Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 204, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

THE (n-1)-RADIAL SYMMETRIC POSITIVE CLASSICAL SOLUTION FOR ELLIPTIC EQUATIONS WITH GRADIENT

YONG ZHANG, QIANG XU, PEIHAO ZHAO

ABSTRACT. In this article, we study the existence of the (n-1)-radial symmetric positive classical solution for elliptic equations with gradient. By some special techniques in two variables, we show a priori estimates, and then show the existence of a solution using a fixed point theorem.

1. INTRODUCTION

In this article, we consider the following boundary-value problem of a secondorder elliptic equation,

$$-\Delta u = f(x, u, \nabla u) \quad \text{in } \Omega,$$

$$u(x) = 0, \quad \text{on } \partial\Omega,$$

(1.1)

where Ω is a bounded domain in \mathbb{R}^n , $n \geq 3$.

This type of equations have been studied by several authors. As the nonlinearity f depends on the gradient of the solution, solving (1.1) is not variational and the well developed critical point theory can not be applied directly. But if f has a special form, by changing variables, (1.1) can be transformed into a boundaryvalue problem which is independent of ∇u . For example, When $f(x, u, \nabla u) = g(u) + \lambda |\nabla u|^2 + \eta$, Ghergu and Rădulescu [8] used the above method to show the existence of positive classical solution under the assumption that g is decreasing and unbounded at the origin. A similar method appears in [1], where $f(x, u, \nabla u)$ has critical growth with respect to ∇u ; see also [9, 20]. In addition, Chen and Yang [5] considered the existence of positive solutions for (1.1) on a smooth compact Riemannian manifold. As far as we know, the methods used to solve (1.1) are mainly sub and super-solution, fixed point theorems, Galerkin method, and topological degree, see, for instance, [2, 3, 7, 13, 17, 18, 19].

It is worth mentioning that de Figueiredo, Girardi and Matzeu [6] developed a quite different method of variational type. Firstly, for each $\omega \in H_0^1(\Omega)$, they considered the boundary problem

$$-\Delta u = f(x, u, \nabla \omega) \quad \text{in } \Omega,$$

$$u(x) = 0, \quad \text{on } \partial \Omega.$$
 (1.2)

²⁰⁰⁰ Mathematics Subject Classification. 35J60, 35B09.

Key words and phrases. Elliptic equations; symmetric; positive solution; a priori estimates; fixed point theorem.

^{©2013} Texas State University - San Marcos.

Submitted June 14, 2013. Published Spetember 16, 2013.

which is a variational problem. Under the assumptions that f has a superlinear subcritical growth at zero and at infinity with respect to the second variable, and f is locally Lipschitz continuous with the third variable, they proved that a weak solution u_{ω} of (1.2) exists by mountain-pass theorem. Then they have constructed a sequence $\{u_k\} \subset H_0^1(\Omega)$ as solutions of

$$-\Delta u_n = f(x, u_n, \nabla u_{n-1}) \quad \text{in } \Omega,$$

$$u_n(x) = 0, \quad \text{on } \partial\Omega,$$

(1.3)

and verified that $\{u_k\}$ converges to a solution of (1.1). However, this solution is just in $H_0^1(\Omega)$.

Additionally, the existence of classical solutions for (1.1) has been obtained by mountain-pass lemma and a suitable truncation method in [11], but the conditions imposed on f are very strong:

- (1) f is locally Lipschitz continuous on $\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n$,
- (2) $\frac{f(x,t,\xi)}{t}$ converges to zero uniformly with respect to $x \in \Omega, \xi \in \mathbb{R}^n$ as t tends to zero,
- (3) there exist $a_1 > 0, p \in (1, \frac{n+2}{n-2})$ and $r \in (0, 1)$ such that

$$|f(x,t,\xi)| \le a_1(1+|t|^p)(1+|\xi|^r), \quad \forall x \in \overline{\Omega}, \ t \in \mathbb{R}, \ \xi \in \mathbb{R}^n,$$

(4) there exist $\vartheta > 2$ and $a_2, a_3, t_0 > 0$ such that

$$0 < \vartheta F(x,t,\xi) \le tf(x,t,\xi), \quad \forall x \in \Omega, \ t \ge t_0, \ \xi \in \mathbb{R}^n, \ F(x,t,\xi) \ge a_2 |t|^\vartheta - a_3;$$
$$F(x,t,\xi) \ge a_2 |t|^\vartheta - a_3,$$

where $F(x, t, \xi) = \int_0^t f(x, s, \xi) ds$.

