Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 204, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

THE ($n-1$)-RADIAL SYMMETRIC POSITIVE CLASSICAL SOLUTION FOR ELLIPTIC EQUATIONS WITH GRADIENT

YONG ZHANG, QIANG XU, PEIHAO ZHAO

Abstract

In this article, we study the existence of the ($n-1$)-radial symmetric positive classical solution for elliptic equations with gradient. By some special techniques in two variables, we show a priori estimates, and then show the existence of a solution using a fixed point theorem.

1. Introduction

In this article, we consider the following boundary-value problem of a secondorder elliptic equation,

$$
\begin{gather*}
-\Delta u=f(x, u, \nabla u) \quad \text { in } \Omega, \\
u(x)=0, \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{n}, n \geq 3$.
This type of equations have been studied by several authors. As the nonlinearity f depends on the gradient of the solution, solving 1.1 is not variational and the well developed critical point theory can not be applied directly. But if f has a special form, by changing variables, 1.1 can be transformed into a boundaryvalue problem which is independent of ∇u. For example, When $f(x, u, \nabla u)=$ $g(u)+\lambda|\nabla u|^{2}+\eta$, Ghergu and Rădulescu [8] used the above method to show the existence of positive classical solution under the assumption that g is decreasing and unbounded at the origin. A similar method appears in [1], where $f(x, u, \nabla u)$ has critical growth with respect to ∇u; see also [9, 20. In addition, Chen and Yang [5] considered the existence of positive solutions for (1.1) on a smooth compact Riemannian manifold. As far as we know, the methods used to solve 1.1) are mainly sub and super-solution, fixed point theorems, Galerkin method, and topological degree, see, for instance, [2, 3, 7, 13, 17, 18, 19].

It is worth mentioning that de Figueiredo, Girardi and Matzeu 6] developed a quite different method of variational type. Firstly, for each $\omega \in H_{0}^{1}(\Omega)$, they considered the boundary problem

$$
\begin{gather*}
-\Delta u=f(x, u, \nabla \omega) \quad \text { in } \Omega \\
u(x)=0, \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

[^0]which is a variational problem. Under the assumptions that f has a superlinear subcritical growth at zero and at infinity with respect to the second variable, and f is locally Lipschitz continuous with the third variable, they proved that a weak solution u_{ω} of $(1.2$ exists by mountain-pass theorem. Then they have constructed a sequence $\left\{u_{k}\right\} \subset H_{0}^{1}(\Omega)$ as solutions of
\[

$$
\begin{gather*}
-\Delta u_{n}=f\left(x, u_{n}, \nabla u_{n-1}\right) \quad \text { in } \Omega \\
u_{n}(x)=0, \quad \text { on } \partial \Omega \tag{1.3}
\end{gather*}
$$
\]

and verified that $\left\{u_{k}\right\}$ converges to a solution of 1.1). However, this solution is just in $H_{0}^{1}(\Omega)$.

Additionally, the existence of classical solutions for 1.1 has been obtained by mountain-pass lemma and a suitable truncation method in [11, but the conditions imposed on f are very strong:
(1) f is locally Lipschitz continuous on $\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}$,
(2) $\frac{f(x, t, \xi)}{t}$ converges to zero uniformly with respect to $x \in \Omega, \xi \in \mathbb{R}^{n}$ as t tends to zero,
(3) there exist $a_{1}>0, p \in\left(1, \frac{n+2}{n-2}\right)$ and $r \in(0,1)$ such that

$$
|f(x, t, \xi)| \leq a_{1}\left(1+|t|^{p}\right)\left(1+|\xi|^{r}\right), \quad \forall x \in \bar{\Omega}, t \in \mathbb{R}, \xi \in \mathbb{R}^{n}
$$

(4) there exist $\vartheta>2$ and $a_{2}, a_{3}, t_{0}>0$ such that

$$
\begin{gathered}
0<\vartheta F(x, t, \xi) \leq t f(x, t, \xi), \quad \forall x \in \bar{\Omega}, t \geq t_{0}, \xi \in \mathbb{R}^{n}, F(x, t, \xi) \geq a_{2}|t|^{\vartheta}-a_{3} ; \\
F(x, t, \xi) \geq a_{2}|t|^{\vartheta}-a_{3}
\end{gathered}
$$

