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THE (n− 1)-RADIAL SYMMETRIC POSITIVE CLASSICAL
SOLUTION FOR ELLIPTIC EQUATIONS WITH GRADIENT

YONG ZHANG, QIANG XU, PEIHAO ZHAO

Abstract. In this article, we study the existence of the (n − 1)-radial sym-

metric positive classical solution for elliptic equations with gradient. By some

special techniques in two variables, we show a priori estimates, and then show
the existence of a solution using a fixed point theorem.

1. Introduction

In this article, we consider the following boundary-value problem of a second-
order elliptic equation,

−∆u = f(x, u,∇u) in Ω,

u(x) = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in Rn, n ≥ 3.
This type of equations have been studied by several authors. As the nonlinearity

f depends on the gradient of the solution, solving (1.1) is not variational and the
well developed critical point theory can not be applied directly. But if f has a
special form, by changing variables, (1.1) can be transformed into a boundary-
value problem which is independent of ∇u. For example, When f(x, u,∇u) =
g(u) + λ|∇u|2 + η, Ghergu and Rădulescu [8] used the above method to show the
existence of positive classical solution under the assumption that g is decreasing
and unbounded at the origin. A similar method appears in [1], where f(x, u,∇u)
has critical growth with respect to ∇u; see also [9, 20]. In addition, Chen and Yang
[5] considered the existence of positive solutions for (1.1) on a smooth compact
Riemannian manifold. As far as we know, the methods used to solve (1.1) are mainly
sub and super-solution, fixed point theorems, Galerkin method, and topological
degree, see, for instance, [2, 3, 7, 13, 17, 18, 19].

It is worth mentioning that de Figueiredo, Girardi and Matzeu [6] developed
a quite different method of variational type. Firstly, for each ω ∈ H1

0 (Ω), they
considered the boundary problem

−∆u = f(x, u,∇ω) in Ω,

u(x) = 0, on ∂Ω.
(1.2)
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which is a variational problem. Under the assumptions that f has a superlinear
subcritical growth at zero and at infinity with respect to the second variable, and
f is locally Lipschitz continuous with the third variable, they proved that a weak
solution uω of (1.2) exists by mountain-pass theorem. Then they have constructed
a sequence {uk} ⊂ H1

0 (Ω) as solutions of

−∆un = f(x, un,∇un−1) in Ω,

un(x) = 0, on ∂Ω,
(1.3)

and verified that {uk} converges to a solution of (1.1). However, this solution is
just in H1

0 (Ω).
Additionally, the existence of classical solutions for (1.1) has been obtained by

mountain-pass lemma and a suitable truncation method in [11], but the conditions
imposed on f are very strong:

(1) f is locally Lipschitz continuous on Ω̄× R× Rn,
(2) f(x,t,ξ)

t converges to zero uniformly with respect to x ∈ Ω, ξ ∈ Rn as t tends
to zero,

(3) there exist a1 > 0, p ∈ (1, n+2
n−2 ) and r ∈ (0, 1) such that

|f(x, t, ξ)| ≤ a1(1 + |t|p)(1 + |ξ|r), ∀x ∈ Ω̄, t ∈ R, ξ ∈ Rn,

(4) there exist ϑ > 2 and a2, a3, t0 > 0 such that

0 < ϑF (x, t, ξ) ≤ tf(x, t, ξ), ∀x ∈ Ω̄, t ≥ t0, ξ ∈ Rn, F (x, t, ξ) ≥ a2|t|ϑ − a3;

F (x, t, ξ) ≥ a2|t|ϑ − a3,

where F (x, t, ξ) =
∫ t

0
f(x, s, ξ)ds.

As far as we know, a few authors have paid attention to the radial solutions of
(1.1); see for example [4, 7]. So we will limit us to the radially symmetric case and
try to focus on some new methods to study (1.1). We consider the boundary-value
problem (1.1) and assume the following:

(D1) Ω is a so-called (n − 1)-symmetric domain in Rn(n ≥ 3), that is, Ω is
symmetric with respect to x1, x2, · · · , xn−1 and 0 /∈ Ω;

(F1) f(x, u, η) is a nonnegative function satisfying f(x, u, η) = f(r, xn, u, |η|),
where r =

√
x2

1 + x2
2 + · · ·+ x2

n−1;

(F2) there exist c0 ≥ 1, M > 0, p > 1, τ ∈ (0, 2p
p+1 ) such that

up −M |η|τ ≤ f(x, u, η) ≤ c0up +M |η|τ , ∀(x, u, η) ∈ Ω× R× Rn;

(F3) f(x, u, η) ∈ Cβ(Ω,R,Rn) for some β ∈ (0, 1).

