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PRUFER SUBSTITUTIONS ON A COUPLED SYSTEM
INVOLVING THE p-LAPLACIAN

WEI-CHUAN WANG

ABSTRACT. In this article, we employ a modified Priifer substitution acting on
a coupled system involving one-dimensional p-Laplacian equations. The basic
properties for the initial valued problem and some estimates are obtained. We
also derive an analogous Sturmian theory and give a reconstruction formula
for the potential function.

1. INTRODUCTION

There has been recently a lot of interest in the study of the p-Laplacian eigenvalue
problem

—Apy + qlylP %y = Aly[P 2y,
ylaa =0,

where p > 1 and ¢ € C(Q), Q@ C R™. This is a quasilinear partial differential
equation when p # 2. The most cited application is the highly viscid fluid flow (cf.
Ladyzhenskaya [4] and Lions [6]). When p = 2, ¢ and A both vanish, it becomes the
Laplacian equation. The p-Laplacian operator has the originally physical meaning,
and can also be treated as a generalization of the Laplacian operator. For the
one-dimensional case, the p-Laplacian eigenvalue problem becomes, after scaling,

—(y" ) = (p =)A= ql@)y* Y, (L.1)
y(0) =y(1) =0, (1.2)
where p > 1, f®=1 = |f|P~lsgnf = |f[P=2f, and ¢ is a continuous function

defined on [0, 1]. The following Sturm-Liouville property for the one-dimensional p-
Laplacian operator is well-known now (cf. Binding & Drabek [2], Reichel & Walter
[8], Walter [10], etc.).

Theorem 1.1. For (1.1))-(1.2), there exists a sequence of eigenvalues { A\, }$ 1 such
that

—0 <AL < A< A3 << A< ... — 00,

and the eigenfunction corresponding to A\, has exactly n — 1 zeros in (0,1).
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In this article, we consider the coupled one-dimensional p-Laplacian problem
(W' (@)Y + (p — Du(@)®D = (p — 1)g(z)v(@) @D =0,
(@' (@)Y + (p = DM (@) P + (p — Dg(x)u(z)P~D =0,

with the initial conditions
u(0) = v(0) = 0, w/(0) = v'(0) = AP, (1.4)

where A is some positive parameter, p > 1, and ¢ is a continuous function defined
in R. When p = 2, (1.3) reduces to

o’ (x) + Au(z) — q(x)v

(1.3)

x):

(
1.5
() + Xo(e) + gla)u(z) = )
which is a linear coupled system. One can tre t . as a steady state reaction
diffusion model. Define H (u,v) = 3u* — 3v? — g(z)uv. Then
OH

0H
e = Au — q(z)v, e = v+ g(z)u.

Equation can be viewed as a simplest model of diffusion systems with skew-
gradient structure (cf. [I1} [12]).

Here we intend to study the existence of sign-changing solutions (or nodal so-
lutions) of ( . and try to derive an analog of Theorem [1.1 Employing the
1nformat10n of bOluthHb a reconstruction formula for ¢(z) is given. Such a pro-
cedure is called an inverse nodal problem. An inverse problem of this type was
designated by McLaughlin [7] in 1988. When one studies the inverse nodal prob-
lem of ( . , an interesting observation arises. The asymptotic formula given
in Theorem - (see the following) coincides with the one of the classical Sturm-
Liouville eigenvalue problem

—y" + wo(x)y = py,
y(0) =y(1) =0
(cf. [7,9,5]). Besides, the Priifer substitution is an efficient method in showing the
oscillation property for solutions (cf. [I]). In this article we utilize a modified Priifer
substitution to treat this problem. Fortunately we can tackle the effect of the two

coupled functions in (1.3)-(1.4), and obtain the detailed estimates of parameters
Am and nodal points. The following are our main results.

Theorem 1.2. There exists a sequence of real parameters {\,}72.,. of the one-
dimensional coupled system (1.3)-(1.4), where m € N such that

0<Am < a1 < Az < Apgg < -0 — 00,

and the corresponding solution u(x, \;) has exactly k — 1 zeros in (0,1) for k > m.
In particular, the solution pair {u(x, \y),v(x, A\r)} satisfies the following boundary
condition

U(O, )\k) = ’U(O, )\k) = 0, u(l, /\k) =0

for every k > m.

Define the zero set (or nodal set) {xl(-k)}f;f of the solution u(z, A\x) to (1.3)-(L.4)
and the index iy (z) = max{i : a?l(-k) < z}. Let Egk) = :I:Ei)l — mgk) for0<i<k-—1,
(k) (k)

where x;
q(z).

= 0 and z;,” = 1. We obtain an asymptotic formula for the function
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Theorem 1.3. Suppose that the above assumptions hold. Then an asymptotic

formula for q(z) in (1.3) is

afe) = [ atydt = lim fplm, e, <) (16)

for all z € [0,1].

