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ITERATIVE TECHNIQUE FOR A THIRD-ORDER
THREE-POINT BVP WITH SIGN-CHANGING GREEN’S

FUNCTION

JIAN-PING SUN, JUAN ZHAO

Abstract. In this article, by applying iterative technique, we study the third-
order three-point boundary value problem

u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = u′′(η) = u(1) = 0,

where f ∈ C([0, 1] × [0,+∞), [0,+∞)) and η ∈ [2 −
√

2, 1). The emphasis

is mainly that although the corresponding Green’s function is sign-changing,
the solution obtained is still positive. Moreover, our iterative scheme starts

off with zero function, which implies that the iterative scheme is feasible. An

example is also included to illustrate the main results.

1. Introduction

Third-order differential equations arise from a variety of areas of applied math-
ematics and physics, e.g., in the deflection of a curved beam having a constant or
varying cross section, a three-layer beam, electromagnetic waves or gravity driven
flows and so on [6].

Recently, the existence of single or multiple positive solutions to some third-
order three-point boundary value problems (BVPs for short) has received much
attention from many authors. For example, in 1998, by using the Leggett-Williams
fixed point theorem, Anderson [1] proved the existence of at least three positive
solutions to the BVP

−x′′′(t) + f(x(t)) = 0, t ∈ [0, 1],

x(0) = x′(t2) = x′′(1) = 0,

where t2 ∈ [1/2, 1). In 2003, Anderson [2] obtained some existence results of positive
solutions for the BVP

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3,
x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0.
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The main tools used were the Guo-Krasnosel’skii and Leggett-Williams fixed point
theorems. In 2005, Sun [14] studied the existence of single and multiple positive
solutions for the singular BVP

u′′′(t)− λa(t)F (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(η) = u′′(1) = 0,

where η ∈ [1/2, 1), λ was a positive parameter and a(t) was a nonnegative continu-
ous function defined on (0, 1). His main tool was the Guo-Krasnosel’skii fixed point
theorem. In 2008, by using the Guo-Krasnosel’skii fixed point theorem, Guo, Sun
and Zhao [7] obtained the existence of at least one positive solution for the BVP

u′′′(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η),

where 0 < η < 1 and 1 < α < 1
η . For more results concerning the existence of

positive solutions to third-order three-point BVPs, one can refer to [3, 4, 5, 9, 11,
15, 16].

We want to point out that all the above-mentioned works are achieved when
the corresponding Green’s functions are nonnegative, which is a very important
condition. A natural question is that whether we can obtain the existence of positive
solutions to some third-order three-point BVPs when the corresponding Green’s
functions are sign-changing. It is worth mentioning that Palamides and Smyrlis [8]
discussed the existence of at least one positive solution to the singular third-order
three-point BVP with an indefinitely signed Green’s function

u′′′(t) = a(t)f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(η) = 0, η ∈ (
17
24
, 1).

Their technique was a combination of the Guo-Krasnosel’skii fixed point theorem
and properties of the corresponding vector field. For some related results, one can
refer to [10].

Very recently, inspired greatly by [8], the authors [12, 13] studied the following
third-order three-point BVP

u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = u′′(η) = u(1) = 0,
(1.1)

where η ∈ (1/2, 1). Although the corresponding Green’s function was sign-changing,
the existence of single or multiple positive solutions for the BVP (1.1) was still ob-
tained. The main tools used were the Guo-Krasnosel’skii and Leggett-Williams
fixed point theorems.

In this article, we continue to study the BVP (1.1). Throughout this paper, we
always assume that f ∈ C([0, 1]× [0,+∞), [0,+∞)) and η ∈ [2−

√
2, 1). Although

the corresponding Green’s function is sign-changing, we still obtain the existence
of a decreasing positive solution under some suitable conditions on f . Our main
method is iterative technique. It is worth mentioning that the iterative scheme
starts off with zero function, which is feasible for computational purpose. An
example is also included to illustrate our main results.
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2. Main results

Let the space E = C[0, 1] be equipped with the norm ‖u‖ = maxt∈[0,1] |u(t)|. To
obtain the existence of a positive solution for (1.1), we need to construct a suitable
cone in the Banach E. Let u be a solution of (1.1). Then it is easy to verify that
u(t) ≥ 0 for t ∈ [0, 1] provided that u′(1) ≤ 0. In fact, since f is nonnegative, we
know that u′′′(t) ≥ 0 for t ∈ [0, 1], which together with u′′(η) = 0 implies that

u′′(t) ≤ 0 for t ∈ [0, η] and u′′(t) ≥ 0 for t ∈ [η, 1]. (2.1)

In view of (2.1) and u′(0) = 0, we have

u′(t) ≤ 0 for t ∈ [0, η] and u′(t) ≤ u′(1) for t ∈ [η, 1]. (2.2)

If u′(1) ≤ 0, then it follows from (2.2) that u′(t) ≤ 0 for t ∈ [0, 1], which together
with u(1) = 0 implies that u(t) ≥ 0 for t ∈ [0, 1]. Therefore, we define a cone in
E as follows:

K = {u ∈ E : u(t) is nonnegative and decreasing on [0, 1]}.

Note that this induces an order relation . in E by defining u . v if and only if
v − u ∈ K.

For any y ∈ E, we consider the boundary value problem

u′′′(t) = y(t), t ∈ [0, 1],

u′(0) = u′′(η) = u(1) = 0.
(2.3)

After a simple computation, we may obtain the expression of Green’s function
G(t, s) for (2.3) as follows: for s ≥ η,

G(t, s) =

{
− (1−s)2

2 , t ≤ s,
t2−2st+2s−1

2 , s ≤ t

and for s < η,

G(t, s) =

{
−t2−s2+2s

2 , t ≤ s,
(1− t)s, s ≤ t.

