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PRÜFER SUBSTITUTIONS ON A COUPLED SYSTEM
INVOLVING THE p-LAPLACIAN

WEI-CHUAN WANG

Abstract. In this article, we employ a modified Prüfer substitution acting on
a coupled system involving one-dimensional p-Laplacian equations. The basic

properties for the initial valued problem and some estimates are obtained. We

also derive an analogous Sturmian theory and give a reconstruction formula
for the potential function.

1. Introduction

There has been recently a lot of interest in the study of the p-Laplacian eigenvalue
problem

−∆py + q|y|p−2y = λ|y|p−2y,

y|∂Ω = 0,

where p > 1 and q ∈ C(Ω), Ω ⊆ Rn. This is a quasilinear partial differential
equation when p 6= 2. The most cited application is the highly viscid fluid flow (cf.
Ladyzhenskaya [4] and Lions [6]). When p = 2, q and λ both vanish, it becomes the
Laplacian equation. The p-Laplacian operator has the originally physical meaning,
and can also be treated as a generalization of the Laplacian operator. For the
one-dimensional case, the p-Laplacian eigenvalue problem becomes, after scaling,

−(y′(p−1))′ = (p− 1)(λ− q(x))y(p−1), (1.1)

y(0) = y(1) = 0, (1.2)

where p > 1, f (p−1) ≡ |f |p−1 sgn f = |f |p−2f , and q is a continuous function
defined on [0, 1]. The following Sturm-Liouville property for the one-dimensional p-
Laplacian operator is well-known now (cf. Binding & Drabek [2], Reichel & Walter
[8], Walter [10], etc.).

Theorem 1.1. For (1.1)-(1.2), there exists a sequence of eigenvalues {λn}∞n=1 such
that

−∞ < λ1 < λ2 < λ3 < · · · < λn < . . . →∞ ,

and the eigenfunction corresponding to λn has exactly n− 1 zeros in (0, 1).
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In this article, we consider the coupled one-dimensional p-Laplacian problem

(u′(x)(p−1))′ + (p− 1)λu(x)(p−1) − (p− 1)q(x)v(x)(p−1) = 0,

(v′(x)(p−1))′ + (p− 1)λv(x)(p−1) + (p− 1)q(x)u(x)(p−1) = 0,
(1.3)

with the initial conditions

u(0) = v(0) = 0, u′(0) = v′(0) = λ1/p, (1.4)

where λ is some positive parameter, p > 1, and q is a continuous function defined
in R. When p = 2, (1.3) reduces to

u′′(x) + λu(x)− q(x)v(x) = 0,

v′′(x) + λv(x) + q(x)u(x) = 0,
(1.5)

which is a linear coupled system. One can treat (1.5) as a steady state reaction
diffusion model. Define H(u, v) = λ

2u
2 − λ

2 v
2 − q(x)uv. Then

∂H

∂u
= λu− q(x)v, −∂H

∂v
= λv + q(x)u.

Equation (1.5) can be viewed as a simplest model of diffusion systems with skew-
gradient structure (cf. [11, 12]).

Here we intend to study the existence of sign-changing solutions (or nodal so-
lutions) of (1.3)-(1.4) and try to derive an analog of Theorem 1.1. Employing the
information of solutions, a reconstruction formula for q(x) is given. Such a pro-
cedure is called an inverse nodal problem. An inverse problem of this type was
designated by McLaughlin [7] in 1988. When one studies the inverse nodal prob-
lem of (1.3)-(1.4), an interesting observation arises. The asymptotic formula given
in Theorem 1.3 (see the following) coincides with the one of the classical Sturm-
Liouville eigenvalue problem

−y′′ + w0(x)y = µy,

y(0) = y(1) = 0

(cf. [7, 9, 5]). Besides, the Prüfer substitution is an efficient method in showing the
oscillation property for solutions (cf. [1]). In this article we utilize a modified Prüfer
substitution to treat this problem. Fortunately we can tackle the effect of the two
coupled functions in (1.3)-(1.4), and obtain the detailed estimates of parameters
λm and nodal points. The following are our main results.

Theorem 1.2. There exists a sequence of real parameters {λk}∞k=m of the one-
dimensional coupled system (1.3)-(1.4), where m ∈ N such that

0 < λm < λm+1 < λm+2 < λm+3 < · · · → ∞,
and the corresponding solution u(x, λk) has exactly k− 1 zeros in (0, 1) for k ≥ m.
In particular, the solution pair {u(x, λk), v(x, λk)} satisfies the following boundary
condition

u(0, λk) = v(0, λk) = 0, u(1, λk) = 0
for every k ≥ m.