where $F(x, t, \xi)=\int_{0}^{t} f(x, s, \xi) d s$.
As far as we know, a few authors have paid attention to the radial solutions of (1.1); see for example 4, 7. So we will limit us to the radially symmetric case and try to focus on some new methods to study (1.1). We consider the boundary-value problem (1.1) and assume the following:
(D1) Ω is a so-called $(n-1)$-symmetric domain in $\mathbb{R}^{n}(n \geq 3)$, that is, Ω is symmetric with respect to $x_{1}, x_{2}, \cdots, x_{n-1}$ and $0 \notin \bar{\Omega}$;
(F1) $f(x, u, \eta)$ is a nonnegative function satisfying $f(x, u, \eta)=f\left(r, x_{n}, u,|\eta|\right)$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2}}$;
(F2) there exist $c_{0} \geq 1, M>0, p>1, \tau \in\left(0, \frac{2 p}{p+1}\right)$ such that

$$
u^{p}-M|\eta|^{\tau} \leq f(x, u, \eta) \leq c_{0} u^{p}+M|\eta|^{\tau}, \quad \forall(x, u, \eta) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n}
$$

(F3) $f(x, u, \eta) \in C^{\beta}\left(\Omega, \mathbb{R}, \mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$.
We remark that in [14], the constants p and τ belong to $\left(1, \frac{2(n-1)}{n-2}\right)$ and $\left(1, \frac{2 p}{p+1}\right)$ respectively. Obviously, the conditions in (F2) are weaker than those in [14].

If the solution $u(x)$ is $(n-1)$-radial symmetric, that is $u(x)=u\left(r, x_{n}\right)$, then by (F1) Equation (1.1) can be transformed into the following elliptic equation in two variables:

$$
\begin{gather*}
-\left(u_{r r}+u_{x_{n} x_{n}}\right)=H\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right), \quad \text { in } \Omega, \tag{1.4}\\
u(x)=0, \quad \text { on } \partial \Omega
\end{gather*}
$$

where $H\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right)=f\left(r, x_{n}, u,|\nabla u|\right)+\frac{n-2}{r} u_{r}$. Motivated by the priori estimates mentioned in [14] and special technique for the equation in two variables developed in [10], we develop an approach which is distinct from the previous
works, and shows the existence of the $(n-1)$-radial symmetric positive classical $C^{2, \beta}$-solutions of 1.1 . Note that solution in [14] is just in $C^{1, \alpha}(\Omega)$.

The rest of this work is organized as follows. Motivated by [14] we give a priori estimates in section 2 . In section 3 we show the existence of $(n-1)$-radial symmetric positive classical solutions with the help of 10 .

2. A Priori estimates

Compared with the reference [14], we should deal with the second term $\frac{n-2}{r} u_{r}$ of $H\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right)$ in 1.4 additionally, it is necessary to give a brief proof of the a priori estimates although the process is similar to that in [14].

Theorem 2.1. Assume that (D1) and (F2) hold, and that $\lambda<\lambda_{0}$ for some λ_{0} fixed. Then, for any C^{1}-solution u of the equation

$$
\begin{gather*}
-\left(u_{r r}+u_{x_{n} x_{n}}\right)=H\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right)+\lambda, \quad \text { in } \Omega, \tag{2.1}\\
u(x)=0, \quad \text { on } \partial \Omega
\end{gather*}
$$

there exists a positive constant C such that $\sup _{\Omega} u<C$.
To prove this theorem, we need the following lemmas.
Lemma 2.2. Let (D1) hold and $u\left(r, x_{n}\right)$ be a positive weak C^{1}-solution of the inequality

$$
\begin{equation*}
-\left(u_{r r}+u_{x_{n} x_{n}}\right) \geq u^{p}-M|\nabla u|^{\tau}+\frac{n-2}{r} u_{r} \tag{2.2}
\end{equation*}
$$

where $1<p$ and $0<\tau<2 p /(p+1)$. Take $\gamma \in(0, p)$ and $\mu \in\left(0, \frac{2 p}{p+1}\right)$. Denote by $B_{2 R}$ a ball of radius $2 R$ contained in Ω, where $R<R_{0}$ and R_{0} is a positive constant. Then there exists a positive constant $C=C\left(p, \gamma, \mu, R_{0}\right)$ such that

$$
\begin{gather*}
\int_{B_{R}} u^{\gamma} \leq C R^{2-2 \gamma /(p-1)}, \tag{2.3}\\
\int_{B_{R}}|\nabla u|^{\mu} \leq C R^{2-(p+1) \mu /(p-1)} . \tag{2.4}
\end{gather*}
$$

Proof. We can assume that B_{R} is centered at $x_{0} \in \Omega$ and first focus on proving (2.3). Let ξ be a C^{2}-cut-off function on B_{2} satisfying:
(1) $\xi(x)=\xi\left(\left|x-x_{0}\right|\right), 0 \leq\left|x-x_{0}\right| \leq 2$.
(2) $\xi(x)=1$ for $\left|x-x_{0}\right| \leq 1$.
(3) ξ has compact support in B_{2} and $0 \leq \xi \leq 1$.
(4) $|\nabla \xi| \leq 2$.