As far as we know, a few authors have paid attention to the radial solutions of (1.1); see for example [4, 7]. So we will limit us to the radially symmetric case and try to focus on some new methods to study (1.1). We consider the boundary-value problem (1.1) and assume the following:

- (D1) Ω is a so-called (n-1)-symmetric domain in $\mathbb{R}^n (n \geq 3)$, that is, Ω is symmetric with respect to $x_1, x_2, \cdots, x_{n-1}$ and $0 \notin \overline{\Omega}$;
- (F1) $f(x, u, \eta)$ is a nonnegative function satisfying $f(x, u, \eta) = f(r, x_n, u, |\eta|)$, where $r = \sqrt{x_1^2 + x_2^2 + \dots + x_{n-1}^2}$;
- (F2) there exist $c_0 \ge 1, M > 0, p > 1, \tau \in (0, \frac{2p}{p+1})$ such that

$$u^p - M|\eta|^{\tau} \le f(x, u, \eta) \le c_0 u^p + M|\eta|^{\tau}, \quad \forall (x, u, \eta) \in \Omega \times \mathbb{R} \times \mathbb{R}^n;$$

(F3) $f(x, u, \eta) \in C^{\beta}(\Omega, \mathbb{R}, \mathbb{R}^n)$ for some $\beta \in (0, 1)$.

We remark that in [14], the constants p and τ belong to $(1, \frac{2(n-1)}{n-2})$ and $(1, \frac{2p}{p+1})$ respectively. Obviously, the conditions in (F2) are weaker than those in [14].

If the solution u(x) is (n-1)-radial symmetric, that is $u(x) = u(r, x_n)$, then by (F1) Equation (1.1) can be transformed into the following elliptic equation in two variables:

$$(u_{rr} + u_{x_n x_n}) = H(r, x_n, u, u_r, u_{x_n}), \quad \text{in } \Omega,$$

$$u(x) = 0, \quad \text{on } \partial\Omega,$$

(1.4)

where $H(r, x_n, u, u_r, u_{x_n}) = f(r, x_n, u, |\nabla u|) + \frac{n-2}{r}u_r$. Motivated by the priori estimates mentioned in [14] and special technique for the equation in two variables developed in [10], we develop an approach which is distinct from the previous

The rest of this work is organized as follows. Motivated by [14] we give a priori estimates in section 2. In section 3 we show the existence of (n-1)-radial symmetric positive classical solutions with the help of [10].

2. A priori estimates

Compared with the reference [14], we should deal with the second term $\frac{n-2}{r}u_r$ of $H(r, x_n, u, u_r, u_{x_n})$ in (1.4) additionally, it is necessary to give a brief proof of the a priori estimates although the process is similar to that in [14].

Theorem 2.1. Assume that (D1) and (F2) hold, and that $\lambda < \lambda_0$ for some λ_0 fixed. Then, for any C^1 -solution u of the equation

$$-(u_{rr} + u_{x_n x_n}) = H(r, x_n, u, u_r, u_{x_n}) + \lambda, \quad in \ \Omega,$$

$$u(x) = 0, \quad on \ \partial\Omega,$$

(2.1)

there exists a positive constant C such that $\sup_{\Omega} u < C$.

To prove this theorem, we need the following lemmas.

