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BOUNDEDNESS IN A CHEMOTAXIS SYSTEM WITH
CONSUMPTION OF CHEMOATTRACTANT AND

LOGISTIC SOURCE

LIANGCHEN WANG, SHAHAB UD-DIN KHAN, SALAH UD-DIN KHAN

Abstract. In this article, we consider a chemotaxis system with consumption

of chemoattractant and logistic source

ut = ∆u− χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded do-
main Ω ⊂ Rn, with non-negative initial data u0 and v0 satisfying (u0, v0) ∈
(W 1,θ(Ω))2 (for some θ > n). χ > 0 is a parameter referred to as chemosensi-
tivity and f(s) is assumed to generalize the logistic function

f(s) = as− bs2, s ≥ 0, with a > 0, b > 0.

It is proved that if ‖v0‖L∞(Ω) > 0 is sufficiently small then the corresponding
initial-boundary value problem possesses a unique global classical solution that

is uniformly bounded.

1. Introduction

This article considers the following chemotaxis system with consumption of
chemoattractant and logistic source

ut = ∆u− χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,
vt = ∆v − uv, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, and ∂/∂ν denotes
the derivative with respect to the outer normal of ∂Ω. The parameter χ > 0
is referred as chemosensitivity, and the function f ∈ C1([0,∞)) with f(0) = 0.
Moreover, we shall suppose that

f(u) ≤ au− bup for all u ≥ 0 (1.2)

with some a > 0, b > 0 and p > 1.
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Equations (1.1) is the well-known Keller-Segel model, and the origin of this
fundamental model was introduced by Keller and Segel [13] to describe the motion
of cells which are diffusing and moving towards the concentration gradient of a
chemical signal substance called chemoattractant, the latter being produced by the
cells themselves. We refer the reader to the paper [10] where a comprehensive
information of further examples illustrating the outstanding biological relevance of
chemotaxis can be found. In this paper, we consider a mathematical model for the
motion of cells which towards the higher concentration of oxygen that is consumed
by the cells, where u = u(x, t) denotes the density of the cells and v = v(x, t)
represents the concentration of the oxygen.

During the past four decades, the Keller-Segel models have become one of the
best-study models in mathematical biology the Keller-Segel models have been stud-
ied extensively by many authors. For example, Keller and Segel [13] proposed the
following classical chemotaxis model

ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0,

(1.3)

which has been investigated successfully up to now and the main issue of the inves-
tigation was the solutions of the model are bounded or blow-up. If n = 1, in [19],
it was shown all solutions of (1.3) are global in time and bounded; if n = 2, then
all solutions of (1.3) are global in time and bounded provided that ‖u0‖L1(Ω) < 4π
in [15], however, for almost every ‖u0‖L1(Ω) > 4π, then the corresponding solutions
of (1.3) blow up either in finite or infinite time in [11] and that some radially sym-
metric solutions blow up in finite time in [9, 24]; if n ≥ 3, Winkler [25] showed that
‖u0‖Ln/2+ε(Ω) and ‖∇v0‖Ln+ε(Ω) are small for all ε > 0, then the solution is global
in time and bounded, however, for any ‖u0‖L1(Ω) > 0, then the radially symmetric
solution of (1.3) blows up either in finite or infinite time (see also [24, 26, 5]).

Involving a source term of logistic type in chemotaxis system have been studied
[10, 28, 18, 23, 16, 14]. The following initial-boundary value chemotaxis model with
logistic source

ut = ∆u−∇ · (uχ(v)∇v) + f(u), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0.

(1.4)

If χ(v) is a constant, Winkler [28] studied proved that the solutions of problem (1.4)
are global and bounded provided that f(0) ≥ 0 as well as f(u) ≤ a− bu2 with some
a ≥ 0 and b is sufficiently large. If χ(v) ≤ χ0

(1+βv)δ
for all v ≥ 0 and some δ > 1,

χ0 > 0 and β > 0, the authors [14] shown that the model (1.4) with logistic source
f(u) satisfies (1.2) with p = 2 then solutions are global and bounded provided that
χ0 and a are sufficiently small, the authors [3] recent obtain the same result for all
positive values of χ0 and a, which improved the previous result.