We remark that in Theorem the right endpoint conditions v(1, Ax) also
vanish when A tends to the infinity. Simultaneously, one can show an analogous
Sturmian theory for v(z,A). Then the data coming from v(z, \;) also make the
asymptotic formula valid.

This article is organized as follows. After the introduction, we employ a modified
Priifer substitution to show the local solution of the initial value problem —
is unique and can be extended to the whole interval [0,1]. In section 3, we derive
several lemmas to complete the proof of Theorem In section 4, some detailed
estimates and the proof of Theorem are given.

2. PRELIMINARIES - A MODIFIED PRUFER SUBSTITUTION

To discuss the existence and uniqueness of the local solution of (|1.3)-(1.4). We
need the following lemma.

Lemma 2.1 ([I0, p. 180]). Let W € CY(I), x9 € I and W (xzg) = 0, where I
is a compact interval containing xo. Denote by ||W ||, the mazimum of W in the
interval from xg to x. Then |W'(z)| < K||W ||, in I implies

1
W=0 f0r|zf:r0|§?, el (2.1)

Proposition 2.2. For any fived A € R™, the problem (1.3))-(1.4) has a unique local
solution which exists on an open interval I containing zero.

Proof. System ([1.3)) can be written as

o =U® ),
U' = (p—Dlgo"" = xalP7Y], -
U/ = ‘/r(p*_l)7 ( ’ )

Vi=—(p— 1)[qu(”’1> _ )\U(pfl)]’

with %(0) = v(0) = 0 and U(0) = V(0) = AYP", where p* = p/(p — 1) is the
conjugate exponent of p. Then the local existence of a solution is valid by the
Cauchy-Peano theorem. Now it suffices to prove the uniqueness. By , we may
assume that

A/p
T\x — 0| < |u(z)], v(x)] < 2AYPlz —0| forzel. (2.3)

Suppose that {u1(z),v1(z)} and {uz(x),va(x)} are two distinct local solutions of
(1.3)-(L.4). Without loss of generality, we assume that uy(z) > ug(z) and vy (x) >
va(x) in some small interval I which contains zero. By (2.2)), for € I we have

u’l(m)(p_l) _ u’z(x)(p_l)

== D{ [ a0ln @7~ ea0" Va2 [ a0 = )V},

0
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U'1 (I)(pfl) _ vé(z)(pfl)
xr x
= (1-pf / a(O)ur ()77 = s (1) P~ V)t — A / o1 ()Y = ()]t

ie.,
oty ()P — (@) P 4 0} (@) P — v ()|

=(p—1 |/ )+ N[vi(t )(p—l) _ ’Uz(t)(p_l) _ ul(t)(p_l) + uz(t)(p_l)]dﬂ.
(2.4)
It follows from the mean value theorem, that for a; and as of the same sign,
oV —af™ = (0~ (@ — az)lal (2.5)

where a lies between ai, as. Note that there exists some c¢; such that the left
hand side of is greater than or equal to c;|uf(z) + vi(z) — uh(x) — vh(z)|.
On the other hand, by . ) the right hand side of is less than or equal to
P+ D) (llgllz + ) fo luy (t) +v1(t) — ua(t) — va(t)] - 2A1/PtP~2d¢t, where the notation
| - || is defined as in Lemma [2.1] Now set W (z) = ui(z) + v1(2) — uz(z) — va(2).
By Lemma . we can obtain that W (z) = 0 in I. This proves the uniqueness of
the local solution. (]

Now we introduce a modified Priifer substitution for the local solution {u(x), v(x)}
using the generalized sine function Sp(z). The S,(z) function is well known now
(cf. |2, B, 8]), and satisfies

1Sp(@) P + Sy ()P =1, (2.6)
and _S;l()pfl)s/ _S(p71)

(Sp)" = ) L= |s;jp*2 .

Thus one has Sy (m,/2) = 1, and by (2.6), S;,(0) =1, S)(m,/2) = 0. Define
w(@,\) = R(z, \)S,(A\/70(z,\),  u'(z,\) = \/PR(z, \)S,(A\/70(z, \), (2.8)
v(x, ) = (2, N)Sp(APh(x,N), (2, A) = APr(z, N)S,(AYPP(x, M) (2.9)

Then, we obtain

AR(z, AP = Mu(z, )P + |[u/ (2, N)[P,  Ar(z, \)P = No(z, )P + [0 (z, NP, (2.10)

where R(xz,)\) and r(z,A) are the Priifer amplitude functions; and 6(z,\) and
¢(x, A) are the Priifer phase angles of {u(z),v(z)}, respectively. By a direct com-
putation, we have the following lemma.