We remark that in [14], the constants p and τ belong to (1, 2(n−1)
n−2 ) and (1, 2p

p+1 )
respectively. Obviously, the conditions in (F2) are weaker than those in [14].

If the solution u(x) is (n− 1)-radial symmetric, that is u(x) = u(r, xn), then by
(F1) Equation (1.1) can be transformed into the following elliptic equation in two
variables:

−(urr + uxnxn) = H(r, xn, u, ur, uxn), in Ω,

u(x) = 0, on ∂Ω,
(1.4)

where H(r, xn, u, ur, uxn) = f(r, xn, u, |∇u|) + n−2
r ur. Motivated by the priori

estimates mentioned in [14] and special technique for the equation in two variables
developed in [10], we develop an approach which is distinct from the previous
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works, and shows the existence of the (n − 1)-radial symmetric positive classical
C2,β-solutions of (1.1). Note that solution in [14] is just in C1,α(Ω).

The rest of this work is organized as follows. Motivated by [14] we give a priori
estimates in section 2. In section 3 we show the existence of (n−1)-radial symmetric
positive classical solutions with the help of [10].

2. A priori estimates

Compared with the reference [14], we should deal with the second term n−2
r ur

of H(r, xn, u, ur, uxn) in (1.4) additionally, it is necessary to give a brief proof of
the a priori estimates although the process is similar to that in [14].

Theorem 2.1. Assume that (D1) and (F2) hold, and that λ < λ0 for some λ0

fixed. Then, for any C1-solution u of the equation

−(urr + uxnxn) = H(r, xn, u, ur, uxn) + λ, in Ω,

u(x) = 0, on ∂Ω,
(2.1)

there exists a positive constant C such that supΩ u < C.

To prove this theorem, we need the following lemmas.

Lemma 2.2. Let (D1) hold and u(r, xn) be a positive weak C1-solution of the
inequality

− (urr + uxnxn) ≥ up −M |∇u|τ +
n− 2
r

ur, (2.2)

where 1 < p and 0 < τ < 2p/(p + 1). Take γ ∈ (0, p) and µ ∈ (0, 2p
p+1 ). Denote

by B2R a ball of radius 2R contained in Ω, where R < R0 and R0 is a positive
constant. Then there exists a positive constant C = C(p, γ, µ,R0) such that∫

BR

uγ ≤ CR2−2γ/(p−1), (2.3)∫
BR

|∇u|µ ≤ CR2−(p+1)µ/(p−1). (2.4)

Proof. We can assume that BR is centered at x0 ∈ Ω and first focus on proving
(2.3). Let ξ be a C2-cut-off function on B2 satisfying:

(1) ξ(x) = ξ(|x− x0|), 0 ≤ |x− x0| ≤ 2.
(2) ξ(x) = 1 for |x− x0| ≤ 1.
(3) ξ has compact support in B2 and 0 ≤ ξ ≤ 1.
(4) |∇ξ| ≤ 2.

Let d = p− γ > 0 and φ = [ξ(x−x0
R )]ku−d as a test function for (2.2) (k to be fixed

later). We obtain

−
∫

Ω

(urr + uxnxn)ξku−d ≥
∫

Ω

(up −M |∇u|τ +
n− 2
r

ur)ξku−d.

Integrating by parts and using that |∇ξk| = kξk−1|∇ξ| ≤ ξk 2k
Rξ , we obtain

d

∫
Ω

ξkuγ−p−1|∇u|2 +
∫

Ω

ξkuγ

≤
∫

Ω

u−d|∇u||∇ξk|+M

∫
Ω

|∇u|τξku−d −
∫

Ω

n− 2
r

urξ
ku−d
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≤
∫

Ω

u−d|∇u|ξk 2k
Rξ

+M

∫
Ω

|∇u|τξku−d +
n− 2

dist(0, ∂Ω)

∫
Ω

|∇u|ξku−d.

Applying the Young inequality to the first right term, we have∫
Ω

u−d|∇u|ξk 2k
Rξ
≤ d

4

∫
Ω

ξkuγ−p−1|∇u|2 + CR−2

∫
Ω

ξk−2uγ−p+1,

so
3
4
d

∫
Ω

ξkuγ−p−1|∇u|2 +
∫

Ω

ξkuγ

≤ CR−2

∫
Ω

ξk−2uγ−p+1 +M

∫
Ω

|∇u|τξku−d +
n− 2

dist(0, ∂Ω)

∫
Ω

|∇u|ξku−d.

