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PERIODIC SOLUTIONS FOR FOURTH-ORDER p-LAPLACIAN
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

SIGN-VARIABLE COEFFICIENT

JIAYING LIU, WENBIN LIU, BINGZHUO LIU

Abstract. Using the theory of coincidence degree, we show the existence

of periodic solutions to the fourth-order p-Laplacian differential equations of

Liénard-type

φp(x′′))′′ + f(x(t))x′(t) + α(t)g1(x(t− τ1(t, x(t))))

+ β(t)g2(x(t− τ1(t, x(t)))) = p(t).

The rate of growth of g1(u) with respect to the variable u is allowed to be

greater than p− 1, and the coefficient β(t) is allowed to change sign.

1. Introduction

The study of the fourth-order differential equations is of great practical signif-
icance, whose classical application is to describe the equilibrium of elastic beams.
The study on periodic oscillations of the fourth-order differential equations has
gained more and more attention by many researchers, and some profound results
have been obtained (see [3, 7, 8, 10]). However, the results of periodic solutions to
a fourth order p-Laplacian delay differential equation are relatively rare.

In this article, we consider the existence of periodic solutions to the fourth-order
p-Laplacian differential equations with multiple deviating arguments:

φp(x′′))′′ + f(x(t))x′(t) + α(t)g1

(
x(t− τ1(t, x(t)))

)
+ β(t)g2

(
x(t− τ2(t, x(t)))

)
= p(t)

(1.1)

where p > 1, φp(s) = |s|p−2s (s 6= 0), φp(0) = 0, α(t), β(t), p(t) ∈ C(R,R),∫ T
0
p(t)dt = 0,

∫ T
0
β(t)dt 6= 0, α(t) ≥ 0 (≤ 0) for t ∈ R,

∫ T
0
α(t)dt > 0 (< 0),

α(t+T ) = α(t), β(t+T ) = β(t), p(t+T ) = p(t) τi ∈ C(R2,R), τi(t+T, x) = τi(t, x),
gi ∈ C(R,R), i = 1, 2, T > 0.

In recent years, there have been a number of results on the existence of periodic
solutions of the second order p-Laplacian differential equations; see [1, 2, 5, 6, 9, 11]
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and the references therein. Cheung and Ren [9] studied the existence of periodic
solutions for the p-Laplacian delay equation

φp(x′))′ + f(x′(t)) + βg(x(t− τ(t))) = e(t)

where β > 0 is a constant. Gao and Lu [2] studied the periodic solutions for the
p-Laplacian Rayleigh differential equation with a delay,

φp(x′))′ + f(x′(t)) + β(t)g(x(t− τ(t))) = e(t) .

In 2007, Cheung and Ren [1] discussed the solvability of periodic problems for the
Lienard-type p-Laplacian delay differential equation

φp(x′))′ + f(x(t))x′(t) + g(t, x(t− τ(t))) = e(t) ,

under the assumption

lim
|x|→∞

|g(x)|
|x|p−1

= r ≥ 0.

Motivated by the above works, we will present the existence of periodic solutions for
(1.1) by using Mawhin’s continuation theorem. Our main results are different from
those results in the literature. For instance, in our study we allow the growth rate
of g1(u), with respect to u, to be greater than p− 1. Also we allow the coefficient
β(t) to change sign R.

2. Preliminaries

For simplicity, we use the following symbols in this article

CT = {x ∈ C(R,R) : x(t+ T ) = x(t)}, |x|∞ = max
t∈[0,T ]

|x(t)|,

C1
T = {x ∈ C1(R,R) : x(t+ T ) = x(t)}, ‖x‖ = max{|x|∞, |x′|∞},

|x|p =
(∫ T

0

|x(t)|pdt
)1/p

, Dp =

{
1, 0 < p ≤ 1,
2p−1, p > 1.

To state our main results, we introduce several technical lemmas.