The model (1.1) deals with the chemotaxis process where the signal is consumed
by the cells, rather than produced by the cells. In the absence of the logistic source
(i.e. f(u) ≡ 0) for problem (1.1), Tao [20] proved that the classical solution of
model (1.1) is uniformly bounded provided that ‖v0‖L∞(Ω) is sufficiently small. In
particular, if Ω ⊂ R3 is a bounded convex domains, Tao and Winkler [22] showed
that there exists T > 0 such that the problem has global weak solution which is
bounded and smooth in Ω×(T,+∞). It is the goal of this paper to prove that model
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(1.1) has global and bounded solutions provided that ‖v0‖L∞(Ω) > 0 is sufficiently
small (Theorem 3.3).

2. Preliminaries

We first state one result concerning local-in-time existence of a classical solution
to problem (1.1).

Theorem 2.1. Let the non-negative functions u0 and v0 satisfy (u0, v0) belong to
(W 1,θ(Ω))2, for some θ > n. Moreover, f(s) with s ≥ 0 is smooth and f(0) = 0.
Then problem (1.1) has a unique local-in-time non-negative classical solution

(u, v) ∈ (C([0, Tmax);W 1,θ(Ω)) ∩ C2,1(Ω× (0, Tmax)))2, (2.1)

where Tmax denotes the maximal existence time. If for every T < +∞ both u(·, t)
and v(·, t) are a priori bounded for all 0 < t < min{T, Tmax}; i.e.,

‖(u(·, t), v(·, t))‖L∞(Ω) ≤ C(T ) for all 0 < t < min{T, Tmax} (2.2)

with some constant C(T ) depending on T and ‖(u0, v0)‖W 1,θ(Ω) only. Then the
solution of (1.1) is globally defined and thus Tmax = +∞. Moreover, assume the
condition (1.2) is satisfied, then there exists a constant C0 > 0 such that u(x, t)
and v(x, t) satisfy

‖u(·, t)‖L1(Ω) ≤ C0, (2.3)

0 ≤ v ≤ ‖v0‖L∞(Ω) (2.4)

for all t ∈ (0, Tmax).

Proof. As in [4, 20, 7], let V = (u, v) ∈ R2. Then the initial-boundary value
problem (1.1) can be reformulated as

Vt = ∇ · (F (V )∇V ) +H(V )
∂V

∂ν
= 0, x ∈ ∂Ω, t > 0,

V (x, 0) = (u0(x), v0(x)), x ∈ Ω,

where

F (V ) =
(

1 −χu
0 1

)
, H(V ) =

(
f(u)
−uv

)
.

Then applying [2, Theorems 14.4, 14.6, 15.5], statements (2.1) and (2.2) can be
proved. Since the initial data u0 ≥ 0, v0 ≥ 0 and f(0) = 0, the maximum principle
ensures that both u and v are non-negative.

By the maximum principle we have (2.4). Now, we prove (2.3). Integrating the
first equation in (1.1) and using (1.2), we obtain

d

dt

∫
Ω

udx =
∫

Ω

f(u)dx ≤
∫

Ω

au− bupdx. (2.5)

By Young’s inequality, since b > 0 and p > 1, we obtain

(a+ 1)
∫

Ω

u dx =
∫

Ω

b−1/p(a+ 1)b1/pu dx ≤
∫

Ω

bupdx+ (a+ 1)
p
p−1 b

1
1−p |Ω|. (2.6)

Combining (2.5) and (2.6), we conclude
d

dt

∫
Ω

udx+
∫

Ω

u dx ≤ (a+ 1)
p
p−1 b

1
1−p |Ω|. (2.7)
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Integrating, we have∫
Ω

udx ≤ c0, c0 = max{‖u0‖L1(Ω), (a+ 1)
p
p−1 b

1
1−p |Ω|} > 0.