Next we focus on the case of γ > p − 1. Take k = 2γ
p−1 . By using the Young

inequality again, we have

CR−2

∫
Ω

ξk−2uγ−p+1 ≤ 1
4

∫
Ω

ξkuγ + CR2−2γ/(p−1)

and

M

∫
Ω

|∇u|τξku−d ≤ d

4

∫
Ω

ξkuγ−p−1|∇u|2 + C

∫
Ω

ξkut

≤ d

4

∫
Ω

ξkuγ−p−1|∇u|2 +
1
4

∫
Ω

ξkuγ + CR−2,

the second inequality holds becasue t = (−d− τ γ−p−1
2 ) 2

2−τ < γ, and

n− 2
dist(0, ∂Ω)

∫
Ω

|∇u|ξku−d ≤ d

4

∫
Ω

ξkuγ−p−1|∇u|2 + C

∫
Ω

ξkuγ−p+1

≤ d

4

∫
Ω

ξkuγ−p−1|∇u|2 +
1
4

∫
Ω

ξkuγ + CR−2.

So
d

4

∫
Ω

ξkuγ−p−1|∇u|2 +
1
4

∫
Ω

ξkuγ ≤ CR2−2γ/(p−1), (2.5)

which gives (2.3).
If γ = p− 1, (2.3) is obvious by the above arguments. For the case of γ < p− 1,

the following Höder inequality∫
BR

uγ ≤ CR2(1−γ)/(p−1)
(∫

BR

up−1
)γ/(p−1)

and the above argument yields to (2.3).
To prove (2.4), we use Höder inequality:∫

BR

|∇u|µ ≤
(∫

BR

uγ−p−1|∇u|2
)µ/2(∫

BR

us
)1−µ2

,

where s = (p + 1 − γ)/(2 − µ). We can choose γ close enough to p − 1 such that
s < p, and then obtain (2.4) by combining (2.3) and (2.5). Thus we complete the
proof. �

Lemma 2.3. Let u(r, xn) be a nonnegative weak solution of the following inequality,
in a domain Ω,

|urr + uxnxn | ≤ c(x)|∇u|+ d(x)u+ f(x),
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where c(x) ∈ Lq′(Ω), d, f ∈ Lq(Ω), q′ > 2 and q ∈ (1, 2). Then for every R such
that B2R ⊂ Ω, there exists a constant C = C(q, q′, R1− 2

q′ ‖c‖Lq′ , R
2− 2

q ‖d‖Lq ) such
that

sup
BR

u ≤ C(inf
BR

u+R2− 2
q ‖f‖Lq ).

Note that this lemma is of Harnack type; see [15] for more information on this
type of inequalities. The next theorem is similar to [14, Theorem 2.3].

Theorem 2.4. Let (D) hold and R ≤ R0 such that B2R ⊂ Ω. Suppose u(r, xn) is
a positive weak solution of the inequality

up −M |∇u|τ +
n− 2
r

ur ≤ −(urr + uxnxn) ≤ c0up +M |∇u|τ +
n− 2
r

ur + λ,

where p > 1, 0 < τ < 2p
p+1 , λ > 0. Then there exists a constant C = C(p, τ, R0,M)

such that
sup
BR

u ≤ C(inf
BR

u+ λR2).

Proof. From (2.4), we obtain

|urr + uxnxn | ≤ c0up +M |∇u|τ +
n− 2
r
|∇u|+ λ.

Take f = λ, c = M |∇u|τ−1 + n−2
r and d = c0u

p−1. To prove this theorem, we only
need to verify that

c(x) ∈ Lq
′
(B2R), d ∈ Lq(B2R).

Note that n−2
r obviously belongs to Lq

′
(B2R), so we only need to prove M |∇u|τ−1 ∈

Lq
′
(B2R). By lemma 2.1, we have

‖M |∇u|τ−1‖Lq′ = M
(∫

B(2R)

|∇u|µ
)1/q′

≤ CR
2−(p+1)µ/(p−1)

q′ ,

where µ = q′(τ − 1) should satisfy q′(τ − 1) < 2p
p+1 for some q′ > 2. Since τ < 2p

p+1

and q′ > 2 can be close enough to 2, so we just need to verify

2
( 2p
p+ 1

− 1
)
<

2p
p+ 1

.