Define the zero set (or nodal set) {x(k)
i }

k−1
i=1 of the solution u(x, λk) to (1.3)-(1.4)

and the index ik(x) = max{i : x(k)
i ≤ x}. Let `(k)

i = x
(k)
i+1 − x

(k)
i for 0 ≤ i ≤ k − 1,

where x(k)
0 = 0 and x

(k)
k = 1. We obtain an asymptotic formula for the function

q(x).
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Theorem 1.3. Suppose that the above assumptions hold. Then an asymptotic
formula for q(x) in (1.3) is

q(x)−
∫ 1

0

q(t)dt = lim
m→∞

[p(mπp)p(m`
(m)
im(x) − 1)], (1.6)

for all x ∈ [0, 1].

We remark that in Theorem 1.2, the right endpoint conditions v(1, λk) also
vanish when λk tends to the infinity. Simultaneously, one can show an analogous
Sturmian theory for v(x, λ). Then the data coming from v(x, λk) also make the
asymptotic formula (1.6) valid.

This article is organized as follows. After the introduction, we employ a modified
Prüfer substitution to show the local solution of the initial value problem (1.3)-(1.4)
is unique and can be extended to the whole interval [0, 1]. In section 3, we derive
several lemmas to complete the proof of Theorem 1.2. In section 4, some detailed
estimates and the proof of Theorem 1.3 are given.

2. Preliminaries - A modified Prüfer substitution

To discuss the existence and uniqueness of the local solution of (1.3)-(1.4). We
need the following lemma.

Lemma 2.1 ([10, p. 180]). Let W ∈ C1(I), x0 ∈ I and W (x0) = 0, where I
is a compact interval containing x0. Denote by ‖W‖x the maximum of W in the
interval from x0 to x. Then |W ′(x)| ≤ K‖W‖x in I implies

W = 0 for |x− x0| ≤
1
K
, x ∈ I. (2.1)

Proposition 2.2. For any fixed λ ∈ R+, the problem (1.3)-(1.4) has a unique local
solution which exists on an open interval I containing zero.

Proof. System (1.3) can be written as

u′ = U (p∗−1),

U ′ = (p− 1)[qv(p−1) − λu(p−1)],

v′ = V (p∗−1),

V ′ = −(p− 1)[qu(p−1) − λv(p−1)],

(2.2)

with u(0) = v(0) = 0 and U(0) = V (0) = λ1/p∗ , where p∗ = p/(p − 1) is the
conjugate exponent of p. Then the local existence of a solution is valid by the
Cauchy-Peano theorem. Now it suffices to prove the uniqueness. By (1.4), we may
assume that

λ1/p

2
|x− 0| < |u(x)|, |v(x)| < 2λ1/p|x− 0| for x ∈ I. (2.3)

Suppose that {u1(x), v1(x)} and {u2(x), v2(x)} are two distinct local solutions of
(1.3)-(1.4). Without loss of generality, we assume that u1(x) ≥ u2(x) and v1(x) ≥
v2(x) in some small interval I which contains zero. By (2.2), for x ∈ I we have

u′1(x)(p−1) − u′2(x)(p−1)

= (p− 1)
{ ∫ x

0

q(t)[v1(t)(p−1) − v2(t)(p−1)]dt− λ
∫ x

0

[u1(t)(p−1) − u2(t)(p−1)]dt
}
,
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v′1(x)(p−1) − v′2(x)(p−1)

= (1− p)
{ ∫ x

0

q(t)[u1(t)(p−1) − u2(t)(p−1)]dt− λ
∫ x

0

[v1(t)(p−1) − v2(t)(p−1)]dt
}

;

i.e.,

|u′1(x)(p−1) − u′2(x)(p−1) + v′1(x)(p−1) − v′2(x)(p−1)|

= (p− 1)|
∫ x

0

(q(t) + λ)[v1(t)(p−1) − v2(t)(p−1) − u1(t)(p−1) + u2(t)(p−1)]dt|.

