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OSCILLATION FOR QUASILINEAR ELLIPTIC EQUATIONS
WITH p(x)-LAPLACIANS IN GENERAL DOMAINS

NORIO YOSHIDA

Dedicated to Professor Kusano Takaŝi on his eightieth birthday

Abstract. Oscillation of quasilinear elliptic equations with p(x)-Laplacians

in general domains are derived by the variational approach as applications of

Picone identity. Three examples are given, and generalizations to quasilinear
elliptic equations with p(x)-Laplacians are shown.

1. Introduction

Recently there has been much interest in establishing Picone identity which plays
an important role in Sturmian comparison theorems and oscillation theorems for
various differential equations. We refer the reader to Allegretto [1], Allegretto and
Huang [3, 4], Bognár and Došlý [5], Došlý and Řehák [9], Dunninger [10], Kusano,
Jaroš, and Yoshida [12], Yoshida [17] for p-Laplace equations, and to Allegretto
[2], Bognár and Došlý [6], Sahiner and Zafer [15], Yoshida [18, 19, 20, 21] for p(x)-
Laplace equations.

The operator ∇ ·
(
|∇u|p(x)−2∇u

)
is said to be p(x)-Laplacian (p(x) > 1), and

becomes p-Laplacian∇·
(
|∇u|p−2∇u

)
if p(x) = p (constant), where the dot · denotes

the scalar product,∇ = (∂/∂x1, . . . , ∂/∂xn) and |x| denotes the Euclidean length
of x = (x1, x2, . . . , xn) ∈ Rn.

Various mathematical problems with variable exponent growth condition have
been received considerable attention in recent years (see [8, 11]). These problems
arise from nonlinear elasticity theory, electrorheological fluids (cf. [14, 22]) and
image processing (cf. [7]).

Oscillation results for half-linear elliptic equations have been extensively devel-
oped, but most of them pertain to unbounded domains which are exterior or general
exterior domains which are not “small” at ∞.

In 1973 Swanson [16] studied the linear elliptic equation

∇ ·
(
A(x)∇v

)
+ C(x)v = 0, Ω ⊂ Rn,

where Ω is an unbounded domain in Rn and it is not required that Ω be quasiconical,
quasicylindrical, exterior, general exterior, or even connected.
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The objective of this paper is to provide oscillation criteria for the half-linear
elliptic inequality with p(x)-Laplacian

vQ[v] ≤ 0 (1.1)

in a general domain Ω ⊂ Rn, where

Q[v] := ∇ ·
(
A(x)|∇v|α(x)−1∇v

)
−A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+ |∇v|α(x)−1B(x) · ∇v + C(x)|v|α(x)−1v.
(1.2)

We note that log |v| in (1.2) has singularities at zeros of v, but v log |v| becomes
continuous at the zeros of v if we define v log |v| = 0 at the zeros, in light of the fact
that limε→+0 ε log ε = 0. Therefore, we conclude that vQ[v] has no singularities
and is continuous in Ω. From the relation

(kv)Q[kv] = |k|α(x)+1vQ[v] (k ∈ R)

we see that (1.1) is half-linear in the sense that a constant multiple of a solution v
of (1.1) is also a solution of (1.1) (cf. Yoshida [18, Proposition 2.1]).

Our approach is an adaptation of variational method which is based on Picone
identity. We refer to Mař́ık [13] which investigates oscillation of half-linear elliptic
equations with p-Laplacian in general exterior domains by the variational approach.

In Section 2 we present oscillation results based on Picone identity. Section 3
is devoted to examples which illustrate a main oscillation theorem in Section 2.
Generalizations to more general elliptic inequalities are given in Section 4.

2. Oscillation results

In this section we derive a main oscillation theorem by using Lemmas 2.3 and
2.4 which are deduced from Picone identity.

Let Ω be an unbounded domain in Rn. It is assumed that A(x) ∈ C(Ω; (0,∞)),
B(x) ∈ C(Ω; Rn), C(x) ∈ C(Ω; R), α(x) ∈ C1(Ω; (0,∞)), and α(x) > 0.

The domainDQ(Ω) ofQ is defined to be the set of all functions v of class C1(Ω; R)
such that A(x)|∇v|α(x)−1∇v ∈ C1(Ω; Rn).