Let $d=p-\gamma>0$ and $\phi=\left[\xi\left(\frac{x-x_{0}}{R}\right)\right]^{k} u^{-d}$ as a test function for 2.2 (k to be fixed later). We obtain

$$
-\int_{\Omega}\left(u_{r r}+u_{x_{n} x_{n}}\right) \xi^{k} u^{-d} \geq \int_{\Omega}\left(u^{p}-M|\nabla u|^{\tau}+\frac{n-2}{r} u_{r}\right) \xi^{k} u^{-d}
$$

Integrating by parts and using that $\left|\nabla \xi^{k}\right|=k \xi^{k-1}|\nabla \xi| \leq \xi^{k} \frac{2 k}{R \xi}$, we obtain

$$
\begin{aligned}
& d \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+\int_{\Omega} \xi^{k} u^{\gamma} \\
& \leq \int_{\Omega} u^{-d}|\nabla u|\left|\nabla \xi^{k}\right|+M \int_{\Omega}|\nabla u|^{\tau} \xi^{k} u^{-d}-\int_{\Omega} \frac{n-2}{r} u_{r} \xi^{k} u^{-d}
\end{aligned}
$$

$$
\leq \int_{\Omega} u^{-d}|\nabla u| \xi^{k} \frac{2 k}{R \xi}+M \int_{\Omega}|\nabla u|^{\tau} \xi^{k} u^{-d}+\frac{n-2}{\operatorname{dist}(0, \partial \Omega)} \int_{\Omega}|\nabla u| \xi^{k} u^{-d}
$$

Applying the Young inequality to the first right term, we have

$$
\int_{\Omega} u^{-d}|\nabla u| \xi^{k} \frac{2 k}{R \xi} \leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+C R^{-2} \int_{\Omega} \xi^{k-2} u^{\gamma-p+1}
$$

SO

$$
\begin{aligned}
& \frac{3}{4} d \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+\int_{\Omega} \xi^{k} u^{\gamma} \\
& \leq C R^{-2} \int_{\Omega} \xi^{k-2} u^{\gamma-p+1}+M \int_{\Omega}|\nabla u|^{\tau} \xi^{k} u^{-d}+\frac{n-2}{\operatorname{dist}(0, \partial \Omega)} \int_{\Omega}|\nabla u| \xi^{k} u^{-d}
\end{aligned}
$$

Next we focus on the case of $\gamma>p-1$. Take $k=\frac{2 \gamma}{p-1}$. By using the Young inequality again, we have

$$
C R^{-2} \int_{\Omega} \xi^{k-2} u^{\gamma-p+1} \leq \frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma}+C R^{2-2 \gamma /(p-1)}
$$

and

$$
\begin{aligned}
M \int_{\Omega}|\nabla u|^{\tau} \xi^{k} u^{-d} & \leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+C \int_{\Omega} \xi^{k} u^{t} \\
& \leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma}+C R^{-2}
\end{aligned}
$$

the second inequality holds becasue $t=\left(-d-\tau \frac{\gamma-p-1}{2}\right) \frac{2}{2-\tau}<\gamma$, and

$$
\begin{aligned}
\frac{n-2}{\operatorname{dist}(0, \partial \Omega)} \int_{\Omega}|\nabla u| \xi^{k} u^{-d} & \leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+C \int_{\Omega} \xi^{k} u^{\gamma-p+1} \\
& \leq \frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma}+C R^{-2}
\end{aligned}
$$