Lemma 2.1 ([6]). Assume that Ω is an open bounded set in C1
T such that the

following three conditions hold:

(1) For each λ ∈ (0, 1), the equation

(φp(x′′))′′ = λf(t, x(t), x(t− µ(t)), x′(t)), (2.1)

has no T -periodic solution on ∂Ω, where f(t, x, y, z) ∈ C(R4,R) and f(t+
T, ·, ·, ·)) = f(t, ·, ·, ·)).

(2) The equation

F (a) =
1

2π

∫ T

0

f(t, a, a, 0)dt = 0,

has no solution on ∂Ω ∩ R.
(3) The Brouwer degree satisfies degB(F,Ω ∩ R, 0) 6= 0.

Then (2.1) has a T -periodic solution in Ω̄ when λ = 1.
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Lemma 2.2 ([11]). If ω(t) ∈ c1(R,R) and ω(0) = ω(T ) = 0, then there holds∫ T

0

|ω(t)|pdt ≤
( T
πp

)p ∫ T

0

|ω′(t)|pdt,

where

πp =
∫ (p−1)/p

0

ds

(1− (p− 1)−1sp)1/p
=

2π(p− 1)1/p

p sin(π/p)
.

Lemma 2.3 ([4]). Let a, b, p > 0, then there holds

(a+ b)p ≤ Dp(ap + bp).

For the sake of convenience, we list the following assumptions which will be used
frequently in Section 3.

(H1) For i = 1, 2, there are positive constants ri, r∗i ,mi with m2 ≤ p − 1 and
m1 > p− 1 such that for |u| > 1 there hold

(i) r1|u|m1 ≤ |g1(u)| ≤ r2|u|m1 and r∗1 |u|m2 ≤ |g2(u)| ≤ r∗2 |u|m2 .
(ii) ugi(u) > 0.

(H2) A = D 1
m1

( r
∗
2 β̄
ᾱr1

)1/m1 < 1.
(H3) There are constants γ, r3 > 0 and k0 ∈ Z such that m1 = r3 + p− 1 and

0 ≤ τ1(t, x(t))− k0T ≤ max{ γq

1 + |x|r3q∞
, T}, ∀t ∈ [0, T ], x(t) ∈ C[0, T ].

where q > 1 : 1
p + 1

q = 1

3. Main Results

Theorem 3.1. Suppose that (H1)–(H3). Then (1.1) has at least one T -periodic
solution if one of the following two conditions holds

(1) m2 = p− 1, ∆1 + ∆2 < 1,
(2) m2 < p− 1, ∆1 < 1,

where

∆1 =
Dp−1αr2T

p−1
q γ

2p−1(1−A)p−1

( T
πp

)p
, ∆2 =

r∗2βDm2+1T
m2+1

q

2m2+1(1−A)m2+1

( T
πp

)m2+1
.

Proof. Without loss of generality, we assume α(t) ≥ 0, t ∈ R,
∫ T

0
α(t)dt > 0, and∫ T

0
β(t)dt > 0. Consider the homotopy equation

φp(x′′))′′ + λf(x(t))x′(t) + λα(t)g1(x(t− τ1(t, x(t))))

+ λβ(t)g2(x(t− τ2(t, x(t)))) = λp(t).
(3.1)

Suppose that x(t) is an arbitrary T -periodic solution of (3.1). Integrating both
sides of equation (3.1) on [0, T ] we obtain∫ T

0

α(t)g1(x(t− τ1(t, x(t))))dt = −
∫ T

0

β(t)g2(x(t− τ2(t, x(t))))dt.

Applying the mean value theorem, then there exists a constant ξ ∈ [0, T ] such that

g1(x(ξ − τ1(ξ, x(ξ))))
∫ T

0

α(t)dt = −
∫ T

0

β(t)g2(x(t− τ2(t, x(t))))dt. (3.2)
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Now, we claim that the inequality

|x(ξ − τ1(ξ, x(ξ)))| ≤ A|x|∞ +B (3.3)

holds, where

A = D 1
m1

(
r∗2 β̄

ᾱr1
)1/m1 , B = D 1

m1
(
Mg2 β̄

ᾱr1
)1/m1 + 1,

ᾱ =
∫ T

0

α(t)dt, β̄ =
∫ T

0

|β(t)|dt, Mg2 = max
|u|≤1

|g2(u)|.