A solution v ∈ DQ(Ω) of (1.1) is said to be oscillatory in Ω if it has a zero in Ωr
for any r > 0, where

Ωr = Ω ∩ {x ∈ Rn; |x| > r}.

Let G be a bounded domain with piecewise smooth boundary ∂G such that
G ⊂ Ω. We need four lemmas. The following lemma was established by Yoshida
[19, Theorem 2.1].
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Lemma 2.1 (Picone identity for Q). If v ∈ DQ(G) and v has no zero in G, then
we obtain the following Picone identity for any u ∈ C1(G; R):

−∇ ·
(
uϕ(u)

A(x)|∇v|α(x)−1∇v
ϕ(v)

)
= −A(x)

∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

+ C(x)|u|α(x)+1

+A(x)
[∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

+ α(x)
∣∣u
v
∇v
∣∣α(x)+1 − (α(x) + 1)

∣∣u
v
∇v
∣∣α(x)−1

(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v
)]
− |u|

α(x)+1

|v|α(x)+1

(
vQ[v]

)
in G,

(2.1)
where ϕ(u) = |u|α(x)−1u.

The next lemma is stated in Yoshida [19, Lemma 3.1].

Lemma 2.2. The inequality

|ξ|α(x)+1 + α(x) |η|α(x)+1 − (α(x) + 1)|η|α(x)−1ξ · η ≥ 0

is valid for x ∈ G, ξ, η ∈ Rn, where the equality holds if and only if ξ = η.

For a nonempty piecewise smooth bounded domain G ⊂ Ω, we define the func-
tional

M [u;G] :=
∫
G

[
A(x)

∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

− C(x)|u|α(x)+1
]
dx

with domain consisting of all real-valued piecewise C1-functions u on G.

Lemma 2.3. Let α(x) ∈ C2(G; (0,∞)) and B(x)/A(x) ∈ C1(G; Rn). Assume that
there exists a function u ∈ C1(G; R) such that u = 0 on ∂G and u has no zero in
G. If M [u;G] ≤ 0 and

(H1) there is a function F ∈ C(G; R) such that F ∈ C1(G; R) and

∇F =
log |u|
α(x) + 1

∇α(x)− B(x)
(α(x) + 1)A(x)

in G,

then every solution v ∈ DQ(G) of (1.1) must vanish at some point of G.

Proof. Suppose to the contrary that there exists a solution v ∈ DQ(G) of (1.1) such
that v has no zero on G. Integrating the Picone identity (2.1) over G and using the
divergence theorem, we arrive at

0 ≥ −M [u;G] +
∫
G

W (u, v) dx, (2.2)

where

W (u, v)

:= A(x)
[∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1
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+ α(x)
∣∣u
v
∇v
∣∣α(x)+1 − (α(x) + 1)

∣∣u
v
∇v
∣∣α(x)−1

(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v
)]
.

Lemma 2.2 implies that W (u, v) ≥ 0 in G, and hence
∫
G
W (u, v) dx ≥ 0. Since

−M [u;G] ≥ 0, we see that the right-hand side of (2.2) is non-negative. Therefore
we conclude that

∫
G
W (u, v) dx = 0, which yields

∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x) ≡ u

v
∇v in G

from Lemma 2.2. Using the hypothesis (H1), we obtain

∇u+ u∇F ≡ u

v
∇v in G,

from which we get
e−F v∇

(
eF
u

v

)
≡ 0 in G.

Hence, there is a constant c0 such that eFu/v = c0 in G, and therefore on G by
continuity. Since u = 0 on ∂G, we find that c0 = 0, that is, u ≡ 0 in G, which
contradicts the hypothesis that u has no zero in G. This completes the proof. �

Lemma 2.4. Let α(x) ∈ C2(G; (0,∞)) and B(x)/A(x) ∈ C1(G; Rn). Assume
that there exists a nontrivial function u ∈ C1(G; R) such that u = 0 on ∂G. If
M [u;G] < 0, then every solution v ∈ DQ(G) of (1.1) must vanish at some point of
G.