So

$$
\begin{equation*}
\frac{d}{4} \int_{\Omega} \xi^{k} u^{\gamma-p-1}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega} \xi^{k} u^{\gamma} \leq C R^{2-2 \gamma /(p-1)} \tag{2.5}
\end{equation*}
$$

which gives 2.3).
If $\gamma=p-1,2.3$ is obvious by the above arguments. For the case of $\gamma<p-1$, the following Höder inequality

$$
\int_{B_{R}} u^{\gamma} \leq C R^{2(1-\gamma) /(p-1)}\left(\int_{B_{R}} u^{p-1}\right)^{\gamma /(p-1)}
$$

and the above argument yields to 2.3 .
To prove 2.4, we use Höder inequality:

$$
\int_{B_{R}}|\nabla u|^{\mu} \leq\left(\int_{B_{R}} u^{\gamma-p-1}|\nabla u|^{2}\right)^{\mu / 2}\left(\int_{B_{R}} u^{s}\right)^{1-\frac{\mu}{2}}
$$

where $s=(p+1-\gamma) /(2-\mu)$. We can choose γ close enough to $p-1$ such that $s<p$, and then obtain (2.4) by combining 2.3 and 2.5 . Thus we complete the proof.

Lemma 2.3. Let $u\left(r, x_{n}\right)$ be a nonnegative weak solution of the following inequality, in a domain Ω,

$$
\left|u_{r r}+u_{x_{n} x_{n}}\right| \leq c(x)|\nabla u|+d(x) u+f(x)
$$

where $c(x) \in L^{q^{\prime}}(\Omega), d, f \in L^{q}(\Omega), q^{\prime}>2$ and $q \in(1,2)$. Then for every R such that $B_{2 R} \subset \Omega$, there exists a constant $C=C\left(q, q^{\prime}, R^{1-\frac{2}{q^{\prime}}}\|c\|_{L^{q^{\prime}}}, R^{2-\frac{2}{q}}\|d\|_{L^{q}}\right)$ such that

$$
\sup _{B_{R}} u \leq C\left(\inf _{B_{R}} u+R^{2-\frac{2}{q}}\|f\|_{L^{q}}\right)
$$

Note that this lemma is of Harnack type; see [15] for more information on this type of inequalities. The next theorem is similar to [14, Theorem 2.3].

Theorem 2.4. Let (D) hold and $R \leq R_{0}$ such that $B_{2 R} \subset \Omega$. Suppose $u\left(r, x_{n}\right)$ is a positive weak solution of the inequality

$$
u^{p}-M|\nabla u|^{\tau}+\frac{n-2}{r} u_{r} \leq-\left(u_{r r}+u_{x_{n} x_{n}}\right) \leq c_{0} u^{p}+M|\nabla u|^{\tau}+\frac{n-2}{r} u_{r}+\lambda
$$

where $p>1,0<\tau<\frac{2 p}{p+1}, \lambda>0$. Then there exists a constant $C=C\left(p, \tau, R_{0}, M\right)$ such that

$$
\sup _{B_{R}} u \leq C\left(\inf _{B_{R}} u+\lambda R^{2}\right)
$$

Proof. From 2.4, we obtain

$$
\left|u_{r r}+u_{x_{n} x_{n}}\right| \leq c_{0} u^{p}+M|\nabla u|^{\tau}+\frac{n-2}{r}|\nabla u|+\lambda .
$$

Take $f=\lambda, c=M|\nabla u|^{\tau-1}+\frac{n-2}{r}$ and $d=c_{0} u^{p-1}$. To prove this theorem, we only need to verify that

$$
c(x) \in L^{q^{\prime}}\left(B_{2 R}\right), \quad d \in L^{q}\left(B_{2 R}\right)
$$

Note that $\frac{n-2}{r}$ obviously belongs to $L^{q^{\prime}}\left(B_{2 R}\right)$, so we only need to prove $M|\nabla u|^{\tau-1} \in$ $L^{q^{\prime}}\left(B_{2 R}\right)$. By lemma 2.1, we have

$$
\left\|M|\nabla u|^{\tau-1}\right\|_{L^{q^{\prime}}}=M\left(\int_{B_{(2 R)}}|\nabla u|^{\mu}\right)^{1 / q^{\prime}} \leq C R^{\frac{2-(p+1) \mu /(p-1)}{q^{\prime}}}
$$

where $\mu=q^{\prime}(\tau-1)$ should satisfy $q^{\prime}(\tau-1)<\frac{2 p}{p+1}$ for some $q^{\prime}>2$. Since $\tau<\frac{2 p}{p+1}$ and $q^{\prime}>2$ can be close enough to 2 , so we just need to verify