(2.4)
It follows from the mean value theorem, that for a1 and a2 of the same sign,

a
(p−1)
1 − a(p−1)

2 = (p− 1)(a1 − a2)|ā|p−2 , (2.5)

where ā lies between a1, a2. Note that there exists some c1 such that the left
hand side of (2.4) is greater than or equal to c1|u′1(x) + v′1(x) − u′2(x) − v′2(x)|.
On the other hand, by (2.3) the right hand side of (2.4) is less than or equal to
(p+ 1)(‖q‖x + λ)

∫ x
0
|u1(t) + v1(t)− u2(t)− v2(t)| · 2λ1/ptp−2dt, where the notation

‖ · ‖x is defined as in Lemma 2.1. Now set W (x) = u1(x) + v1(x)− u2(x)− v2(x).
By Lemma 2.1, we can obtain that W (x) = 0 in I. This proves the uniqueness of
the local solution. �

Now we introduce a modified Prüfer substitution for the local solution {u(x), v(x)}
using the generalized sine function Sp(x). The Sp(x) function is well known now
(cf. [2, 3, 8]), and satisfies

|Sp(x)|p + |S′p(x)|p = 1, (2.6)

and

(Sp)′′ =
−S(p−1)

p S′p
(S′p)(p−1)

=
−S(p−1)

p

|S′p|p−2
. (2.7)

Thus one has Sp(πp/2) = 1, and by (2.6), S′p(0) = 1, S′p(πp/2) = 0. Define

u(x, λ) = R(x, λ)Sp(λ1/pθ(x, λ)), u′(x, λ) = λ1/pR(x, λ)S′p(λ
1/pθ(x, λ)), (2.8)

v(x, λ) = r(x, λ)Sp(λ1/pφ(x, λ)), v′(x, λ) = λ1/pr(x, λ)S′p(λ
1/pφ(x, λ)). (2.9)

Then, we obtain

λR(x, λ)p = λ|u(x, λ)|p + |u′(x, λ)|p, λr(x, λ)p = λ|v(x, λ)|p + |v′(x, λ)|p, (2.10)

where R(x, λ) and r(x, λ) are the Prüfer amplitude functions; and θ(x, λ) and
φ(x, λ) are the Prüfer phase angles of {u(x), v(x)}, respectively. By a direct com-
putation, we have the following lemma.

Lemma 2.3. For the modified Prüfer substitution (2.8)-(2.9), one has

θ′(x, λ) = 1− q(x)
λ

(
r(x, λ)
R(x, λ)

)p−1Sp(λ1/pθ(x, λ))Sp(λ1/pφ(x, λ))(p−1), (2.11)

R′(x, λ) =
q(x)

λ
p−1

p

r(x, λ)p−1

R(x, λ)p−2
Sp(λ1/pφ(x, λ))(p−1)S′p(λ

1/pθ(x, λ)), (2.12)

φ′(x, λ) = 1 +
q(x)
λ

(
R(x, λ)
r(x, λ)

)p−1Sp(λ1/pφ(x, λ))Sp(λ1/pθ(x, λ))(p−1), (2.13)

r′(x, λ) =
−q(x)

λ
p−1

p

R(x, λ)p−1

r(x, λ)p−2
Sp(λ1/pθ(x, λ))(p−1)S′p(λ

1/pφ(x, λ)), (2.14)
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where ′ = d
dx .

Proof. Here we prove the first two equations, and the rest is similar. For the sake
of simplicity, we drop the function variable λ in the proof. By (2.8),

u′(x)(p−1)

u(x)(p−1)
=
λ

p−1
p S′p(λ

1/pθ(x))(p−1)

Sp(λ1/pθ(x))(p−1)
.

Differentiating the above equation on both sides and applying (1.3) and (2.7), we
obtain

[λ+ |u
′(x)
u(x)

|p − q(x)(
v(x)
u(x)

)(p−1)] = λθ′(x)[1 + |
S′p(λ

1/pθ(x))
Sp(λ1/pθ(x))

|p].

Multiplying by |Sp(λ1/pθ(x))|p, from (2.6), it follows that (2.11) holds.
Next, differentiate u(x) = R(x)Sp(λ1/pθ(x)) with respect to x and employ (2.11),

to obtain (2.12). �

Applying Lemma 2.3, we find that {u(x), v(x);λ} is a solution of (1.3)-(1.4) if
and only if {θ(x), R(x), φ(x), r(x);λ} is a solution of (2.11)-(2.14) coupled with the
following conditions

θ(0, λ) = φ(0, λ) = 0, and R(0, λ) = r(0, λ) = 1. (2.15)

Next we derive some properties for the phase and amplitude functions.

Lemma 2.4. (i) For x > 0, the amplitude functions satisfy that

2 exp[−c1λ
1−p

p x] ≤ R(x, λ)p−1 + r(x, λ)p−1 ≤ 2 exp[c2λ
1−p

p x], (2.16)

where c1, c2 are some positive constants.
(ii) For fixed x > 0 and sufficiently large λ, we have

r(x, λ)
R(x, λ)

= 1 + o(1). (2.17)

Moreover, R(x,λ)
r(x,λ) has the same asymptotic estimate as in (2.17).