Proof. Suppose that there is a solution v ∈ DQ(G) of (1.1) such that v has no
zero on G. As in the proof of Lemma 2.3, we observe that (2.2) holds. Since
−M [u;G] > 0 and

∫
G
W (u, v) dx ≥ 0, it can be shown that the right-hand side of

(2.2) is positive. The contradiction proves the lemma. �

Remark 2.5. In the hypothesis (H1) of Lemma 2.3, the vector-valued function

log |u|
α(x) + 1

∇α(x)− B(x)
(α(x) + 1)A(x)

must be a C1-function (cf. [19, Proposition 2.2]), and therefore we suppose that
α(x) ∈ C2, B(x)/A(x) ∈ C1 in Lemmas 2.3 and 2.4.

Theorem 2.6. Assume that Ω contains a sequence of domains Gk (k = 1, 2, . . . )
such that Gk are nonempty bounded domains with piecewise smooth boundaries ∂Gk.
If for any r > 0 there exist a natural number m = m(r) ∈ N such that Gm ⊂ Ωr
and a nontrivial piecewise C1-function um on Gm with the following properties:

(i) α(x) = αm(x) ∈ C2(Gm; (0,∞)) and

B(x)/A(x) = Bm(x)/Am(x) ∈ C1(Gm; Rn) on Gm;

(ii) um = 0 on ∂Gm;
(iii) um has no zero in Gm;
(iv) M [um;Gm] ≤ 0;
(v) there exists a function Fm ∈ C(Gm; R) such that Fm ∈ C1(Gm; R) and

∇Fm =
log |um|
αm(x) + 1

∇αm(x)− Bm(x)
(αm(x) + 1)Am(x)

in Gm, (2.3)
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then every solution v ∈ DQ(Ω) of (1.1) is oscillatory in Ω. Furthermore, if
M [um;Gm] < 0 in the hypothesis (iv), then the conclusion is valid without the
hypotheses (iii), (v).

Proof. For any r > 0 there exist a natural number m = m(r) ∈ N such that
Gm ⊂ Ωr and a nontrivial piecewise C1-function um on Gm satisfying (i)–(v). It
follows from Lemma 2.3 that every solution v ∈ DQ(Gm) of (1.1) has a zero on
Gm ⊂ Ωr, that is, v has a zero in Ωr for any r > 0, which implies that v is
oscillatory in Ω. This completes the proof of the first statement of the theorem.
If M [um;Gm] < 0, the second statement follows from Lemma 2.4 by the same
arguments as were used in the first statement. �

Remark 2.7. Let p ≥ 1. It follows from Jensen’s inequality that(a+ b+ c

3

)p
≤ ap + bp + cp

3
for any a, b, c ≥ 0. We let α(x) > 0, and obtain

|a+ b+ c|α(x)+1 ≤ (|a|+ |b|+ |c|)α(x)+1

≤ 3α(x)
(
|a|α(x)+1 + |b|α(x)+1 + |c|α(x)+1

)
for any a, b, c ∈ R. Hence, we obtain∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

≤ 3α(x)
(
|∇u|α(x)+1 +

∣∣∣∣ u log |u|
α(x) + 1

∇α(x)
∣∣∣∣α(x)+1

+
∣∣ u

(α(x) + 1)A(x)
B(x)

∣∣α(x)+1
)
.

Defining

M̃ [u;G] :=
∫
G

[
A(x)3α(x)

(
|∇u|α(x)+1 +

∣∣ u log |u|
α(x) + 1

∇α(x)
∣∣α(x)+1

+
∣∣ u

(α(x) + 1)A(x)
B(x)

∣∣α(x)+1
)
− C(x)|u|α(x)+1

]
dx,

we observe that M [u;G] ≤ M̃ [u;G]. Consequently, Lemmas 2.3, 2.4 and Theo-
rem 2.6 remain true if M [u;G],M [um;Gm] are replaced by M̃ [u;G], M̃ [um;Gm],
respectively.

3. Examples

Three examples which illustrate Theorem 2.6 are given in this section. We
consider the cases where Ω contains a sequence of rectangular domains, annular
domains, or balls. Using the similar arguments as in [19, Remark 2.4], we give the
following example.