$$
2\left(\frac{2 p}{p+1}-1\right)<\frac{2 p}{p+1}
$$

The above inequality is obvious, that is to say, $c(x) \in L^{q^{\prime}}\left(B_{2 R}\right)$.
For $d=c_{0} u^{p-1}$, by lemma 2.1 we have

$$
\|d\|_{L^{q}\left(B_{2 R}\right)}=c_{0}\left(\int_{B_{(2 R)}} u^{\gamma}\right)^{1 / q} \leq C R^{(2-2 q) / q}
$$

where $\gamma=(p-1) q$ should satisfy $(p-1) q<p$. By choosing $q>1$ close enough to 1 , we can get $(p-1) q<p$, that is, $d \in L^{q}\left(B_{2 R}\right)$. The proof is complete.

For completeness, we sketch the proof of Theorem 2.1 which is similar as the proof of [14, Proposition 3.3].
Proof of Theorem 2.1. Suppose, by contradiction, that there exist $\lambda_{n}<\lambda_{0}, u_{n}>0$ such that u_{n} is solution of (2.1) with λ substituted by λ_{n} and $\max _{\Omega} u_{n} \rightarrow \infty$. Let z_{n} be a point in Ω such that $u_{n}\left(z_{n}\right)=\max _{\Omega} u_{n} \triangleq S_{n}$. Denote $\delta_{n}=\operatorname{dist}\left(z_{n}, \partial \Omega\right)$. In order to prove there exists a $y_{0} \in \Omega$ such that $u_{n}\left(y_{0}\right) \rightarrow \infty$, we proceed in three steps:

Step 1: There exists $c>0$ such that $c<\delta_{n} S_{n}^{(p-1) / 2}$. Define $w(x)=S_{n}^{-1} u_{n}(y)$, where $y=M_{n} x+z_{n}, M_{n}=S_{n}^{(1-p) / 2}$. By easy computation and condition (F2), we obtain

$$
\begin{aligned}
-\Delta w_{n}(x) & =S_{n}^{-1} M_{n}^{2}\left(H\left(M_{n} x+z_{n}, S_{n} w_{n}(x), S_{n} M_{n}^{-1} \nabla w_{n}(x)\right)+\lambda_{n}\right) \\
& \leq c_{0} w_{n}^{p}+M S_{n}^{-p} S_{n}^{\tau \frac{p+1}{2}}\left|\nabla w_{n}\right|^{\tau}+\frac{n-2}{\operatorname{dist}(0, \partial \Omega)}\left|\nabla w_{n}\right|+\lambda_{n} S_{n}^{-p}
\end{aligned}
$$

Notice that $M S_{n}^{-p} S_{n}^{\tau \frac{p+1}{2}}$ and $\lambda_{n} S_{n}^{-p}$ tend to zero respectively as n tends to infinity, so

$$
-\Delta w_{n}(x) \leq c_{0} w_{n}^{p}+\left|\nabla w_{n}\right|^{\tau}+\frac{n-2}{\operatorname{dist}(0, \partial \Omega)}\left|\nabla w_{n}\right|+1
$$

By the regularity result in [12], there exists a constant C independent of n such that $\sup _{\Omega} w_{n} \leq C$. Let $y_{n} \in \partial \Omega$ such that $d\left(z_{n}, y_{n}\right)=\delta_{n}$; then, by the mean value theorem, we have

$$
1=w_{n}(0)=w_{n}(0)-w_{n}\left(M_{n}^{-1}\left(y_{n}-z_{n}\right)\right) \leq \sup _{\Omega} w_{n} M_{n}^{-1} \delta_{n} \leq C M_{n}^{-1} \delta_{n}
$$

Thus, the first step is complete.
Step 2: There exists $\gamma>0$ such that

$$
\int_{B\left(z_{n}, \delta_{n} / 2\right)}\left|u_{n}\right|^{\gamma} \rightarrow \infty .
$$

By Theorem 2.4 we obtain

$$
S_{n}=\max _{B\left(z_{n}, \delta_{n} / 2\right)} u_{n} \leq C\left(\min _{B\left(z_{n}, \delta_{n} / 2\right)} u_{n}+\lambda_{n} \frac{\delta_{n}^{2}}{4}\right)
$$