The above inequality is obvious, that is to say, c(x) ∈ Lq′(B2R).
For d = c0u

p−1, by lemma 2.1 we have

‖d‖Lq(B2R) = c0

(∫
B(2R)

uγ
)1/q

≤ CR(2−2q)/q,

where γ = (p− 1)q should satisfy (p− 1)q < p. By choosing q > 1 close enough to
1, we can get (p− 1)q < p, that is, d ∈ Lq(B2R). The proof is complete. �

For completeness, we sketch the proof of Theorem 2.1 which is similar as the
proof of [14, Proposition 3.3].

Proof of Theorem 2.1. Suppose, by contradiction, that there exist λn < λ0, un > 0
such that un is solution of (2.1) with λ substituted by λn and maxΩ un →∞. Let
zn be a point in Ω such that un(zn) = maxΩ un , Sn. Denote δn = dist(zn, ∂Ω).
In order to prove there exists a y0 ∈ Ω such that un(y0)→∞, we proceed in three
steps:
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Step 1: There exists c > 0 such that c < δnS
(p−1)/2
n . Define w(x) = S−1

n un(y),
where y = Mnx+ zn, Mn = S

(1−p)/2
n . By easy computation and condition (F2), we

obtain

−∆wn(x) = S−1
n M2

n(H(Mnx+ zn, Snwn(x), SnM−1
n ∇wn(x)) + λn)

≤ c0wpn +MS−pn S
τ p+1

2
n |∇wn|τ +

n− 2
dist(0, ∂Ω)

|∇wn|+ λnS
−p
n .

Notice that MS−pn S
τ p+1

2
n and λnS−pn tend to zero respectively as n tends to infinity,

so

−∆wn(x) ≤ c0wpn + |∇wn|τ +
n− 2

dist(0, ∂Ω)
|∇wn|+ 1.

By the regularity result in [12], there exists a constant C independent of n such
that supΩ wn ≤ C. Let yn ∈ ∂Ω such that d(zn, yn) = δn; then, by the mean value
theorem, we have

1 = wn(0) = wn(0)− wn(M−1
n (yn − zn)) ≤ sup

Ω
wnM

−1
n δn ≤ CM−1

n δn.

Thus, the first step is complete.

Step 2: There exists γ > 0 such that∫
B(zn,δn/2)

|un|γ →∞.

By Theorem 2.4, we obtain

Sn = max
B(zn,δn/2)

un ≤ C
(

min
B(zn,δn/2)

un + λn
δ2
n

4

)
.

Since λn and δn are bounded, we obtain that minB(zn,δn/2) un ≥ cSn for some c > 0.
So ∫

B(zn,δn/2)

|un|γ ≥ cSγnδ2
n ≥ cSγnS1−p

n .

We can choose a γ > p − 1 such that cSγnS
1−p
n → +∞. The proof of step 2 is

complete.

Step 3: There exists a y0 ∈ Ω such that un(y0) → ∞. Notice that ∂Ω is C2 and
compact boundary , so we can find ε > 0 independent of n and yn ∈ Ω such that:

• d(yn, ∂Ω) = 2ε, for all n ∈ N.
• B(zn, δn2 ) ⊂ B(yn, 2ε), for all n ∈ N.

By the weak Harnack inequality in [16] and step 2, we conclude that

min
B(yn,ε)

un ≥ c
(∫

B(yn,2ε)

|un|γ
)1/γ

→ +∞.

Taking a subsequence {ỹn} ⊂ {yn} such that ỹn → y0 ∈ Ω. For n large enough, we
have y0 ∈ B(ỹn, ε) and un(y0) → ∞, which contradicts with Theorem 2.4. Thus
we obtain a priori estimate of solutions. �
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3. Existence of positive classical C2,β-solutions

Theorem 3.1. Assume (D1), (F1)–(F3) hold. Then (1.1) admits an (n−1)-radial
symmetric positive classical solution u(r, xn) ∈ C2,β(Ω) ∩ C0(Ω).

The following lemma mentioned in [10] will be used in our proof.