Example 3.1. We consider the case where n = 2 and Ω contains a sequence of
rectangular domains

Gk =
(
ak, ak + π

)
×
(
bk, bk + π

)
(k = 1, 2, . . . ),

where limk→∞ ak =∞ or limk→∞ bk =∞. Assume that

A(x) ≤ Ak, C(x) ≥ Ck on Gk
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for some constants Ak > 0, Ck > 0, and let

α(x) = αk(x) = esin(x1−ak) sin(x2−bk)+1 − 1,

B(x)
A(x)

=
Bk(x)
Ak(x)

= esin(x1−ak) sin(x2−bk)+1
(
− cos(x1 − ak) sin(x2 − bk),

− sin(x1 − ak) cos(x2 − bk)
)

on each Gk. For any r > 0 there exists an integer m = m(r) ∈ N such that
Gm ⊂ Ωr, because limk→∞ ak =∞ or limk→∞ bk =∞. Letting

um = sin
(
x1 − am

)
sin
(
x2 − bm

)
,

we see that um ∈ C1(Gm; R), um = 0 on ∂Gm, um > 0 in Gm, and that there exists
a function Fm ∈ C(Gm; R) ∩ C1(Gm; R) satisfying (2.3). Since

Bm(x)
Am(x)

= −(αm(x) + 1)∇um,
∇αm(x)
αm(x) + 1

= ∇um,

we obtain
log |um|
αm(x) + 1

∇αm(x)− Bm(x)
(αm(x) + 1)Am(x)

= (log um)∇um +∇um

= ∇Fm in Gm,

where
Fm = um log um.

Moreover, we observe that Fm ∈ C(Gm; R). It is easy to see that

M [um;Gm]

≤
∫ am+π

am

∫ bm+π

bm

[
Am

∣∣∣∇um +
um log |um|
αm(x) + 1

∇αm(x)

− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣αm(x)+1

− Cm|um|αm(x)+1
]
dx1dx2.

(3.1)

We easily obtain

∇um +
um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)

= (1 + um log um + um)∇um
and hence ∣∣∣∇um +

um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣

≤
√

2|1 + um log um + um|
(3.2)

in view of the inequality |∇um| ≤
√

2. Since

um log um = sin(x2 − bm)
[
sin(x1 − am) log sin(x1 − am)

]
+ sin(x1 − am)

[
sin(x2 − bm) log sin(x2 − bm)

]
,
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we see that

|um log um| ≤
2
e

(3.3)

in light of the inequality

|x log x| ≤ 1
e

(0 ≤ x ≤ 1).

Since αm(x) + 1 ≤ e2, it follows from (3.2) and (3.3) that∣∣∣∇um +
um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣αm(x)+1

≤
(√

2
(

1 +
2
e

+ 1
))e2

=
(

2
√

2
(

1 +
1
e

))e2
.

(3.4)

Since αm(x) + 1 ≤ e2 ≤ 8, it can be shown that∫ am+π

am

∫ bm+π

bm

|um|αm(x)+1dx1dx2

=
∫ am+π

am

∫ bm+π

bm

|sin(x1 − am) sin(x2 − bm)|αm(x)+1
dx1dx2

≥
∫ am+π

am

∫ bm+π

bm

sin8(x1 − am) sin8(x2 − bm)dx1dx2

=
(∫ π

0

sin8 x dx
)2

.

It is known that ∫ π

0

sin8 x dx = 2
∫ π/2

0

sin8 x dx

= 2 · π
2

7!!
8!!

= π · 7 · 5 · 3 · 1
8 · 6 · 4 · 2

=
105
384

π,

and therefore we have∫ am+π

am

∫ bm+π

bm

|um|αm(x)+1dx1dx2 ≥
(

105
384

)2

π2. (3.5)

Combining (3.1), (3.4) and (3.5) yields

M [um;Gm] ≤ Am
(

2
√

2
(

1 +
1
e

))e2
π2 − Cm

(105
384

)2

π2.

If

Cm ≥
(384

105

)2(
2
√

2
(

1 +
1
e

))e2
Am,

then we observe that M [um;Gm] ≤ 0, and consequently it follows from Theorem
2.6 that every solution v ∈ DQ(Ω) of (1.1) is oscillatory in Ω.