Since λ_{n} and δ_{n} are bounded, we obtain that $\min _{B\left(z_{n}, \delta_{n} / 2\right)} u_{n} \geq c S_{n}$ for some $c>0$. So

$$
\int_{B\left(z_{n}, \delta_{n} / 2\right)}\left|u_{n}\right|^{\gamma} \geq c S_{n}^{\gamma} \delta_{n}^{2} \geq c S_{n}^{\gamma} S_{n}^{1-p}
$$

We can choose a $\gamma>p-1$ such that $c S_{n}^{\gamma} S_{n}^{1-p} \rightarrow+\infty$. The proof of step 2 is complete.
Step 3: There exists a $y_{0} \in \Omega$ such that $u_{n}\left(y_{0}\right) \rightarrow \infty$. Notice that $\partial \Omega$ is C^{2} and compact boundary, so we can find $\varepsilon>0$ independent of n and $y_{n} \in \Omega$ such that:

- $d\left(y_{n}, \partial \Omega\right)=2 \varepsilon$, for all $n \in \mathbb{N}$.
- $B\left(z_{n}, \frac{\delta_{n}}{2}\right) \subset B\left(y_{n}, 2 \varepsilon\right)$, for all $n \in \mathbb{N}$.

By the weak Harnack inequality in [16] and step 2, we conclude that

$$
\min _{B\left(y_{n}, \varepsilon\right)} u_{n} \geq c\left(\int_{B\left(y_{n}, 2 \varepsilon\right)}\left|u_{n}\right|^{\gamma}\right)^{1 / \gamma} \rightarrow+\infty
$$

Taking a subsequence $\left\{\tilde{y}_{n}\right\} \subset\left\{y_{n}\right\}$ such that $\tilde{y}_{n} \rightarrow y_{0} \in \Omega$. For n large enough, we have $y_{0} \in B\left(\tilde{y}_{n}, \varepsilon\right)$ and $u_{n}\left(y_{0}\right) \rightarrow \infty$, which contradicts with Theorem 2.4. Thus we obtain a priori estimate of solutions.

3. Existence of positive classical $C^{2, \beta}$-solutions

Theorem 3.1. Assume (D1), (F1)-(F3) hold. Then 1.1 admits an ($n-1$)-radial symmetric positive classical solution $u\left(r, x_{n}\right) \in C^{2, \beta}(\Omega) \cap C^{0}(\bar{\Omega})$.

The following lemma mentioned in [10] will be used in our proof.
Lemma 3.2 ([10, Theorem 12.4]). Let u be a bounded $C^{2}(\Omega)$ solution of

$$
L u=a(x, y) u_{x x}+2 b(x, y) u_{x y}+c(x, y) u_{y y}=f(x, y)
$$

where L is uniformly elliptic in a domain $\Omega \subset \mathbb{R}^{2}$, satisfying

$$
\begin{gathered}
\lambda\left(\xi^{2}+\eta^{2}\right) \leq a \xi^{2}+2 b \xi \eta+c \eta^{2} \leq \Lambda\left(\xi^{2}+\eta^{2}\right), \quad \forall(\xi, \eta) \in \mathbb{R}^{2} \\
\frac{\Lambda}{\lambda} \leq \gamma
\end{gathered}
$$

for some constant $\gamma \geq 1$. Then for some $\alpha=\alpha(\gamma)>0$, we have

$$
[u]_{1, \alpha}^{*}=\sup _{z_{1}, z_{2} \in \Omega} d_{1,2}^{1+\alpha} \frac{\left|D u\left(z_{2}\right)-D u\left(z_{1}\right)\right|}{\left|z_{2}-z_{1}\right|^{\alpha}} \leq C\left(|u|_{0}+\left|\frac{f}{\lambda}\right|_{0}^{(2)}\right)
$$

where $C=C(\gamma),\left|\frac{f}{\lambda}\right|_{0}^{(2)}=\sup _{z \in \Omega} d_{z}^{2}\left|\frac{f}{\lambda}\right|, d_{z}=\operatorname{dist}(z, \partial \Omega)$ and $d_{1,2}=\min \left\{d_{z_{1}}, d_{z_{2}}\right\}$.
Since the conditions imposed on f in Theorem 3.1 are different from those in [10. Theorem 12.5], it is necessary to give the proof, although similar to that of [10, Theorem 12.5].
Proof of Theorem 3.1. We now proceed by truncation of H to reduce (1.4) to the case of bounded H. Namely, let ψ_{N} denote the function given by

$$
\psi_{N}(t)= \begin{cases}t, & |t| \leq N \\ N \operatorname{sign} t, & |t|>N\end{cases}
$$

and define the truncation of H by

$$
H_{N}\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right)=H\left(r, x_{n}, \psi_{N}(u), \psi_{N}\left(u_{r}\right), \psi_{N}\left(u_{x_{n}}\right)\right) .
$$