Lemma 2.2. Let (D1) hold and $u(r, x_n)$ be a positive weak C^1 -solution of the inequality

$$-(u_{rr}+u_{x_nx_n}) \ge u^p - M|\nabla u|^{\tau} + \frac{n-2}{r}u_r,$$
(2.2)

where 1 < p and $0 < \tau < 2p/(p+1)$. Take $\gamma \in (0, p)$ and $\mu \in (0, \frac{2p}{p+1})$. Denote by B_{2R} a ball of radius 2R contained in Ω , where $R < R_0$ and R_0 is a positive constant. Then there exists a positive constant $C = C(p, \gamma, \mu, R_0)$ such that

$$\int_{B_R} u^{\gamma} \le C R^{2-2\gamma/(p-1)},\tag{2.3}$$

$$\int_{B_R} |\nabla u|^{\mu} \le C R^{2 - (p+1)\mu/(p-1)}.$$
(2.4)

Proof. We can assume that B_R is centered at $x_0 \in \Omega$ and first focus on proving (2.3). Let ξ be a C^2 -cut-off function on B_2 satisfying:

- (1) $\xi(x) = \xi(|x x_0|), \ 0 \le |x x_0| \le 2.$
- (2) $\xi(x) = 1$ for $|x x_0| \le 1$.
- (3) ξ has compact support in B_2 and $0 \le \xi \le 1$.
- (4) $|\nabla \xi| \le 2.$

Let $d = p - \gamma > 0$ and $\phi = [\xi(\frac{x - x_0}{R})]^k u^{-d}$ as a test function for (2.2) (k to be fixed later). We obtain

$$-\int_{\Omega} (u_{rr} + u_{x_n x_n}) \xi^k u^{-d} \ge \int_{\Omega} (u^p - M |\nabla u|^{\tau} + \frac{n-2}{r} u_r) \xi^k u^{-d}$$

Integrating by parts and using that $|\nabla \xi^k| = k \xi^{k-1} |\nabla \xi| \le \xi^k \frac{2k}{R\xi}$, we obtain

$$d\int_{\Omega} \xi^{k} u^{\gamma-p-1} |\nabla u|^{2} + \int_{\Omega} \xi^{k} u^{\gamma}$$

$$\leq \int_{\Omega} u^{-d} |\nabla u| |\nabla \xi^{k}| + M \int_{\Omega} |\nabla u|^{\tau} \xi^{k} u^{-d} - \int_{\Omega} \frac{n-2}{r} u_{r} \xi^{k} u^{-d}$$

$$\leq \int_{\Omega} u^{-d} |\nabla u| \xi^k \frac{2k}{R\xi} + M \int_{\Omega} |\nabla u|^{\tau} \xi^k u^{-d} + \frac{n-2}{\operatorname{dist}(0,\partial\Omega)} \int_{\Omega} |\nabla u| \xi^k u^{-d}.$$

Applying the Young inequality to the first right term, we have

$$\int_{\Omega} u^{-d} |\nabla u| \xi^k \frac{2k}{R\xi} \le \frac{d}{4} \int_{\Omega} \xi^k u^{\gamma-p-1} |\nabla u|^2 + CR^{-2} \int_{\Omega} \xi^{k-2} u^{\gamma-p+1},$$

 \mathbf{SO}

$$\begin{split} &\frac{3}{4}d\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^{2}+\int_{\Omega}\xi^{k}u^{\gamma}\\ &\leq CR^{-2}\int_{\Omega}\xi^{k-2}u^{\gamma-p+1}+M\int_{\Omega}|\nabla u|^{\tau}\xi^{k}u^{-d}+\frac{n-2}{\operatorname{dist}(0,\partial\Omega)}\int_{\Omega}|\nabla u|\xi^{k}u^{-d}. \end{split}$$

Next we focus on the case of $\gamma > p - 1$. Take $k = \frac{2\gamma}{p-1}$. By using the Young inequality again, we have

$$CR^{-2} \int_{\Omega} \xi^{k-2} u^{\gamma-p+1} \le \frac{1}{4} \int_{\Omega} \xi^k u^{\gamma} + CR^{2-2\gamma/(p-1)}$$

and

$$\begin{split} M \int_{\Omega} |\nabla u|^{\tau} \xi^{k} u^{-d} &\leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1} |\nabla u|^{2} + C \int_{\Omega} \xi^{k} u^{t} \\ &\leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1} |\nabla u|^{2} + \frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma} + CR^{-2}, \end{split}$$

the second inequality holds becasue $t = (-d - \tau \frac{\gamma - p - 1}{2}) \frac{2}{2 - \tau} < \gamma$, and

$$\begin{aligned} \frac{n-2}{\operatorname{dist}(0,\partial\Omega)} \int_{\Omega} |\nabla u| \xi^{k} u^{-d} &\leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1} |\nabla u|^{2} + C \int_{\Omega} \xi^{k} u^{\gamma-p+1} \\ &\leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1} |\nabla u|^{2} + \frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma} + CR^{-2}. \end{aligned}$$