Lemma 3.2 ([10, Theorem 12.4]). Let u be a bounded C2(Ω) solution of

Lu = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y),

where L is uniformly elliptic in a domain Ω ⊂ R2, satisfying

λ(ξ2 + η2) ≤ aξ2 + 2bξη + cη2 ≤ Λ(ξ2 + η2), ∀(ξ, η) ∈ R2,

Λ
λ
≤ γ

for some constant γ ≥ 1. Then for some α = α(γ) > 0, we have

[u]∗1,α = sup
z1,z2∈Ω

d1+α
1,2

|Du(z2)−Du(z1)|
|z2 − z1|α

≤ C(|u|0 + |f
λ
|(2)
0 ),

where C = C(γ), | fλ |
(2)
0 = supz∈Ω d

2
z|
f
λ |, dz = dist(z, ∂Ω) and d1,2 = min{dz1 , dz2}.

Since the conditions imposed on f in Theorem 3.1 are different from those in
[10, Theorem 12.5], it is necessary to give the proof, although similar to that of [10,
Theorem 12.5].

Proof of Theorem 3.1. We now proceed by truncation of H to reduce (1.4) to the
case of bounded H. Namely, let ψN denote the function given by

ψN (t) =

{
t, |t| ≤ N
N sign t, |t| > N,

and define the truncation of H by

HN (r, xn, u, ur, uxn) = H(r, xn, ψN (u), ψN (ur), ψN (uxn)).

From (F2), we have |HN | ≤ c0N
p + MNτ + n−2

dist(0,∂Ω)N = C0. Consider now the
family of problems

−(urr + uxnxn) = HN (r, xn, u, ur, uxn) in Ω,

u(x) = 0, on ∂Ω.
(3.1)

By Theorem 2.1, any solution u of (3.1) is subject to the bound M̃ , independent
of N ,

sup
Ω
|u| ≤ M̃. (3.2)

Now we make the following observation. Let v be any bounded function with locally
Hölder continuous first derivatives in Ω and H̃N = HN (r, xn, v, vr, vxn). Then the
following linear problem

−(urr + uxnxn) = H̃N in Ω,

u(x) = 0, on ∂Ω,
(3.3)

has a unique solution u ∈ C2(Ω)∩C0(Ω̄). We observe from classical priori estimates
that

|u|0 = sup
Ω
|u| ≤M0.
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Furthermore, if supΩ |v| ≤M0, from lemma 3.1, we have

|u|∗1,α ≤ C(|u|0 + C0(diam(Ω))2) ≤ C(M0 + C0(diam(Ω))2) = K,

where C, α depend on M0. So K depends on M0, N and Ω.
Next, define the Banach space

C1,α
∗ (Ω) = {u ∈ C1,α(Ω)||u|∗1,α;Ω < +∞}

and define a mapping T on the set

S = {v ∈ C1,α
∗ : |v|∗1,α ≤ K, |v|0 ≤M0}.

So u = Tv is the unique solution of the linear Dirichlet problem (3.3). It is easy
to show that S is convex and closed in the Banach space, and T is continuous in
C1
∗ = {u ∈ C1(Ω)||u|∗1;Ω < +∞ and TS is precompact. So we may conclude from

the Schauder fixed point theorem and Schauder estimates that T has a fixed point,
uN = TuN , uN ∈ C1,α

∗ (Ω) ∩ C2,β(Ω) ∩ Co(Ω̄). This will provide a solution of the
problem (3.1).

Furthermore, from lemma 3.1 we infer the estimate

[uN ]∗1,α ≤ C(|u|0 + |GHN |(2)
0 ).

By (F2) and (3.2), we obtain

[uN ]∗1,α ≤ C(1 + [uN ]∗1),

where C = C(M̃,M, c0, p, τ,diam(Ω)). Furthermore, the interpolation inequality
yields the uniform bound which is independent of N ,

[uN ]∗1,α ≤ C = C(M̃,M, c0, p, τ,diam(Ω)).

By similar arguments as in the proof of [10, Theorem 12.5], it is easy to show
there is a subsequence {un} of {uN} which converges to a solution u of (1.4), and
u also satisfies the boundary condition u = 0 on ∂Ω. Since f is nonnegative, by
comparison principles, u is positive. This completes the proof. �

Remark 3.3. If Ω = Ω1 × Ω2 ⊂ Rk × Rn−k, Ω1 and Ω2 are symmetric and
0 /∈ Ω, f(x, u, |∇u|) = f(r1, r2, u, |∇u|), where r1 =

√
x2

1 + x2
2 + · · ·+ x2

k, r2 =√
x2
k+1 + x2

k+2 + · · ·+ x2
n. Under the conditions of (F2) and (F3), (1.1) admits an

(n − 1)-radial symmetric positive classical solution u(r1, r2) ∈ C2,β(Ω) ∩ C0(Ω).
The proof is left to readers.
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