ ψ(‖x‖)

∫ t

0

(t− s)n−1

(n− 1)!
p(s)ds+ |Λ|ψ(‖x‖)

{ m∑
i=1

|γi|
∫ ηi

0

(ηi − s)n

n!
p(s)ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
p(s)ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
p(s)ds

}
≤ ψ(‖u‖)

{ 1
n!

+ |Λ|
(∑m

i=1 |γi|ηni
(n+ 1)!

+
|α|
n!

+
|β|

(n− 1)!

)}∫ 1

0

p(s)ds.

Consequently,

‖x‖

ψ(‖x‖)‖p‖L1

{
1
n! + |Λ|

(Pm
i=1 |γi|η

n+1
i

(n+1)! + |α|
n! + |β|

(n−1)!

)} ≤ 1.

In view of (H5), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖ < M}.
Proceeding as in the proof of Theorem 3.1, one can claim that the operator F :
U → P(C([0, 1], R)) is a compact multivalued map, upper semi-continuous with
convex closed values. From the choice of U , there is no x ∈ ∂U such that x ∈ λF(x)
for some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Lemma 2.6), we deduce that F has a fixed point x ∈ U which is a solution
of the problem (1.1). This completes the proof. �

As a next result, we study the case when F is not necessarily convex valued
by combining the nonlinear alternative of Leray-Schauder type with the selection
theorem due to Bressan and Colombo [9] for lower semi-continuous maps with
decomposable values. We will use the following assumption

(H6) F : [0, 1]×R→ P(R) is a nonempty compact-valued multivalued map such
that
(a) (t, x) 7→ F (t, x) is L ⊗ B measurable,
(b) x 7→ F (t, x) is lower semi-continuous for each t ∈ [0, 1];



EJDE-2013/203 BVPS OF DIFFERENTIAL INCLUSIONS 9

Theorem 3.3 (The lower semi-continuous case). Assume that (H4)–(H6) hold.
Then (1.1) has at least one solution on [0, 1].

Proof. It follows from (H4) and (H6) that F is of l.s.c. type [16]. Then, by Lemma
2.9, there exists a continuous function f : AC1([0, 1],R) → L1([0, 1],R) such that
f(x) ∈ F(x) for all x ∈ C([0, 1],R), where F : C([0, 1] × R) → P(L1([0, 1],R)) is
the Nemytskii operator associated with F , defined as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]}.
Consider the problem

x(n)(t) = f(x(t)), t ∈ [0, 1],

x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

αx(1) + βx′(1) =
m∑
i=1

γi

∫ ηi

0

x(s)ds, 0 < ηi < 1.

(3.3)

Observe that if x ∈ AC(n−1)([0, 1],R) is a solution of (3.3), then x is a solution
to the problem (1.1). To transform problem (3.3) into a fixed point problem, we
define an operator F as

Fx(t) =
∫ t

0

(t− s)n−1

(n− 1)!
f(x(s))ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
f(x(s))ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
f(x(s))ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
f(x(s))ds

}
.

It can easily be shown that F is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 3.2. So we omit it. This
completes the proof. �

Now we show the existence of solutions for (1.1) with a nonconvex valued right
hand side by applying a fixed point theorem for multivalued maps due to Covitz
and Nadler [11]. We sue the assumptions:

(H7) F : [0, 1]× R→ Pcp(R) is such that F (·, x) : [0, 1]→ Pcp(R) is measurable
for each x ∈ R.

(H8) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x− x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with
m ∈ L1([0, 1],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].

Theorem 3.4 (The Lipschitz case). Assume (H7), (H8) hold. Then (1.1) has at
least one solution on [0, 1] if

‖m‖L1

{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}
< 1.

Proof. We transform the problem (1.1) into a fixed point problem by means of
the operator F : C([0, 1],R) → P(C([0, 1],R)) defined by (3.2) and show that the
operator F satisfies the assumptions of Lemma 2.11. The proof will be given in
two steps.
Step 1. F(x) is nonempty and closed for every v ∈ SF,x. Since the set-valued map
F (·, x(·)) is measurable with the measurable selection theorem (e.g., [10, Theorem
III.6]), it admits a measurable selection v : [0, 1]→ R. Moreover, by the assumption
(H8), we have

|v(t)| ≤ m(t) +m(t)|x(t)|,
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that is, v ∈ L1([0, 1],R) and hence F is integrably bounded. Therefore, SF,y 6= ∅.
Moreover F(x) ∈ Pcl(C([0, 1], R)) for each x ∈ C([0, 1],R), as proved in Step 4 of
Theorem 3.1.
Step 2. Next we show that there exists δ < 1 such that

Hd(F(x),F(x̄)) ≤ δ‖x− x̄‖ for each x, x̄ ∈ AC(n−1)([0, 1],R).

Let x, x̄ ∈ AC(n−1)([0, 1],R) and h1 ∈ F(x). Then there exists v1(t) ∈ F (t, x(t))
such that, for each t ∈ [0, 1],

h1(t) =
∫ t

0

(t− s)n−1

(n− 1)!
v1(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
v1(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
v1(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
v1(s)ds

}
.

By (H8), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t)− x̄(t)|.
So, there exists w(t) ∈ F (t, x̄(t)) such that

|v1(t)− w(t)| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w(t)| ≤ m(t)|x(t)− x̄(t)|}.
Since the multivalued operator U(t) ∩ F (t, x̄(t)) is measurable [10, Proposition
III.4]), there exists a function v2(t) which is a measurable selection for U . So
v2(t) ∈ F (t, x̄(t)) and for each t ∈ [0, 1], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.