 So

$$\frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma - p - 1} |\nabla u|^{2} + \frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma} \le C R^{2 - 2\gamma/(p - 1)}, \tag{2.5}$$

which gives (2.3).

If $\gamma = p - 1$, (2.3) is obvious by the above arguments. For the case of $\gamma , the following Höder inequality$

$$\int_{B_R} u^{\gamma} \le C R^{2(1-\gamma)/(p-1)} \Big(\int_{B_R} u^{p-1} \Big)^{\gamma/(p-1)}$$

and the above argument yields to (2.3).

To prove (2.4), we use Höder inequality:

$$\int_{B_R} |\nabla u|^{\mu} \le \left(\int_{B_R} u^{\gamma-p-1} |\nabla u|^2\right)^{\mu/2} \left(\int_{B_R} u^s\right)^{1-\frac{\mu}{2}},$$

where $s = (p + 1 - \gamma)/(2 - \mu)$. We can choose γ close enough to p - 1 such that s < p, and then obtain (2.4) by combining (2.3) and (2.5). Thus we complete the proof.

Lemma 2.3. Let $u(r, x_n)$ be a nonnegative weak solution of the following inequality, in a domain Ω ,

$$|u_{rr} + u_{x_n x_n}| \le c(x) |\nabla u| + d(x)u + f(x),$$

where $c(x) \in L^{q'}(\Omega)$, $d, f \in L^{q}(\Omega)$, q' > 2 and $q \in (1, 2)$. Then for every R such that $B_{2R} \subset \Omega$, there exists a constant $C = C(q, q', R^{1-\frac{2}{q'}} \|c\|_{L^{q'}}, R^{2-\frac{2}{q}} \|d\|_{L^q})$ such that

$$\sup_{B_R} u \le C(\inf_{B_R} u + R^{2-\frac{2}{q}} \|f\|_{L^q})$$

Note that this lemma is of Harnack type; see [15] for more information on this type of inequalities. The next theorem is similar to [14, Theorem 2.3].

Theorem 2.4. Let (D) hold and $R \leq R_0$ such that $B_{2R} \subset \Omega$. Suppose $u(r, x_n)$ is a positive weak solution of the inequality

$$u^{p} - M|\nabla u|^{\tau} + \frac{n-2}{r}u_{r} \le -(u_{rr} + u_{x_{n}x_{n}}) \le c_{0}u^{p} + M|\nabla u|^{\tau} + \frac{n-2}{r}u_{r} + \lambda,$$

where p > 1, $0 < \tau < \frac{2p}{p+1}$, $\lambda > 0$. Then there exists a constant $C = C(p, \tau, R_0, M)$ such that

$$\sup_{B_R} u \le C(\inf_{B_R} u + \lambda R^2)$$

Proof. From (2.4), we obtain

$$|u_{rr} + u_{x_n x_n}| \le c_0 u^p + M |\nabla u|^\tau + \frac{n-2}{r} |\nabla u| + \lambda.$$