�

Let us collect some basic statements about the Gagliardo-Nirenberg inequality
which will be used in forthcoming proofs. For details, we refer the reader to [29, 8,
17] (see also [26, 5]).

Lemma 2.2. Let

α∗ =

{
2n
n−2 , if n > 2,
∞, if n = 1, 2.

Then for all l∗ ∈ (2,∞) satisfying l∗ ≤ α∗ and h ∈ (0, 2), α ∈ [h, l∗], there exists a
constant cGN > 0 such that

‖ψ‖Lα(Ω) ≤ cGN (‖∇ψ‖λ
∗

L2(Ω)‖ψ‖
1−λ∗
Lh(Ω)

+ ‖ψ‖Lh(Ω))

holds for any ψ ∈W 1,2(Ω), where λ∗ =
n
h−

n
α

1−n2 +n
h

.

3. Global bounded solutions

The main step towards the existence and boundedness of a global solution is
to establish uniform bound of the cells population density u(x, t) in the space
Ln+1(Ω). This is accomplished by providing some associated weighted bounds
involving weight functions φ(v) which are uniformly bounded both from above and
below by positive constants. This approach was developed by Winkler in [27] (see
also [14, 20]).

Lemma 3.1. Let f(u) satisfy (1.2), ‖v0‖L∞(Ω) > 0 and χ > 0. Then there exists
a constant C > 0 such that the first component of the solution of (1.1) satisfies

‖u(·, t)‖Ln+1(Ω) ≤ C for all t ∈ (0, Tmax). (3.1)

Proof. Set k := n+ 1 and fix ‖v0‖L∞(Ω) > 0 small such that

‖v0‖L∞(Ω) ≤
1

6(n+ 1)χ
. (3.2)

Define
φ(s) := e(αs)2

for all 0 ≤ s ≤ ‖v0‖L∞(Ω),

where

α =
√

n

24(n+ 1)
1

‖v0‖L∞(Ω)
.

By direct calculation, from (1.1), we obtain
1
k

d

dt

∫
Ω

ukφ(v)dx

=
∫

Ω

uk−1φ(v)utdx+
1
k

∫
Ω

ukφ′(v)vt dx

=
∫

Ω

uk−1φ(v)∆udx−
∫

Ω

uk−1φ(v)χ∇ · (u∇v)dx+
∫

Ω

uk−1φ(v)f(u)dx

+
1
k

∫
Ω

ukφ′(v)∆v dx− 1
k

∫
Ω

uk+1vφ′(v)dx
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= −(k − 1)
∫

Ω

uk−2φ(v)|∇u|2dx−
∫

Ω

uk−1φ′(v)∇u · ∇v dx

+ χ(k − 1)
∫

Ω

uk−1φ(v)∇u · ∇v dx+ χ

∫
Ω

ukφ′(v)|∇v|2dx

+
∫

Ω

uk−1φ(v)f(u)dx−
∫

Ω

uk−1φ′(v)∇u · ∇v dx

− 1
k

∫
Ω

ukφ′′(v)|∇v|2dx− 1
k

∫
Ω

uk+1vφ′(v)dx. (3.3)

Since f(s) ≤ as− bsp and φ′(s) ≥ 0 for all s ≥ 0, we have

1
k

d

dt

∫
Ω

ukφ(v)dx+ (k − 1)
∫

Ω

uk−2φ(v)|∇u|2dx+
1
k

∫
Ω

ukφ′′(v)|∇v|2dx

≤ −2
∫

Ω

uk−1φ′(v)∇u · ∇v dx+ χ(k − 1)
∫

Ω

uk−1φ(v)∇u · ∇v dx

+ χ

∫
Ω

ukφ′(v)|∇v|2dx+ a

∫
Ω

ukφ(v)dx− b
∫

Ω

uk+p−1φ(v)dx.