From (F2), we have $\left|H_{N}\right| \leq c_{0} N^{p}+M N^{\tau}+\frac{n-2}{\operatorname{dist}(0, \partial \Omega)} N=C_{0}$. Consider now the family of problems

$$
\begin{gather*}
-\left(u_{r r}+u_{x_{n} x_{n}}\right)=H_{N}\left(r, x_{n}, u, u_{r}, u_{x_{n}}\right) \quad \text { in } \Omega, \\
u(x)=0, \quad \text { on } \partial \Omega . \tag{3.1}
\end{gather*}
$$

By Theorem 2.1 any solution u of (3.1) is subject to the bound \tilde{M}, independent of N,

$$
\begin{equation*}
\sup _{\Omega}|u| \leq \tilde{M} \tag{3.2}
\end{equation*}
$$

Now we make the following observation. Let v be any bounded function with locally Hölder continuous first derivatives in Ω and $\tilde{H}_{N}=H_{N}\left(r, x_{n}, v, v_{r}, v_{x_{n}}\right)$. Then the following linear problem

$$
\begin{gather*}
-\left(u_{r r}+u_{x_{n} x_{n}}\right)=\tilde{H}_{N} \quad \text { in } \Omega \tag{3.3}\\
u(x)=0, \quad \text { on } \partial \Omega
\end{gather*}
$$

has a unique solution $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$. We observe from classical priori estimates that

$$
|u|_{0}=\sup _{\Omega}|u| \leq M_{0} .
$$

Furthermore, if $\sup _{\Omega}|v| \leq M_{0}$, from lemma 3.1, we have

$$
|u|_{1, \alpha}^{*} \leq C\left(|u|_{0}+C_{0}(\operatorname{diam}(\Omega))^{2}\right) \leq C\left(M_{0}+C_{0}(\operatorname{diam}(\Omega))^{2}\right)=K
$$

where C, α depend on M_{0}. So K depends on M_{0}, N and Ω.
Next, define the Banach space

$$
C_{*}^{1, \alpha}(\Omega)=\left\{u \in C^{1, \alpha}(\Omega) \|\left. u\right|_{1, \alpha ; \Omega} ^{*}<+\infty\right\}
$$

and define a mapping T on the set

$$
\mathbb{S}=\left\{v \in C_{*}^{1, \alpha}:|v|_{1, \alpha}^{*} \leq K,|v|_{0} \leq M_{0}\right\}
$$

So $u=T v$ is the unique solution of the linear Dirichlet problem 3.3). It is easy to show that \mathbb{S} is convex and closed in the Banach space, and T is continuous in $C_{*}^{1}=\left\{u \in C^{1}(\Omega) \|\left. u\right|_{1 ; \Omega} ^{*}<+\infty\right.$ and $T \mathbb{S}$ is precompact. So we may conclude from the Schauder fixed point theorem and Schauder estimates that T has a fixed point, $u_{N}=T u_{N}, u_{N} \in C_{*}^{1, \alpha}(\Omega) \cap C^{2, \beta}(\Omega) \cap C^{o}(\bar{\Omega})$. This will provide a solution of the problem (3.1).

Furthermore, from lemma 3.1 we infer the estimate

$$
\left[u_{N}\right]_{1, \alpha}^{*} \leq C\left(|u|_{0}+\left|G_{H N}\right|_{0}^{(2)}\right)
$$

By (F2) and 3.2, we obtain

$$
\left[u_{N}\right]_{1, \alpha}^{*} \leq C\left(1+\left[u_{N}\right]_{1}^{*}\right),
$$

where $C=C\left(\tilde{M}, M, c_{0}, p, \tau, \operatorname{diam}(\Omega)\right)$. Furthermore, the interpolation inequality yields the uniform bound which is independent of N,

$$
\left[u_{N}\right]_{1, \alpha}^{*} \leq C=C\left(\tilde{M}, M, c_{0}, p, \tau, \operatorname{diam}(\Omega)\right)
$$

By similar arguments as in the proof of [10, Theorem 12.5], it is easy to show there is a subsequence $\left\{u_{n}\right\}$ of $\left\{u_{N}\right\}$ which converges to a solution u of (1.4), and u also satisfies the boundary condition $u=0$ on $\partial \Omega$. Since f is nonnegative, by comparison principles, u is positive. This completes the proof.