Take $f = \lambda$, $c = M |\nabla u|^{\tau-1} + \frac{n-2}{r}$ and $d = c_0 u^{p-1}$. To prove this theorem, we only need to verify that

$$c(x) \in L^{q'}(B_{2R}), \quad d \in L^{q}(B_{2R}).$$

Note that $\frac{n-2}{r}$ obviously belongs to $L^{q'}(B_{2R})$, so we only need to prove $M|\nabla u|^{\tau-1} \in L^{q'}(B_{2R})$. By lemma 2.1, we have

$$\|M|\nabla u|^{\tau-1}\|_{L^{q'}} = M\Big(\int_{B_{(2R)}} |\nabla u|^{\mu}\Big)^{1/q'} \le CR^{\frac{2-(p+1)\mu/(p-1)}{q'}}$$

where $\mu = q'(\tau - 1)$ should satisfy $q'(\tau - 1) < \frac{2p}{p+1}$ for some q' > 2. Since $\tau < \frac{2p}{p+1}$ and q' > 2 can be close enough to 2, so we just need to verify

$$2\left(\frac{2p}{p+1}-1\right) < \frac{2p}{p+1}$$

The above inequality is obvious, that is to say, $c(x) \in L^{q'}(B_{2R})$.

For $d = c_0 u^{p-1}$, by lemma 2.1 we have

$$||d||_{L^q(B_{2R})} = c_0 \Big(\int_{B_{(2R)}} u^\gamma\Big)^{1/q} \le CR^{(2-2q)/q}$$

where $\gamma = (p-1)q$ should satisfy (p-1)q < p. By choosing q > 1 close enough to 1, we can get (p-1)q < p, that is, $d \in L^q(B_{2R})$. The proof is complete.

For completeness, we sketch the proof of Theorem 2.1 which is similar as the proof of [14, Proposition 3.3].

Proof of Theorem 2.1. Suppose, by contradiction, that there exist $\lambda_n < \lambda_0, u_n > 0$ such that u_n is solution of (2.1) with λ substituted by λ_n and $\max_{\Omega} u_n \to \infty$. Let z_n be a point in Ω such that $u_n(z_n) = \max_{\Omega} u_n \triangleq S_n$. Denote $\delta_n = \operatorname{dist}(z_n, \partial\Omega)$. In order to prove there exists a $y_0 \in \Omega$ such that $u_n(y_0) \to \infty$, we proceed in three steps: **Step 1:** There exists c > 0 such that $c < \delta_n S_n^{(p-1)/2}$. Define $w(x) = S_n^{-1} u_n(y)$, where $y = M_n x + z_n$, $M_n = S_n^{(1-p)/2}$. By easy computation and condition (F2), we obtain

$$-\Delta w_n(x) = S_n^{-1} M_n^2 (H(M_n x + z_n, S_n w_n(x), S_n M_n^{-1} \nabla w_n(x)) + \lambda_n)$$

$$\leq c_0 w_n^p + M S_n^{-p} S_n^{\tau \frac{p+1}{2}} |\nabla w_n|^{\tau} + \frac{n-2}{\operatorname{dist}(0, \partial\Omega)} |\nabla w_n| + \lambda_n S_n^{-p}.$$

Notice that $MS_n^{-p}S_n^{\tau \frac{p+1}{2}}$ and $\lambda_n S_n^{-p}$ tend to zero respectively as n tends to infinity, so

$$-\Delta w_n(x) \le c_0 w_n^p + |\nabla w_n|^{\tau} + \frac{n-2}{\operatorname{dist}(0,\partial\Omega)} |\nabla w_n| + 1.$$

By the regularity result in [12], there exists a constant C independent of n such that $\sup_{\Omega} w_n \leq C$. Let $y_n \in \partial \Omega$ such that $d(z_n, y_n) = \delta_n$; then, by the mean value theorem, we have

$$1 = w_n(0) = w_n(0) - w_n(M_n^{-1}(y_n - z_n)) \le \sup_{\Omega} w_n M_n^{-1} \delta_n \le C M_n^{-1} \delta_n.$$

Thus, the first step is complete.

Step 2: There exists $\gamma > 0$ such that

$$\int_{B(z_n,\delta_n/2)} |u_n|^{\gamma} \to \infty$$

By Theorem 2.4, we obtain

$$S_n = \max_{B(z_n, \delta_n/2)} u_n \le C \Big(\min_{B(z_n, \delta_n/2)} u_n + \lambda_n \frac{\delta_n^2}{4} \Big).$$

Since λ_n and δ_n are bounded, we obtain that $\min_{B(z_n,\delta_n/2)} u_n \ge cS_n$ for some c > 0. So

$$\int_{B(z_n,\delta_n/2)} |u_n|^{\gamma} \ge c S_n^{\gamma} \delta_n^2 \ge c S_n^{\gamma} S_n^{1-p}.$$

We can choose a $\gamma > p-1$ such that $cS_n^{\gamma}S_n^{1-p} \to +\infty$. The proof of step 2 is complete.