Example 3.2. We consider the case where Ω contains a sequence of annular do-
mains

Gk = {x ∈ Rn; ak < |x| < bk} (k = 1, 2, . . . ),

where 0 < bk − ak ≤ 1 and limk→∞ ak =∞. It is assumed that

A(x) ≤ Ak, C(x) ≥ Ck on Gk
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for some constants Ak > 0, Ck > 0, and let

α(x) = αk(|x|) = e(bk−|x|)(|x|−ak)+1 − 1,

B(x)
A(x)

=
Bk(x)
Ak(x)

= B̃k(|x|) x
|x|

= −e(bk−|x|)(|x|−ak)+1
(
ak + bk − 2|x|

) x
|x|

on each Gk. For any r > 0 there exists an integer m = m(r) ∈ N such that
Gm ⊂ Ωr, because limk→∞ ak =∞. Let

um =
(
bm − |x|

)(
|x| − am

)
,

we find that um ∈ C1(Gm; R), um = 0 on ∂Gm, um has no zero in Gm, and that
there exists a function Fm ∈ C(Gm; R) ∩ C1(Gm; R) satisfying (2.3). In fact, we
derive

log |um|
αm(x) + 1

∇αm(x)− Bm(x)
(αm(x) + 1)Am(x)

=
log
(
(bm − |x|)(|x| − am)

)
e(bm−|x|)(|x|−am)+1

(
α′m(r)

∣∣∣
r=|x|

) x
|x|

+ (am + bm − 2|x|) x
|x|

=
[
(am + bm − 2|x|) log

(
(bm − |x|)(|x| − am)

)
+ am + bm − 2|x|

] x
|x|

= ∇Fm in Gm,

where
Fm = fm(|x|),

fm(r) being the function defined by

fm(r) = (bm − r)(r − am) log
(
(bm − r)(r − am)

)
.

Moreover, we see that Fm ∈ C(Gm; R). Introducing hyperspherical coordinates
(r, θ), and letting um(x) = zm(|x|), we have

M [um;Gm]

≤
∫ bm

am

∫
S1

[
Am

∣∣∣z′m(r) +
zm(r) log |zm(r)|

αm(r) + 1
α′m(r)

− zm(r)
(αm(r) + 1)

B̃m(r)
∣∣∣αm(r)+1

− Cm|zm(r)|αm(r)+1
]
rn−1drdω,

(3.6)

where ω denotes the measure on the unit sphere S1. It is readily seen that

z′m(r) +
zm(r) log |zm(r)|

αm(r) + 1
α′m(r)− zm(r)

(αm(r) + 1)
B̃m(r)

= z′m(r) + zm(r)f ′m(r)

=
(
am + bm − 2r

)[
1 + (bm − r)(r − am) log

(
(bm − r)(r − am)

)
+ (bm − r)(r − am)

]
.

Simple computations show that

|am + bm − 2r| ≤ bm − am,

|(bm − r)(r − am) log
(
(bm − r)(r − am)

)
| ≤ 2

e
(bm − am),
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|(bm − r)(r − am)| ≤ (bm − am)2

4
e ≤ αm(r) + 1 = e(bm−r)(r−am)+1 ≤ e(bm−am)2/4+1,

on [am, bm], and therefore we arrive at∣∣∣z′m(r) + zm(r) log |zm(r)|
αm(r)+1 α′m(r)− zm(r)

(αm(r)+1) B̃m(r)
∣∣∣αm(r)+1

(3.7)

≤
(
bm − am

)e[1 + 2
e (bm − am) + (bm−am)2

4

]α̃m
, (3.8)

where α̃m = e(bm−am)2/4+1. It is easily verified that∫ bm

am

|zm(r)|αm(r)+1rn−1dr

=
∫ bm

am

|(bm − r)(r − am)|αm(r)+1
rn−1dr

≥ an−1
m

∫ bm

am

(bm − r)αm(r)+1(r − am)αm(r)+1dr.

(3.9)

By making a change of variable r = am + (bm − am)t, we obtain∫ bm

am

(bm − r)αm(r)+1(r − am)αm(r)+1dr

≥ (bm − am)2α̃m+3

∫ 1

0

(1− t)α̃m+1tα̃m+1dt

= (bm − am)2α̃m+3B(α̃m + 2, α̃m + 2),

(3.10)

where B(s, t) denotes the Bessel function. Combining (3.6)–(3.10), we observe that

M [um;Gm]

≤ ωnAmbn−1
m (bm − am)

(
bm − am

)e[1 +
2
e

(bm − am) +
(bm − am)2

4

]α̃m
− ωnCman−1

m (bm − am)2α̃m+3B(α̃m + 2, α̃m + 2),

and hence M [um;Gm] ≤ 0 if

Cma
n−1
m (bm − am)2α̃m+2B(α̃m + 2, α̃m + 2)

≥ Ambn−1
m

(
bm − am

)e [1 +
2
e

(bm − am) +
(bm − am)2

4

]α̃m
.