Remark 3.3. If $\Omega=\Omega_{1} \times \Omega_{2} \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}, \Omega_{1}$ and Ω_{2} are symmetric and $0 \notin \bar{\Omega}, f(x, u,|\nabla u|)=f\left(r_{1}, r_{2}, u,|\nabla u|\right)$, where $r_{1}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}}, r_{2}=$ $\sqrt{x_{k+1}^{2}+x_{k+2}^{2}+\cdots+x_{n}^{2}}$. Under the conditions of (F2) and (F3), 1.1) admits an $(n-1)$-radial symmetric positive classical solution $u\left(r_{1}, r_{2}\right) \in C^{2, \beta}(\Omega) \cap C^{0}(\bar{\Omega})$. The proof is left to readers.

Acknowledgments. This work is partly supported by the National Natural Science Foundation of China (10971088) and Natural Science Foundation of Chizhou College (2013ZRZ002).

References

[1] B. Abdellaoui, A. Dall Aglio, I. Peral; Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 (2006), 21-62.
[2] Claudianor O. Alves, Paulo C. Carriao, Luiz F. O. Faria; Existence of solutions to singular elliptic equations with convection terms via the Galerkin method, Electronic Journal of Differential Equations Vol. 2010 (2010), No. 12, 1-12.
[3] H. Amann, M. G. Crandall; On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J 27 (1978), 779-790.
[4] Giovanni Molica Bisci, Vicentiu Rădulescu; Multiple symmetric solutions for a Neumann problem with lack of compactness, C. R. Acad. Sci. Paris, Ser. I 351 (2013) 37-42.
[5] Wenjing Chen, Jianfu Yang; Existence of positive solutions for quasilinear elliptic equation on Riemannian manifolds, Differential Equations and Applications Vol 2 (2010), 569-574.
[6] D. G. de Figueiredo, M. Girardi, M. Matzeu; Semilinear ellptic equations with dependence on the gradient via mountain-pass techniques, Differential and Integral Equations 17 (2004), 119-126.
[7] D. G. de Figueiredo, J. Sánchez, P. Ubilla; Quasilinear equations with dependence on the gradient, Nonlinear Analysis 71 (2009), 4862-4868.
[8] M. Ghergu, V. Rădulescu; Bifurcation for a class of singular elliptic problems with quadratic convection term, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 831-836.
[9] M. Ghergu, V.Rădulescu; On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. 311 (2005) 635-646.
[10] D.Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Oder, second ed. Springer-Verlag, Berlin, 1983.
[11] M. Girardi, M. Matzeu; Positive and negative solutions of a quasilinear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Analysis T.M.A. 59 (2004), 199-210.
[12] G. M. Lieberman; Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219.
[13] Pohozaev S; On equations of the type $\Delta u=f(x, u, D u)$, Mat. Sb. 113 (1980), 324-338.
[14] D. Ruiz; A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations 199 (2004), 96-114.
[15] J. Serrin, H. Zou; Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002) 79-142.
[16] N. Trudinger; On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967) 721-747.
[17] X. Wang, Y. Deng; Existence of multiple solutions to nonlinear elliptic equations in nondivergence form, J. Math. Anal. and Appl. 189 (1995), 617-630.
[18] J. B. M. Xavier; Some existence theorems for equations of the form $-\Delta u=f(x, u, D u)$, Nonlinear Analysis T.M.A. 15 (1990), 59-67.
[19] Z. Yan; A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x, u, D u)$, Nonlinear Analysis T.M.A. 24 (1995), 1413-1416.
[20] Henghui Zou; A priori estimates and existence for quasilinear elliptic equations Calc. Var. Partial Differential Equations 33 (2008), no. 4, 417-437.

Yong Zhang
Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China
Department of Mathematics, Chizhou College, Chizhou, Anhui, 247000, China
E-mail address: zhangy12@lzu.edu.cn
Qiang Xu
Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China
E-mail address: xuqiang09@lzu.edu.cn
Peihao Zhao
Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China
E-mail address: zhaoph@lzu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B09.
 Key words and phrases. Elliptic equations; symmetric; positive solution; a priori estimates; fixed point theorem.
 (C) 2013 Texas State University - San Marcos.

 Submitted June 14, 2013. Published Spetember 16, 2013.