Step 3: There exists a $y_0 \in \Omega$ such that $u_n(y_0) \to \infty$. Notice that $\partial \Omega$ is C^2 and compact boundary , so we can find $\varepsilon > 0$ independent of n and $y_n \in \Omega$ such that:

- $d(y_n, \partial \Omega) = 2\varepsilon$, for all $n \in \mathbb{N}$. $B(z_n, \frac{\delta_n}{2}) \subset B(y_n, 2\varepsilon)$, for all $n \in \mathbb{N}$.

By the weak Harnack inequality in [16] and step 2, we conclude that

$$\min_{B(y_n,\varepsilon)} u_n \ge c \Big(\int_{B(y_n,2\varepsilon)} |u_n|^{\gamma} \Big)^{1/\gamma} \to +\infty.$$

Taking a subsequence $\{\tilde{y}_n\} \subset \{y_n\}$ such that $\tilde{y}_n \to y_0 \in \Omega$. For *n* large enough, we have $y_0 \in B(\tilde{y}_n, \varepsilon)$ and $u_n(y_0) \to \infty$, which contradicts with Theorem 2.4. Thus we obtain a priori estimate of solutions.

Theorem 3.1. Assume (D1), (F1)–(F3) hold. Then (1.1) admits an (n-1)-radial symmetric positive classical solution $u(r, x_n) \in C^{2,\beta}(\Omega) \cap C^0(\overline{\Omega})$.

The following lemma mentioned in [10] will be used in our proof.

Lemma 3.2 ([10, Theorem 12.4]). Let u be a bounded $C^2(\Omega)$ solution of

$$Lu = a(x, y)u_{xx} + 2b(x, y)u_{xy} + c(x, y)u_{yy} = f(x, y),$$

where L is uniformly elliptic in a domain $\Omega \subset \mathbb{R}^2$, satisfying

$$\begin{split} \lambda(\xi^2 + \eta^2) &\leq a\xi^2 + 2b\xi\eta + c\eta^2 \leq \Lambda(\xi^2 + \eta^2), \quad \forall (\xi, \eta) \in \mathbb{R}^2, \\ &\frac{\Lambda}{\lambda} \leq \gamma \end{split}$$

for some constant $\gamma \geq 1$. Then for some $\alpha = \alpha(\gamma) > 0$, we have

$$[u]_{1,\alpha}^* = \sup_{z_1, z_2 \in \Omega} d_{1,2}^{1+\alpha} \frac{|Du(z_2) - Du(z_1)|}{|z_2 - z_1|^{\alpha}} \le C(|u|_0 + |\frac{f}{\lambda}|_0^{(2)}),$$

where $C = C(\gamma)$, $|\frac{f}{\lambda}|_{0}^{(2)} = \sup_{z \in \Omega} d_{z}^{2} |\frac{f}{\lambda}|$, $d_{z} = \operatorname{dist}(z, \partial \Omega)$ and $d_{1,2} = \min\{d_{z_{1}}, d_{z_{2}}\}$.

Since the conditions imposed on f in Theorem 3.1 are different from those in [10, Theorem 12.5], it is necessary to give the proof, although similar to that of [10, Theorem 12.5].