Proof. (i) By assumption and (2.12) and (2.14), there exist some positive constants
c1 and c2 such that

− c1λ
1−p

p [R(x)p−1 + r(x)p−1]

≤ R(x)p−2R′(x) + r(x)p−2r′(x) ≤ c2λ
1−p

p [R(x)p−1 + r(x)p−1].

Solving the above differential inequality and applying the initial condition (2.15),
we obtain the inequality (2.16).

(ii) As in (i), there exists some positive constant c3 such that

R(x)r′(x)− r(x)R′(x)
R(x)2

≤ c3λ
1−p

p [
R(x)p−2

r(x)p−2
+
r(x)p

R(x)p
].

Letting y(x) = r(x)
R(x) , we have

y′(x) ≤ c3λ
1−p

p [y(x)2−p + y(x)p].

Note that
dy

dx
≤ c3λ

1−p
p (

1 + y2p−2

yp−2
); i.e.,

yp−2dy

1 + y2p−2
≤ c3λ

1−p
p dx.
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Let z = yp−1 and integrate the above inequality; we obtain

tan−1(y(x)p−1)− tan−1(y(0)p−1) ≤ (p− 1)c3λ
1−p

p x;

i.e.,
0 < tan−1(y(x)p−1) ≤ tan−1(1) + (p− 1)c3λ

1−p
p x.

So
y(x)p−1 ≤ 1 + o(1) (2.18)

as λ is sufficiently large. This completes the proof. �

From Proposition 2.2 and (2.16), we have the following property.

Proposition 2.5. For any fixed λ ∈ R+, problem (1.3)-(1.4) has a unique solution
which exists over the whole interval [0, 1].

3. The Sturmian property

In this section, we first derive the following lemma for the proof of Theorem 1.2.

Lemma 3.1. For λ > 0, the phase angle function θ(x, λ) satisfies the following
properties.

(i) θ(·, λ) is continuous in λ and satisfies θ(0, λ) = 0.
(ii) If λ1/pθ(xn, λ) = nπp for some xn ∈ (0, 1), then λ1/pθ(x, λ) > nπp for

every x > xn.
(iii)

lim
λ→∞

λ1/pθ(1, λ) =∞. (3.1)

Proof. For (i), θ(·, λ) is continuous in λ followed by the continuous dependence on
parameters. And θ(0, λ) = 0 is valid by (2.15). Also if λ1/pθ(xn, λ) = nπp for some
xn ∈ (0, 1), then by (2.11) and Lemma 2.4, we have

θ′(xn, λ) = 1 > 0. (3.2)

This proves (ii). For (iii), integrating (2.11) over [0, 1] and applying (i), one obtains

λ1/pθ(1, λ) = λ1/p−λ
1−p

p

∫ 1

0

q(t)(
r(t, λ)
R(t, λ)

)p−1Sp(λ1/pθ(t, λ))Sp(λ1/pφ(t, λ))(p−1)dt.

(3.3)
By (2.17), one has

λ1/pθ(1, λ) = λ1/p +O(
1

λ1− 1
p

)

for sufficiently large λ. This completes the proof. �

We remark that using (2.13) and Lemma 2.4, one can apply the similar arguments
as in the above proof to obtain the conclusions in Lemma 3.1 for the phase function
φ(x, λ).

Proof of Theorem 1.2. By Lemma 3.1, for every sufficiently large k ∈ N, there
exists λk > 0 satisfies λ1/p

k θ(1, λk) = kπp. This implies that there exists m ∈
N such that λ1/p

k θ(1, λk) = kπp for every k ≥ m. In this case, λm < λm+1 <
· · · < λk+1 < · · · → ∞, and {θ(x, λk), φ(x, λk)}k≥m satisfy (2.11)-(2.15). Hence,
{u(x, λk), v(x, λk)}k≥m are solutions of (1.3)-(1.4) and satisfy

u(0, λk) = v(0, λk) = 0, u(1, λk) = 0 for every k ≥ m.
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This completes the proof. �

4. Some detailed estimates - Proof of Theorem 1.3

Theorem 4.1. The parameter λm of (1.3)-(1.4) satisfies

λ1/p
m = mπp +

1
p(mπp)p−1

∫ 1

0

q(t)dt+ o(
1

mp−1
) (4.1)

as m→∞.