Lemma 2.3. For the modified Priifer substitution (2.8])-(2.9), one has

(2.7)

’ q(z)  r(z,\) p—1 1/p 1/p p—1
(22 = 1= EE () S M0 ), Pl M), (2)
/ T o q(l’) (1’ >‘) p-1 1/p T (p—1)qr (\1/p T
R( 7>‘) - )\ppl R( )\)1,_2 SP(A (rb( 7>‘)) Sp()‘ 9( 7)‘))7 (212)
¢ (z,\) =1+ qf)(f((j :)) P8, (AP (2, M) S, (APO(x, ) P~Y | (2.13)

Sp(AYPO(z, \) P S (AP (M), (2.14)
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where ' = %.
xT

Proof. Here we prove the first two equations, and the rest is similar. For the sake
of simplicity, we drop the function variable A in the proof. By (2.8)),

W (@)D AT S (AYPg(a)) @)

u(@)®D 5, (\/P0(z)) @1

Differentiating the above equation on both sides and applying (L.3) and (2.7)), we
obtain

V@) PO 0y g4 SO,
o @G = M @I S )

Multiplying by |S,(AYP8(z))[P, from (2.6)), it follows that (2.11)) holds.
Next, differentiate u(x) = R(z)S,(A\/Pf(z)) with respect to 2 and employ (2-11)),

to obtain (2.12)). O

Applying Lemma we find that {u(z),v(z); A} is a solution of (1.3))-(1.4)) if
and only if {0(z), R(x), ¢(z),r(x); A} is a solution of (2.11)-(2.14) coupled with the

following conditions
0(0,\) = ¢(0,\) =0, and R(0,\) =r(0,\) = 1. (2.15)

Next we derive some properties for the phase and amplitude functions.

A+

Lemma 2.4. (i) For x > 0, the amplitude functions satisfy that
2exp[—cl)\177px] < Rz, NPt 4 r(z, )P < 2exp[02/\177px], (2.16)
where ¢1, co are some positive constants.
(ii) For fized x > 0 and sufficiently large A\, we have
r(x,\)
R(z, \)
(z,))

Moreover, }:(I:A) has the same asymptotic estimate as in (2.17)).

Proof. (i) By assumption and (2.12)) and (2.14)), there exist some positive constants
c¢1 and ¢y such that

— A7 [R(@)P !+ ()P
< R(z)P2R (z) + r(z)P~ 2 (z) < a7 [R(2)P~ + r(z)P7Y).

Solving the above differential inequality and applying the initial condition (2.15)),
we obtain the inequality (2.16)).
(ii) As in (¢), there exists some positive constant ¢z such that
R(x)r'(x) — r(z) R (z) [R(éﬂ)p’2 r(z)?
R(x)? r(z)p=2  R(x)P

1-p
P

S 63)\

]

Letting y(z) = };((Z)), we have

1—p .
y' () <esA 7 [y(2)* P + y(z)P].
Note that
dy e 1472 yP Ry
cgA P (———); i

1-p
yp_2 H .e., W § C3>\ 7 dx.
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Let z = y?~! and integrate the above inequality; we obtain

tan ! (y(2)? 1) — tan~ (y(0) ) < (p— DesA 7w

ie.,
0 < tan™(y(x)P™!) <tan~'(1) + (p — 1)c3)\1_Tpx,
So
y(x)P"t <1+ o(1) (2.18)
as A is sufficiently large. This completes the proof. O

From Proposition and (2.16)), we have the following property.

Proposition 2.5. For any fized A € R*, problem (1.3)-(1.4) has a unique solution
which exists over the whole interval [0, 1].

3. THE STURMIAN PROPERTY
In this section, we first derive the following lemma for the proof of Theorem 1.2

Lemma 3.1. For A\ > 0, the phase angle function 6(x,\) satisfies the following
properties.
(i) (-, A) is continuous in A and satisfies 0(0, \) = 0.
(ii) If \YP0(xp, \) = nm, for some x, € (0,1), then \PO(z,\) > nm, for
every T > Tp,.
(iii)
lim AVPO(1, ) = oco. (3.1)
Proof. For (i), 0(-, A) is continuous in X followed by the continuous dependence on

parameters. And 6(0,\) = 0 is valid by ([2.15). Also if \}/P@(z,,, \) = n7, for some
Zn € (0,1), then by (2.11) and Lemma we have

0 (zp,A) =1>0. (3.2)
This proves (ii). For (iii), integrating (2.11)) over [0, 1] and applying (i), one obtains
1
1-p t )\
AVPG(1,N) = AP — A" / q(t)(;((g A)) PPTLS, (AYPO(t, M) S, (AYPe(t, X)) PV dt.
0 )
(3.3)
By , one has
1
B < 0L
for sufficiently large A. This completes the proof. O

We remark that using ([2.13)) and Lemma one can apply the similar arguments
as in the above proof to obtain the conclusions in Lemma [3.1] for the phase function

oz, A).