Proof of Theorem 3.1. We now proceed by truncation of H to reduce (1.4) to the case of bounded H. Namely, let ψ_N denote the function given by

$$\psi_N(t) = \begin{cases} t, & |t| \le N\\ N \operatorname{sign} t, & |t| > N, \end{cases}$$

and define the truncation of H by

$$H_N(r, x_n, u, u_r, u_{x_n}) = H(r, x_n, \psi_N(u), \psi_N(u_r), \psi_N(u_{x_n})).$$

From (F2), we have $|H_N| \leq c_0 N^p + M N^{\tau} + \frac{n-2}{\operatorname{dist}(0,\partial\Omega)} N = C_0$. Consider now the family of problems

$$-(u_{rr} + u_{x_n x_n}) = H_N(r, x_n, u, u_r, u_{x_n}) \quad \text{in } \Omega,$$

$$u(x) = 0, \quad \text{on } \partial\Omega.$$
 (3.1)

By Theorem 2.1, any solution u of (3.1) is subject to the bound \tilde{M} , independent of N,

$$\sup_{\Omega} |u| \le M. \tag{3.2}$$

Now we make the following observation. Let v be any bounded function with locally Hölder continuous first derivatives in Ω and $\tilde{H}_N = H_N(r, x_n, v, v_r, v_{x_n})$. Then the following linear problem

$$-(u_{rr} + u_{x_n x_n}) = H_N \quad \text{in } \Omega,$$

$$u(x) = 0, \quad \text{on } \partial\Omega,$$

(3.3)

has a unique solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. We observe from classical priori estimates that

$$|u|_0 = \sup_{\Omega} |u| \le M_0.$$

Furthermore, if $\sup_{\Omega} |v| \leq M_0$, from lemma 3.1, we have

$$|u|_{1,\alpha}^* \leq C(|u|_0 + C_0(\operatorname{diam}(\Omega))^2) \leq C(M_0 + C_0(\operatorname{diam}(\Omega))^2) = K$$

where C, α depend on M_0 . So K depends on M_0 , N and Ω .

Next, define the Banach space

$$C^{1,\alpha}_*(\Omega) = \{ u \in C^{1,\alpha}(\Omega) ||u|^*_{1,\alpha;\Omega} < +\infty \}$$

and define a mapping T on the set

$$\mathbb{S} = \{ v \in C^{1,\alpha}_* : |v|_{1,\alpha}^* \le K, |v|_0 \le M_0 \}.$$

So u = Tv is the unique solution of the linear Dirichlet problem (3.3). It is easy to show that S is convex and closed in the Banach space, and T is continuous in $C^1_* = \{u \in C^1(\Omega) | |u|_{1,\Omega}^* < +\infty \text{ and } TS \text{ is precompact. So we may conclude from$ the Schauder fixed point theorem and Schauder estimates that T has a fixed point, $<math>u_N = Tu_N, u_N \in C^{1,\alpha}_*(\Omega) \cap C^{2,\beta}(\Omega) \cap C^o(\overline{\Omega})$. This will provide a solution of the problem (3.1).

Furthermore, from lemma 3.1 we infer the estimate

$$[u_N]_{1,\alpha}^* \le C(|u|_0 + |G_{HN}|_0^{(2)}).$$

By (F2) and (3.2), we obtain

$$[u_N]_{1,\alpha}^* \le C(1 + [u_N]_1^*),$$

where $C = C(M, M, c_0, p, \tau, \operatorname{diam}(\Omega))$. Furthermore, the interpolation inequality yields the uniform bound which is independent of N,

$$[u_N]_{1,\alpha}^* \le C = C(\tilde{M}, M, c_0, p, \tau, \operatorname{diam}(\Omega)).$$

By similar arguments as in the proof of [10, Theorem 12.5], it is easy to show there is a subsequence $\{u_n\}$ of $\{u_N\}$ which converges to a solution u of (1.4), and u also satisfies the boundary condition u = 0 on $\partial\Omega$. Since f is nonnegative, by comparison principles, u is positive. This completes the proof.

Remark 3.3. If $\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, Ω_1 and Ω_2 are symmetric and $0 \notin \overline{\Omega}$, $f(x, u, |\nabla u|) = f(r_1, r_2, u, |\nabla u|)$, where $r_1 = \sqrt{x_1^2 + x_2^2 + \cdots + x_k^2}$, $r_2 = \sqrt{x_{k+1}^2 + x_{k+2}^2 + \cdots + x_n^2}$. Under the conditions of (F2) and (F3), (1.1) admits an (n-1)-radial symmetric positive classical solution $u(r_1, r_2) \in C^{2,\beta}(\Omega) \cap C^0(\overline{\Omega})$. The proof is left to readers.