Proof. First, integrating (2.11) over [0, x], with the associated λm,

θ(x, λm)− θ(0, λm)

= x− 1
λm

∫ x

0

q(t)(
r(t, λ)
R(t, λ)

)p−1Sp(λ1/pθ(t, λ))Sp(λ1/pφ(t, λ))(p−1)dt.
(4.2)

Letting x = 1, by Theorem 1.2, Lemma 2.4 and the initial condition (1.4), one
obtains

mπp

λ
1/p
m

= 1 +O(
1

λ
p−1

p
m

); (4.3)

i.e.,

λ1/p
m = mπp +O(

1
mp−1

). (4.4)

Again, integrating (2.11) over [0, x], with the associated λm, and applying (4.4),
one gets

λ1/p
m θ(x, λm) = mπpx+O(

1
mp−1

). (4.5)

Similarly, from (2.13), we obtain

λ1/p
m φ(x, λm) = mπpx+O(

1
mp−1

). (4.6)

Hence, by (4.5),

Sp(λ1/p
m θ(x, λm)) = Sp(mπpx) + S′p(mπpx)O(

1
mp−1

) + o(
1

mp−1
); (4.7)

i.e.,
Sp(λ1/p

m θ(x, λm)) = Sp(mπpx) + o(1). (4.8)

And the same asymptotic formula is true for Sp(λ
1/p
m φ(x, λm)). Now substituting

(4.8) into (4.2) and taking x = 1, one obtains

mπp

λ
1/p
m

= 1− 1
λm

∫ 1

0

q(t)|Sp(mπpt)|pdt+ o(
1
λm

)

= 1− 1
pλm

∫ 1

0

q(t)dt− 1
λm

∫ 1

0

q(t)[|Sp(mπpt)|p −
1
p

]dt+ o(
1
λm

),

(4.9)

for sufficiently large m. By a generalized Riemann-Lebesgue lemma, the asymptotic
estimate (4.1) is valid. �

Hence, the asymptotic formula for λm is

λm = (mπp)p +
∫ 1

0

q(t)dt+ o(1). (4.10)

Next we derive the asymptotic formula of the nodal length.
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Lemma 4.2. For m→∞, the nodal length of the solution u(x, λm) satisfies

`
(m)
i =

1
m
− 1
pmp+1πpp

∫ 1

0

q(t)dt+
1

(mπp)p

∫ x
(m)
i+1

x
(m)
i

q(t)|Sp(mπpt)|pdt+ o(
1

mp+1
).

(4.11)

Proof. Letting λ = λm and integrating (2.11) from x
(m)
i to x(m)

i+1 , we obtain

πp

λ
1/p
m

= `
(m)
i −

∫ x
(m)
i+1

x
(m)
i

q(t)
λm

(
r(t, λm)
R(t, λm)

)p−1Sp(λ1/p
m θ(t, λm))Sp(λ1/p

m φ(t, λm))(p−1)dt.

(4.12)
By the parameter estimates (4.1), we have

1

λ
1/p
m

=
1

mπp
− 1
p(mπp)p+1

∫ 1

0

q(t)dt+ o(
1

mp+1
). (4.13)

Substituting (2.17), (4.5)-(4.6), (4.10) and (4.13) into (4.12), one can obtain (4.11).
�

As in the proof of Lemma 4.2, one can obtain the asymptotic estimate, for the
nodal points x(m)

i ,

x
(m)
i =

i

m
− i

pmp+1πpp

∫ 1

0

q(t)dt+
1

(mπp)p

∫ x
(m)
i

0

q(t)|Sp(mπpt)|pdt+o(
1
mp

), (4.14)

which show the existence of a dense subset of nodal points in [0, 1].

Proof of Theorem 1.3. For any x ∈ (0, 1), write im(x) = im for the sake of simplic-
ity. Recall an easy identity,

(Sp(t)S′p(t)
(p−1))′ = 1− p|Sp(t)|p.

It follows from the mean value theorem for integrals, (4.14), the above identity and
a change of variables. Then,∫ x

(m)
im+1

x
(m)
im

q(t)|Sp(mπpt)|pdt =
q(x)
mπp

∫ mπpx
(m)
im+1

mπpx
(m)
im

|Sp(σ)|pdσ

=
q(x)
mπp

∫ πp

0

|Sp(σ)|pdσ(1 + o(1))

=
q(x)
mπp

∫ πp

0

[
1
p
− 1
p

(Sp(σ)S′p(σ)(p−1))′]dσ(1 + o(1))

=
q(x)
pm

(1 + o(1)).

(4.15)
Substituting (4.15) into (4.11), one obtains

p(mπp)p(m`
(m)
im
− 1) = q(x)−

∫ 1

0

q(t)dt+ o(1). (4.16)

Therefore, the asymptotic formula is valid. �
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