For each t ∈ [0, 1], let us define

h2(t) =
∫ t

0

(t− s)n−1

(n− 1)!
v2(s)ds+ Λtn−1

{ m∑
i=1

γi

∫ ηi

0

(ηi − s)n

n!
v2(s)ds

− α
∫ 1

0

(1− s)n−1

(n− 1)!
v2(s)ds− β

∫ 1

0

(1− s)n−2

(n− 2)!
v2(s)ds

}
.

Thus,

|h1(t)− h2(t)|

≤
∫ t

0

(t− s)n−1

(n− 1)!
|v1(s)− v2(s)|(s)ds

+ |Λ|tn−1
{ m∑
i=1

|γi|
∫ ηi

0

(ηi − s)n

n!
|v1(s)− v2(s)|(s)ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
m(s)‖x− x‖ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
m(s)‖x− x‖ds

}
≤
∫ t

0

(t− s)n−1

(n− 1)!
m(s)‖x− x‖ds

+ |Λ|tn−1
{ m∑
i=1

|γi|
∫ ηi

0

(ηi − s)n

n!
m(s)‖x− x‖ds

+ |α|
∫ 1

0

(1− s)n−1

(n− 1)!
m(s)‖x− x‖ds+ |β|

∫ 1

0

(1− s)n−2

(n− 2)!
m(s)‖x− x‖ds

}
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≤ ‖m‖L1

{ 1
n!

+ |Λ|
(∑m

i=1 |γi|ηni
(n+ 1)!

+
|α|
n!

+
|β|

(n− 1)!

)}
‖x− x‖.

Hence,

‖h1 − h2‖ ≤ ‖m‖L1

{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}
‖x1 − x2‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(F(x),F(x̄)) ≤ δ‖x− x̄‖

≤ ‖m‖L1

{ 1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)}
‖x− x‖.

Since F is a contraction, it follows by Lemma 2.11 that F has a fixed point x which
is a solution of (1.1). This completes the proof. �

4. Examples

Consider the boundary-value problem

x′′′(t) ∈ F (t, x(t)), a.e. t ∈ [0, 1],

x(0) = 0, x′(0) = 0, x(1) + x′(1) =
3∑
i=1

γi

∫ ηi

0

x(s)ds, 0 < ηi < 1,
(4.1)

where n = 3, α = 1, β = 1, η1 = 1/4, η2 = 1/2, η3 = 3/4, γ1 = 1, γ2 = 1/3,
γ3 = 2/3. In (4.1), F (t, x(t)) will be chosen according to the requirement at hand.
With the given data, it is found that

Λ =
1

α+ (n− 1)β − 1
n

∑m
i=1 γiη

n
i

≈ 0.346362,

Q =
1
n!

+ |Λ|
(∑m

i=1 |γi|η
n+1
i

(n+ 1)!
+
|α|
n!

+
|β|

(n− 1)!

)
≈ 0.400976.

Example 4.1. Let F : [0, 1]× R→ P(R) be a multivalued map given by

x→ F (t, x) =
[x2e−x

2

x2 + 3
,
t|x| sin |x|
|x|+ 1

]
. (4.2)

For f ∈ F , we have

|f | ≤ max
(x2e−x

2

x2 + 3
,
t|x| sin |x|
|x|+ 1

)
≤ t|x|+ 1, x ∈ R.

Thus,

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ ρt+ 1 = ϕρ(t), ‖x‖ ≤ ρ.

We can find that lim infρ→∞ 1
ρ

∫ 1

0
ϕρ(s)ds = µ = 1/2 and Λµ ≈ 0.173181 < 1.

Therefore, all the conditions of Theorem 3.1 are satisfied. So, the problem (4.1)
with F (t, x) given by (4.2) has at least one solution on [0, 1].

Example 4.2. If F : [0, 1]× R→ P(R) is a multivalued map given by

x→ F (t, x) =
[ x4

x4 + 2
+ e−x

2
+ t+ 2,

|x|
|x|+ 1

+ t2 +
1
2

]
. (4.3)
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For f ∈ F , we have

|f | ≤ max
( x4

x4 + 2
+ e−x

2
+ t+ 2,

|x|
|x|+ 1

+ t2 +
1
2

)
≤ 5, x ∈ R.

Here ‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ 5 = p(t)ψ(‖x‖), x ∈ R, with p(t) = 1,
ψ(‖x‖) = 5. It is easy to verify that M > 2.00488. Then, by Theorem 3.2, the
problem (4.1) with F (t, x) given by (4.3) has at least one solution on [0, 1].

Example 4.3. Consider the multivalued map F : [0, 1]× R→ P(R) given by

x→ F (t, x) =
[
0, (t+ 1) sinx+

2
3
]
. (4.4)

Then we have

sup{|u| : u ∈ F (t, x)} ≤ (t+ 1) +
2
3
,

Hd(F (t, x), F (t, x)) ≤ (t+ 1)|x− x|.

Let m(t) = t + 1. Then Hd(F (t, x), F (t, x)) ≤ m(t)|x − x|, and ‖m‖L1Λ ≈
0.519543 < 1. By Theorem 3.4, problem (4.1) with F (t, x) given by (4.4) has
at least one solution on [0, 1].
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