(3.4)

By Young’s inequality, we obtain

−2
∫

Ω

uk−1φ′(v)∇u · ∇v dx ≤ k − 1
4

∫
Ω

uk−2φ(v)|∇u|2dx

+
4

k − 1

∫
Ω

uk
φ′2(v)
φ(v)

|∇v|2dx
(3.5)

and

χ(k − 1)
∫

Ω

uk−1φ(v)∇u · ∇v dx ≤ k − 1
4

∫
Ω

uk−2φ(v)|∇u|2dx

+ χ2(k − 1)
∫

Ω

ukφ(v)|∇v|2dx.
(3.6)

Thus, from (3.4)–(3.6) we obtain

1
k

d

dt

∫
Ω

ukφ(v)dx+
k − 1

2

∫
Ω

uk−2φ(v)|∇u|2dx+
1
k

∫
Ω

ukφ′′(v)|∇v|2dx

≤ 4
k − 1

∫
Ω

uk
φ′2(v)
φ(v)

|∇v|2dx+ χ2(k − 1)
∫

Ω

ukφ(v)|∇v|2dx

+ χ

∫
Ω

ukφ′(v)|∇v|2dx+ a

∫
Ω

ukφ(v)dx− b
∫

Ω

uk+p−1φ(v)dx.

(3.7)

Next we show that the three terms on the right-hand side of (3.7) are dominated
by 1

k

∫
Ω
ukφ′′(v)|∇v|2dx. To this end, for s ≥ 0, we compute

y1(s) :=
φ′′(s)
k

=
2
k
α2e(αs)2

+
4
k
α4s2e(αs)2

,

y2(s) :=
4

k − 1
φ′2(s)
φ(s)

=
16
k − 1

α4s2e(αs)2
,

y3(s) := χ2(k − 1)φ(s) = χ2(k − 1)e(αs)2
,

y4(s) := χφ′(s) = 2χα2se(αs)2
.
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By a direct calculation, we obtain

y2(s)
1
3y1(s)

≤
16
k−1α

4s2e(αs)2

2
3kα

2e(αs)2 =
24k
k − 1

(αs)2 ≤ 24(n+ 1)
n

(α‖v0‖L∞(Ω))2 = 1, (3.8)

where we have used that α =
√

n
24(n+1)

1
‖v0‖L∞(Ω)

. Using (3.2),

y3(s)
1
3y1(s)

≤ χ2(k − 1)e(αs)2

2
3kα

2e(αs)2 ≤ 3k(k − 1)χ2

2α2
= 36(n+ 1)2‖v0‖2L∞(Ω)χ

2 ≤ 1 (3.9)

and
y4(s)
1
3y1(s)

≤ 2χα2se(αs)2

2
3kα

2e(αs)2 ≤ 3kχs ≤ 3(n+ 1)χ‖v0‖L∞(Ω) ≤
1
2
. (3.10)

Therefore, from (3.7)-(3.10), it follows easily that

d

dt

∫
Ω

ukφ(v)dx+ kb

∫
Ω

uk+p−1φ(v)dx+
2(k − 1)

k

∫
Ω

|∇uk/2|2φ(v)dx

≤ ka
∫

Ω

ukφ(v)dx.
(3.11)

Since 0 ≤ s ≤ ‖v0‖L∞(Ω), we have 1 ≤ φ(s) ≤ e(α‖v0‖L∞(Ω))
2

:= d, it is not difficult
to obtain

kb

∫
Ω

ukφ(v)dx ≤ kb
∫

Ω

uk+p−1φ(v)dx+ kbd|Ω|. (3.12)

Combining (3.11) with (3.12) yields

d

dt

∫
Ω

ukφ(v)dx+ kb

∫
Ω

ukφ(v)dx+
2(k − 1)

k

∫
Ω

|∇uk/2|2φ(v)dx

≤ ka
∫

Ω

ukφ(v)dx+ kbd|Ω|.
(3.13)