Proof of Theorem[1.3 By Lemma for every sufficiently large k € N, there
exists A\p > 0 satisfies /\,1C/ P(1,\y) = km,. This implies that there exists m €
N such that /\,1€/p9(1,/\k) = km, for every k > m. In this case, A\, < Apg1 <

coe < Apgr < oo — 00, and {0(x, Ak), d(x, Ak) te>m satisfy (2.11))-(2.15). Hence,
{u(x, A\p), v(x, Ak) } k>m are solutions of (1.3])-(1.4)) and satisfy

u(0, A\g) = v(0,\x) =0, u(l, ) =0 for every k > m.
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This completes the proof. ([

4. SOME DETAILED ESTIMATES - PROOF OF THEOREM [[.J]
Theorem 4.1. The parameter A\, of (1.3)-(L.4) satisfies

1 ! 1
/0 a(0)dt + o — ) (4.1)

AL/p —
L e T

as m — oQ.

Proof. First, integrating (2 over [0, z], with the associated A,
0(z, Am) — 0(0, A )
1 1 1 -1 (4.2)
x——/ PPLS,(AYPO(t, M) S, (A Pe(t, X)) P~V dt.

Letting x = 1, by Theorem . Lemma and the initial condition (1.4]), one
obtains

mn, 1 )
)\Mp =1 + O(/\p;l )’ (43)
i.e.,
1
1
AP =, + O —1) (4.4)

Again, integrating (2.11)) over [0, z], with the associated \,,, and applying (4.4]),
one gets

1
APY(2, Ny = mmpa + O(—=)- (4.5)
Similarly, from , we obtain
1
AP S, Am) = mimp + O(— ). (4.6)
Hence, by 7
1 1
Sp(AP0(x, Am)) = Sp(mmyz) + Sp(mmpz 2)0(— =) + o —=7); (4.7)
i.e.,
Sp(AYPO(x, \m)) = S, (mmpx) + o(1). (4.8)

And the same asymptotic formula is true for Sp()\%p o(x, \r,)). Now substituting

(4.8) into (4.2) and taking x = 1, one obtains

1
mm, 1 1
=1 r/ a(t)|S, (mm )t + o)
m ) . (4.9)
~1- / dt——/ IS, (magt)? = 1dt + o5,
for sufficiently large m. By a generalized Riemann-Lebesgue lemma, the asymptotic
estimate (4.1)) is valid. O
Hence, the asymptotic formula for A, is
1
Am = (mmp,)?P —|—/ q(t)dt + o(1). (4.10)
0

Next we derive the asymptotic formula of the nodal length.
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Lemma 4.2. For m — oo, the nodal length of the solution u(x, \,,) satisfies

o 1 / oty +
E m  pmptigh [,

(m)
Tit1 1
o OIS )+ o).
' (4.11)

1
(mmy )P
Proof. Letting A = \,,, and integrating (2.11)) from zgm) to z\™), we obtain

i+1°

T [ I )y (0000 ) S AL 00 ) Ol

AL/p m Ay R(E Am)
(4.12)
By the parameter estimates (4.1)), we have
1 1 1 ! 1
= — t)dt —). 4.13
}r{p mmy p(mﬂp)p+1 /0 q< ) + O(mp“‘l) ( )

Substituting (2.17)), (4.5))-(4.6), (4.10) and (4.13)) into (4.12)), one can obtain (4.11)).
O

As in the proof of Lemma one can obtain the asymptotic estimate, for the
nodal points xl(m),

. . 1 mgm)
R — / at)dt+—— / 4(8)|S, (mmyt) Pt +o( ), (4.14)
0 ( 0 mp

m _pmp+17r£ mm, )P
which show the existence of a dense subset of nodal points in [0, 1].

Proof of Theorem[I.3 For any z € (0,1), write 4,,(z) = iy, for the sake of simplic-
ity. Recall an easy identity,

(Sp(t)S,(1) P~ V) =1 —p|S, (t)[".
It follows from the mean value theorem for integrals, (4.14)), the above identity and

a change of variables. Then,
(m)

(™ map™,
[0 awisytmmteae = L2 [ s o)

(m) MTp Sl

im im

= i@ / 18, (0)Pdo(1 4+ o(1))

mmp
Q(x)/ﬂpl 1 10 N (p=1)y/
=— - — —(8,(0)S,(0)'? do(1+o(1
2 [~ @) ) o1+ 0(1)
q(x)
=—(1 1)).
22 1+ of1)
(4.15)
Substituting (4.15)) into (4.11)), one obtains
1
o, Pl — 1) = (o)~ [ a0yt + o(0). (4.16)
0
Therefore, the asymptotic formula is valid. O
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