In fact, if |x(ξ−τ1(ξ, x(ξ)))| ≤ 1, then inequality (3.3) holds. If |x(ξ−τ1(ξ, x(ξ)))| >
1, we define

E1 = {t ∈ [0, T ] : |x(t− τ1(t, x(t)))| ≤ 1},
E2 = {t ∈ [0, T ] : |x(t− τ1(t, x(t)))| > 1}.

It follows from (H1)(i) that

ᾱr1|x(ξ − τ1(ξ, x(ξ)))|m1 ≤
∫ T

0

β(t)g2(x(t− τ2(t, x(t))))dt

=
∫
E1

+
∫
E2

β(t)g2(x(t− τ2(t, x(t))))dt

≤ r∗2 β̄|x|m2
∞ +Mg2 β̄.

This implies that

|x(ξ − τ1(ξ, x(ξ)))| ≤ [
1
ᾱr1

(r∗2 β̄|x|m2
∞ +Mg2 β̄)]1/m1

≤ D 1
m1

[(
r∗2 β̄

ᾱr1
)1/m1 |x|

m2
m1∞ + (

Mg2 β̄

ᾱr1
)1/m1 ]

≤ D 1
m1

(
r∗2 β̄

ᾱr1
)1/m1 |x|∞ +D 1

m1
(
Mg2 β̄

ᾱr1
)1/m1 .

Thus, it can be easily seen that (3.3) holds. Let

ξ − τ1(ξ, x(ξ)) = kT + ξ̄, (3.4)

where k is an integer and ξ̄ ∈ [0, T ], thus we have

x(ξ − τ1(ξ, x(ξ))) = x(kT + ξ̄) = x(ξ̄).

Noting that

|x(t)| ≤ |x(ξ̄)|+ 1
2

∫ T

0

|x′(s)|ds,

we have

|x|∞ = max
t∈[0,T ]

|x(t)| ≤ A|x|∞ +B +
1
2

∫ T

0

|x′(s)|ds,

which yields

|x|∞ ≤
∫ T

0
|x′(s)|ds

2(1−A)
+

B

1−A
. (3.5)
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On the other hand, multiplying both sides of (3.1) by x(t), and integrating on
[0, T ], we obtain∫ T

0

|x′′(t)|pdt = −λ
∫ T

0

f(x(t))x′(t)x(t)dt− λ
∫ T

0

α(t)g1(x(t− τ1(t, x(t))))x(t)dt

− λ
∫ T

0

β(t)g2(x(t− τ2(t, x(t))))x(t)dt+ λ

∫ T

0

p(t)x(t)dt

≤ λ
∫ T

0

α(t)|g1(x(t− τ1(t, x(t))))| |x(t)− x(t− τ1(t, x(t)))|dt

− λ
∫ T

0

α(t)g1(x(t− τ1(t, x(t))))x(t− τ1(t, x(t)))dt

+
∫ T

0

|β(t)g2(x(t− τ2(t, x(t))))x(t)|dt+ p̄|x|∞,

(3.6)
where p̄ =

∫ T
0
|p(t)|dt.

By the condition (H1)(ii), we have

− λ
∫ T

0

α(t)g1(x(t− τ1(t, x(t))))x(t− τ1(t, x(t)))dt

= −λ
∫
E1

−λ
∫
E2

α(t)g1(x(t− τ1(t, x(t))))x(t− τ1(t, x(t)))dt

≤
∫
E1

α(t)|g1(x(t− τ1(t, x(t))))x(t− τ1(t, x(t)))|dt

≤ αMg1 ,

(3.7)