Using Lemma 2.2 and (x+ y)γ ≤ 2γ(xγ + yγ) for all x, y ≥ 0 and γ > 0, we obtain

ka

∫
Ω

ukφ(v)dx ≤ kad
∫

Ω

ukdx

= kad‖uk/2‖2L2(Ω)

≤ kad(cGN‖∇uk/2‖λL2(Ω)‖u
k/2‖1−λ

L2/k(Ω)
+ cGN‖uk/2‖L2/k(Ω))

2

≤ 4kad(c2GNc
k(1−λ)
0 ‖∇uk/2‖2λL2(Ω) + c2GNc

k
0)

(3.14)

holds with some constant cGN > 0 and

λ =
kn
2 −

n
2

1− n
2 + kn

2

∈ (0, 1).

By Young’s inequality, we derive

ka

∫
Ω

ukφ(v)dx ≤ 4kadc2GNc
k(1−λ)
0 ‖∇uk/2‖2λL2(Ω) + 4kadc2GNc

k
0

≤ 2(k − 1)
k

∫
Ω

|∇uk/2|2dx+ c1

≤ 2(k − 1)
k

∫
Ω

|∇uk/2|2φ(v)dx+ c1,

(3.15)
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where
c1 = ck0(4kadc2GN (

2k − 2
k

)−λ)
1

1−λ + 4kadc2GNc
k
0 > 0.

Hence, substituting (3.15) into (3.13) yields
d

dt

∫
Ω

ukφ(v)dx+ kb

∫
Ω

ukφ(v)dx ≤ c1 + kbd|Ω|. (3.16)

Integrating (3.16), we have∫
Ω

ukdx ≤
∫

Ω

ukφ(v)dx ≤ max
{
d

∫
Ω

uk0 ,
c1 + kbd|Ω|

kb

}
,

we arrive at the desired result. �

Remark 3.2. To prove that the three terms on the right-hand side of (3.7) are
dominated by 1

k

∫
Ω
ukφ′′(v)|∇v|2dx, we need yi(s)

1
3y1(s)

≤ 1 (i = 2, 3, 4), so we have

0 < ‖v0‖L∞(Ω) ≤ 1
6kχ , in such a way that 1

6kχ → 0 as k →∞. In fact, in the proof
of Theorem 3.3 is only applied to one fixed k > n. So to avoid this situation, we
choose k := n+ 1 in Lemma 3.1.

We are now in a position to prove our main results, which are as follows.

Theorem 3.3. Assume that u0(x) and v0(x) are non-negative functions and that
(u0, v0) belongs to (W 1,θ(Ω))2 for some θ > n, χ > 0, f(u) satisfies (1.2). Then
problem (1.1) possesses a unique global classical solution (u, v) for which both u and
v are non-negative and uniformly bounded in Ω× (0,∞) provided that

0 < ‖v0‖L∞(Ω) ≤
1

6(n+ 1)χ
.

Proof. With the aid of Lemma 3.1 and its proof, based on a Moser-Alikakos-type
iterative procedure [1, 6] (for detailed calculations we refer to [14, 20, 21]), we can
establish a uniform bound on the solution u in time (0, Tmax). Combining (2.4) and
(2.2) we obtain the desired result of Theorem 3.3. �
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[5] T. Cieślak, C. Stinner; Finite-time blowup and global-in-time unbounded solutions to a
parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equa-

tions 252 (2012) 5832-5851.



8 L. WANG, S. U.-D. KHAN, S. U.-D. KHAN EJDE-2013/209

[6] L. Corrias, B. Perthame, H. Zaag; Lp and L∞ a priori estimates for some chemotaxis models

and applications to the Cauchy problem (dynamics of spatio-temporal patterns for the system

of reaction-diffusion equations), Kyoto Univ., RIMS 1416 (2005) 105-119.
[7] M. Delgado, I. Gayte, C. Morales-Rodrigo, A. Suárez; An angiogenesis model with nonlinear
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