Then, Theorem 2.6 implies that every solution v ∈ DQ(Ω) of (1.1) is oscillatory in
Ω.

Example 3.3. Suppose that Ω contains a sequence of balls

Gk = {x ∈ Rn; |x− ak| < bk} (k = 1, 2, . . . ),

where 0 < bk ≤ 1 and limk→∞ |ak| =∞. We assume that

A(x) ≤ Ak, C(x) ≥ Ck on Gk

for some constants Ak > 0, Ck > 0, and let

α(x) = αk(|x− ak|) = e|x−ak|+1 − 1,
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B(x)
A(x)

=
Bk(x)
Ak(x)

= B̃k(|x− ak|)
x− ak
|x− ak|

= −e|x−ak|+1 x− ak
|x− ak|

on each Gk. For any r > 0 there is an integer m = m(r) ∈ N such that Gm ⊂ Ωr,
because limk→∞ |ak| =∞. Letting

um = bm − |x− am|,

we observe that um ∈ C1(Gm; R), um = 0 on ∂Gm, um has no zero in Gm. A
simple calculation yields

∇um +
um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)

= − x− am
|x− am|

+
(
bm − |x− am|

)( x− am
|x− am|

)
log
∣∣bm − |x− am|∣∣

+
(
bm − |x− am|

)( x− am
|x− am|

)
,

and therefore∣∣∣∇um +
um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣

≤ 1 +
(
bm − |x− am|

)
log
(
bm − |x− am|

)
+ bm

≤ 1 +
1
e

+ bm,

in view of the inequality 0 ≤ bm − |x− am| ≤ bm and(
bm − |x− am|

)
log
(
bm − |x− am|

)
≤ 1
e
.

Since αm(x) + 1 ≤ ebm+1, we obtain∣∣∣∇um +
um log |um|
αm(x) + 1

∇αm(x)− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣αm(x)+1

≤
(

1 +
1
e

+ bm

)ebm+1

.

(3.11)

Introducing hyperspherical coordinates in the ball Gm, we find that∫
Gm

|um|αm(x)+1dx =
∫
Gm

(
bm − |x− am|

)αm(x)+1
dx

=
∫ bm

0

∫
S1

(bm − r)e
r+1rn−1drdω

= ωn

∫ bm

0

(bm − r)e
r+1rn−1dr.

(3.12)

By making a change of variable r/bm = s, we obtain∫ bm

0

(bm − r)e
r+1rn−1dr =

∫ 1

0

(
bm − bms

)ebms+1

(bms)n−1bmds

≥ be
bm+1+n
m

∫ 1

0

(1− s)e
bm+1

sn−1ds

= be
bm+1+n
m B(ebm+1 + 1, n),

(3.13)
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in light of 0 < bm ≤ 1. Combining (3.11)–(3.13), we have

M [um;Gm] ≤
∫
Gm

[
Am

∣∣∣∇um +
um log |um|
αm(x) + 1

∇αm(x)

− um
(αm(x) + 1)Am(x)

Bm(x)
∣∣∣αm(x)+1

− Cm|um|αm(x)+1
]
dx

≤ Am
(

1 +
1
e

+ bm

)ebm+1
ωn
n
bnm − Cmωnbe

bm+1+n
m B(ebm+1 + 1, n),

and hence
M [um;Gm] < 0

if

Cmb
ebm+1

m nB(ebm+1 + 1, n) > Am

(
1 +

1
e

+ bm

)ebm+1

.

It follows from Theorem 2.6 that every solution v ∈ DQ(Ω) of (1.1) is oscillatory
in Ω.