Acknowledgments. This work is partly supported by the National Natural Science Foundation of China (10971088) and Natural Science Foundation of Chizhou College (2013ZRZ002).

References

- B. Abdellaoui, A. Dall Aglio, I. Peral; Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 (2006), 21–62.
- [2] Claudianor O. Alves, Paulo C. Carriao, Luiz F. O. Faria; Existence of solutions to singular elliptic equations with convection terms via the Galerkin method, Electronic Journal of Differential Equations Vol. 2010 (2010), No. 12, 1–12.
- [3] H. Amann, M. G. Crandall; On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J 27 (1978), 779–790.
- [4] Giovanni Molica Bisci, Vicentiu Rădulescu; Multiple symmetric solutions for a Neumann problem with lack of compactness, C. R. Acad. Sci. Paris, Ser. I 351 (2013) 37–42.

- [5] Wenjing Chen, Jianfu Yang; Existence of positive solutions for quasilinear elliptic equation on Riemannian manifolds, Differential Equations and Applications Vol 2 (2010), 569–574.
- [6] D. G. de Figueiredo, M. Girardi, M. Matzeu; Semilinear ellptic equations with dependence on the gradient via mountain-pass techniques, Differential and Integral Equations 17 (2004), 119–126.
- [7] D. G. de Figueiredo, J. Sánchez, P. Ubilla; Quasilinear equations with dependence on the gradient, Nonlinear Analysis 71 (2009), 4862–4868.
- [8] M. Ghergu, V. Rădulescu; Bifurcation for a class of singular elliptic problems with quadratic convection term, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 831–836.
- [9] M. Ghergu, V.Rădulescu; On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. 311 (2005) 635–646.
- [10] D.Gilbarg, N. S. Trudinger; *Elliptic Partial Differential Equations of Second Oder*, second ed. Springer-Verlag, Berlin, 1983.
- [11] M. Girardi, M. Matzeu; Positive and negative solutions of a quasilinear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Analysis T.M.A. 59 (2004), 199–210.
- [12] G. M. Lieberman; Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203–1219.
- [13] Pohozaev S; On equations of the type $\Delta u = f(x, u, Du)$, Mat. Sb. 113 (1980), 324–338.
- [14] D. Ruiz; A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations 199 (2004), 96–114.
- [15] J. Serrin, H. Zou; Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002) 79–142.
- [16] N. Trudinger; On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967) 721–747.
- [17] X. Wang, Y. Deng; Existence of multiple solutions to nonlinear elliptic equations in nondivergence form, J. Math. Anal. and Appl. 189 (1995), 617–630.
- [18] J. B. M. Xavier; Some existence theorems for equations of the form $-\Delta u = f(x, u, Du)$, Nonlinear Analysis T.M.A. 15 (1990), 59–67.
- [19] Z. Yan; A note on the solvability in $W^{2,p}(\Omega)$ for the equation $-\Delta u = f(x, u, Du)$, Nonlinear Analysis T.M.A. 24 (1995), 1413–1416.
- [20] Henghui Zou; A priori estimates and existence for quasilinear elliptic equations Calc. Var. Partial Differential Equations 33 (2008), no. 4, 417–437.

Yong Zhang

DEPARTMENT OF MATHEMATICS, LANZHOU UNIVERSITY, LANZHOU, GANSU, 730000, CHINA DEPARTMENT OF MATHEMATICS, CHIZHOU COLLEGE, CHIZHOU, ANHUI, 247000, CHINA *E-mail address:* zhangy1201zu.edu.cn

Qiang Xu

DEPARTMENT OF MATHEMATICS, LANZHOU UNIVERSITY, LANZHOU, GANSU, 730000, CHINA *E-mail address*: xuqiang0901zu.edu.cn

Реінао Zhao

DEPARTMENT OF MATHEMATICS, LANZHOU UNIVERSITY, LANZHOU, GANSU, 730000, CHINA *E-mail address:* zhaoph@lzu.edu.cn