where Mg1 = max|u|≤1 |g1(u)|. Using the condition (H1) again, we obtain∫ T

0

α(t)|g1(x(t− τ1(t, x(t))))||x(t)− x(t− τ1(t, x(t)))|dt

=
∫
E1

+
∫
E2

α(t)|g1(x(t− τ1(t, x(t))))||x(t)− x(t− τ1(t, x(t)))|dt

≤ αMg1 + αMg1 |x|∞ + αr2 max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)))| × |x|m1
∞ ,

and ∫ T

0

|β(t)||g2(x(t− τ2(t, x(t))))x(t)|dt ≤ βr∗2 |x|m2+1
∞ + βMg2 |x|∞,

where Mg2 = max|u|≤1 |g2(u)| and β =
∫ T

0
|β(t)|dt. So (3.6) yields∫ T

0

|x′′(t)|pdt ≤ αr2 max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)))| × |x|m1
∞ + βr∗2 |x|m2+1

∞

+ (αMg1 + βMg2 + p)|x|∞ + 2αMg1

= αr2 max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)))| × |x|m1
∞ + βr∗2 |x|m2+1

∞

+ θ|x|∞ +K,

(3.8)

where θ = αMg1 + βMg2 + p and K = 2αMg1 .
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Since x(0) = x(T ), there exists a constant ζ ∈ [0, T ] such that x′(ζ) = 0. Let
ω(t) = x′(t+ ζ), then ω(0) = ω(T ) = 0. By Lemma 2.2, we have∫ T

0

|x′(t)|pdt ≤
( T
πp

)p(∫ T

0

|x′′(t)|pdt
)
.

From (H3) and Hölder’s inequality, we have

max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)))|

= max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)) + k0T )|

= max
t∈[0,T ]

|
∫ t

t−τ1(t,x(t))+k0T

x′(s)ds|

≤ max
t∈[0,T ]

|τ1(t, x(t))− k0T |1/q
(∫ t

t−τ1(t,x(t))+k0T

|x′(s)|pds
)1/p

≤ max
t∈[0,T ]

|τ1(t, x(t))− k0T |1/q∞
(∫ T

0

|x′(s)|pds
)1/p

.

(3.9)

Moreover, from (3.5) and by Hölder’s inequality, we have

r∗2β|x|m2+1
∞ ≤ r∗2β[

∫ T
0
|x′(s)|ds

2(1−A)
+

B

1−A
]m2+1

≤ r∗2βDm2+1

2m2+1(1−A)m2+1

(∫ T

0

|x′(s)|ds
)m2+1

+
r∗2βDm2+1B

m2+1

(1−A)m2+1

≤ r∗2βDm2+1T
m2+1

q

2m2+1(1−A)m2+1

( T
πp

)m2+1
(∫ T

0

|x′′(s)|pds
)m2+1

p

+
r∗2βDm2+1B

m2+1

(1−A)m2+1
,

(3.10)
and

θ|x|∞ ≤ θ
[∫ T

0
|x′(s)|ds

2(1−A)
+

B

1−A
]

≤ θT 1/q

2(1−A)
( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+
θB

1−A
.

(3.11)

By of m1 = r3 + p− 1 and the condition (H3), and combining (3.9)-(3.11), we have∫ T

0

|x′′(t)|pdt

≤ αr2 max
t∈[0,T ]

|x(t)− x(t− τ1(t, x(t)))||x|r3∞|x|p−1
∞ + βr∗2 |x|m2+1

∞ + θ|x|∞ +K

≤ αr2γ(
∫ T

0

|x′(s)|pds)1/p[

∫ T
0
|x′(s)|ds

2(1−A)
+

B

1−A
]p−1 + βr∗2 |x|m2+1

∞ + θ|x|∞ +K

≤ αr2γ(
∫ T

0

|x′(s)|pds)1/p
Dp−1

( ∫ T
0
|x′(s)|ds

)p−1

2p−1(1−A)p−1

+ αr2γDp−1

(∫ T

0

|x′(s)|pds
)1/p Bp−1

(1−A)p−1
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+
θT 1/q

2(1−A)
( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+
r∗2βDm2+1T

m2+1
q

2m2+1(1−A)m2+1

( T
πp

)m2+1(
∫ T

0

|x′′(s)|pds)
m2+1

p

+
r∗2βDm2+1B

m2+1

(1−A)m2+1
+

Bθ

1−A
+K

≤ Dp−1αr2T
p−1

q γ

2p−1(1−A)p−1

(∫ T

0

|x′(s)|pds
)