4. Generalizations

In this section we treat the more general elliptic operator Q̂ defined by

Q̂[v] := ∇ ·
(
A(x)|∇v|α(x)−1∇v

)
−A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+ |∇v|α(x)−1B(x) · ∇v + C(x)|v|α(x)−1v

+
∑̀
i=1

Di(x)|v|βi(x)−1v +
L∑
j=1

Ej(x)|v|γj(x)−1v,

where βi(x) > α(x) > γj(x) > 0, and Di(x), Ej(x) ∈ C(G; [0,∞)) (i = 1, 2, . . . , `;
j = 1, 2, . . . , L). The domain DQ̂(G) of Q̂ is defined as the same as DQ(G). Let
N = min{`, L} and we define

Ĉ(x) =
N∑
i=1

H(βi(x), α(x), γi(x);Di(x), Ei(x)),

where

H(β(x), α(x), γ(x);D(x), E(x))

=
(β(x)− γ(x)
α(x)− γ(x)

)(β(x)− α(x)
α(x)− γ(x)

)α(x)−β(x)
β(x)−γ(x)

D(x)
α(x)−γ(x)
β(x)−γ(x)E(x)

β(x)−α(x)
β(x)−γ(x) .

Then we have the following Lemma which is analogous to Lemma 2.1 (see [21]).

Lemma 4.1 (Picone-type inequality for Q̂). If v ∈ DQ̂(G) and v has no zero in
G, then we obtain the following Picone-type inequality for any u ∈ C1(G; R):

−∇ ·
(
uϕ(u)

A(x)|∇v|α(x)−1∇v
ϕ(v)

)
≥ −A(x)

∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

+
(
C(x) + C̃(x)

)
|u|α(x)+1

+A(x)
[∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1
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+ α(x)
∣∣u
v
∇v
∣∣α(x)+1 − (α(x) + 1)

∣∣u
v
∇v
∣∣α(x)−1

(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v
)]
− |u|

α(x)+1

|v|α(x)+1

(
vQ̂[v]

)
in G.

For a nonempty piecewise smooth bounded domain G ⊂ Ω, we define the func-
tional

M̂ [u;G] :=
∫
G

[
A(x)

∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣α(x)+1

−
(
C(x) + Ĉ(x)

)
|u|α(x)+1

]
dx

with domain consisting of all real-valued piecewise C1-functions u on G.
By the same arguments as were used in Lemmas 2.3, 2.4 and Theorem 2.6 we

obtain the following Lemma and Theorem.

Lemma 4.2. Let α(x) ∈ C2(G; (0,∞)) and B(x)/A(x) ∈ C1(G; Rn). If there
exists a function u ∈ C1(G; R) such that u = 0 on ∂G and u has no zero in
G, M̂ [u;G] ≤ 0 and the hypothesis (H1) of Lemma 2.3 holds, then every solution
v ∈ DQ̂(G) of vQ̂[v] ≤ 0 must vanish at some point of G. Moreover, If there exists
a nontrivial function u ∈ C1(G; R) such that u = 0 on ∂G and M̂ [u;G] < 0, then
every solution v ∈ DQ̂(G) of vQ̂[v] ≤ 0 must vanish at some point of G.

Theorem 4.3. Assume that Ω contains a sequence of domains Gk (k = 1, 2, . . . )
such that Gk are nonempty bounded domains with piecewise smooth boundaries ∂Gk.
If for any r > 0 there exist a natural number m = m(r) ∈ N such that Gm ⊂ Ωr
and a nontrivial piecewise C1-function um on Gm with the following properties:

(i) α(x) = αm(x) ∈ C2(Gm; (0,∞)) and

B(x)/A(x) = Bm(x)/Am(x) ∈ C1(Gm; Rn) on Gm;

(ii) um = 0 on ∂Gm;
(iii) um has no zero in Gm;
(iv) M̂ [um;Gm] ≤ 0;
(v) there exists a function Fm ∈ C(Gm; R) such that Fm ∈ C1(Gm; R) and

∇Fm =
log |um|
αm(x) + 1

∇αm(x)− Bm(x)
(αm(x) + 1)Am(x)

in Gm,

then every solution v ∈ DQ̂(Ω) of vQ̂[v] ≤ 0 is oscillatory in Ω. Furthermore,
if M̂ [um;Gm] < 0 in the hypothesis (iv), then the conclusion is valid without the
hypotheses (iii), (v).
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