+
Dp−1αr2B

p−1γ

(1−A)p−1

(∫ T

0

|x′(s)|pds
)1/p

+
r∗2βDm2+1T

m2+1
q

2m2+1(1−A)m2+1

( T
πp

)m2+1(
∫ T

0

|x′′(s)|pds)
m2+1

p

+
θT 1/q

2(1−A)
( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+ C

≤ Dp−1αr2T
p−1

q γ

2p−1(1−A)p−1

( T
πp

)p(∫ T

0

|x′′(s)|pds
)

+
Dp−1αr2B

p−1γ

(1−A)p−1

( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+
r∗2βDm2+1T

m2+1
q

2m2+1(1−A)m2+1

( T
πp

)m2+1
(∫ T

0

|x′′(s)|pds
)m2+1

p

+
θT 1/q

2(1−A)
( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+ C

= ∆1

(∫ T

0

|x′′(s)|pds
)

+ ∆2

(∫ T

0

|x′′(s)|pds
)m2+1

p

+
Dp−1αr2B

p−1γ

(1−A)p−1

( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+
θT 1/q

2(1−A)
( T
πp

)( ∫ T

0

|x′′(s)|pds
)1/p

+ C, (3.12)

where

C =
r∗2βDm2+1B

m2+1

(1−A)m2+1
+

Bθ

1−A
+K.

If m2 = p− 1 and ∆1 + ∆2 < 1, then from (3.12) it follows that
∫ T

0
|x′′(t)|pdt is

bounded. If m2 < p − 1 and ∆1 < 1, then from m2+1
p < 1 and (3.12) we see that∫ T

0
|x′′(t)|pdt is also bounded. Thus, there exists a constant M > 0 such that(∫ T

0

|x′′(t)|pdt
)1/p

≤M,

which shows that there exist positive numbers M0 and M1 such that

|x|∞ ≤M0, |x′|∞ ≤M1.

Let
Ω = {x(t) ∈ C1

T : ||x|| < ρ},
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where ρ > max{1,M0,M1}. Then the homotopy equation (3.1) has no T -periodic
solution on ∂Ω. In addition,

F (ρ) = − 1
T

[
∫ T

0

α(t)g1(ρ)dt+
∫ T

0

β(t)g2(ρ)dt−
∫ T

0

p(t)dt]

= − 1
T
g1(ρ)

∫ T

0

α(t)dt− 1
T
g2(ρ)

∫ T

0

β(t)dt.

It means that the second condition of Lemma 2.1 is satisfied, and F (ρ)F (−ρ) < 0
from (H1)(ii). Consequently, from Lemma 2.1 the equation (1.1) has at least one
T -periodic solution in Ω . �

Remark 3.2. If we replace the conditions α(t) > 0,
∫ T

0
β(t)dt > 0 with α(t) < 0,∫ T

0
β(t)dt < 0 or α(t) < 0,

∫ T
0
β(t)dt > 0 or α(t) > 0,

∫ T
0
β(t)dt < 0, we can obtain

the same conclusion as Theorem 3.1.

Remark 3.3. Condition (H1) can be replaced by

(H1’) For i = 1, 2, there are positive constants ri, r∗i ,mi, d with m2 ≤ p − 1 and
m1 > p− 1 such that

(i) r1|u|m1 ≤ |g1(u)| ≤ r2|u|m1 and r∗1 |u|m2 ≤ |g2(u)| ≤ r∗2 |u|m2 for all
|u| > d ≥ 1,

(ii) gi(u)(sgnu) > 0 for all |u| > d ≥ 1;

while the conclusion of Theorem 3.1 is still true.
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