Obviously,

G(t, s) ≥ 0 for 0 ≤ s < η and G(t, s) ≤ 0 for η ≤ s ≤ 1.

Moreover, for s ≥ η,

max{G(t, s) : t ∈ [0, 1]} = G(1, s) = 0,

min{G(t, s) : t ∈ [0, 1]} = G(s, s) = − (1− s)2

2
≥ − (1− η)2

2
and for s < η,

max{G(t, s) : t ∈ [0, 1]} = G(0, s) = s− s2

2
≤ η − η2

2
,

min{G(t, s) : t ∈ [0, 1]} = G(1, s) = 0.

So,

max{|G(t, s)| : t, s ∈ [0, 1]} = max
{ (1− η)2

2
, η − η2

2
}

= η − η2

2
=: M.

It is obvious that
√

2− 1 ≤M < 1/2.
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In the remaining of this article, we assume that f : [0, 1]× [0,+∞)→ [0,+∞) is
continuous and satisfies the following two conditions:

(C1) For each u ∈ [0,+∞), the mapping t 7→ f(t, u) is decreasing;
(C2) For each t ∈ [0, 1], the mapping u 7→ f(t, u) is increasing.

Now, we define an operator T on K by

(Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1].

Obviously, if u is a fixed point of T in K, then u is a decreasing nonnegative solution
of (1.1).

Lemma 2.1. The operator T : K → K is completely continuous.

Proof. Let u ∈ K. Then for 0 ≤ t ≤ η, we obtain

(Tu)(t) = (1− t)
∫ t

0

sf(s, u(s))ds+
∫ η

t

−t2 − s2 + 2s
2

f(s, u(s))ds

−
∫ 1

η

(1− s)2

2
f(s, u(s))ds,

which shows that

(Tu)′(t) = −
(∫ t

0

sf(s, u(s))ds+ t

∫ η

t

f(s, u(s))ds
)
≤ 0.

For η ≤ t ≤ 1, we have

(Tu)(t) = (1− t)
∫ η

0

sf(s, u(s))ds+
∫ t

η

t2 − 2st+ 2s− 1
2

f(s, u(s))ds

−
∫ 1

t

(1− s)2

2
f(s, u(s))ds,

which together with (C1) and (C2) imply that

(Tu)′(t) = −
∫ η

0

sf(s, u(s))ds+
∫ t

η

(t− s)f(s, u(s))ds ≤ −f(η, u(η))(η − t

2
)t ≤ 0.

So, (Tu)(t) is decreasing on [0, 1]. At the same time, since (Tu)(1) = 0, (Tu)(t) is
nonnegative on [0, 1]. This indicates that Tu ∈ K.

Now, we assume that D ⊂ K is a bounded set. Then there exists a constant
M1 > 0 such that ‖u‖ ≤ M1 for any u ∈ D. In what follows, we will prove that
T (D) is relatively compact. Let

M2 = sup{f(t, u) : (t, u) ∈ [0, 1]× [0,M1]}.

Then for any y ∈ T (D), there exists u ∈ D such that y = Tu, and so,

|y(t)| = |(Tu)(t)| =
∣∣∣ ∫ 1

0

G(t, s)f(s, u(s))ds
∣∣∣

≤
∫ 1

0

|G(t, s)|f(s, u(s))ds

≤M
∫ 1

0

f(s, u(s))ds ≤MM2, t ∈ [0, 1],
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which implies that T (D) is uniformly bounded. On the other hand, when ε > 0, if
we choose 0 < ξ < min{1− η, ε

12M2(M+1)}, then, for any u ∈ D,∫ η+ξ

η−ξ
f(s, u(s))ds ≤ 2M2ξ <

ε

6(M + 1)
. (2.4)

Since G(t, s) is uniformly continuous on [0, 1]× [0, η− ξ] and [0, 1]× [η+ ξ, 1], there
exists δ > 0 such that for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ,

|G(t1, s)−G(t2, s)| <
ε

3(M2 + 1)(η − ξ)
, s ∈ [0, η − ξ] (2.5)

and
|G(t1, s)−G(t2, s)| <

ε

3(M2 + 1)(1− η − ξ)
, s ∈ [η + ξ, 1]. (2.6)

In view of (2.4), (2.5) and (2.6), for any y ∈ T (D) and t1, t2 ∈ [0, 1] with |t1−t2| < δ,
we have

|y(t1)− y(t2)| = |(Tu)(t1)− (Tu)(t2)|

= |
∫ 1

0

(G(t1, s)−G(t2, s))f(s, u(s))ds|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|f(s, u(s))ds

=
∫ η−ξ

0

|G(t1, s)−G(t2, s)|f(s, u(s))ds

+
∫ η+ξ

η−ξ
|G(t1, s)−G(t2, s)|f(s, u(s))ds

+
∫ 1

η+ξ

|G(t1, s)−G(t2, s)|f(s, u(s))ds

≤ M2ε

3(M2 + 1)
+

Mε

3(M + 1)
+

M2ε

3(M2 + 1)
< ε,

which implies that T (D) is equicontinuous. By Arzela-Ascoli theorem, we know that
T (D) is relatively compact. Thus, we have shown that T is a compact operator.

Finally, we prove that T is continuous. Suppose that um (m = 1, 2, . . . ), u0 ∈ K
and ‖um − u0‖ → 0(m → ∞). Then there exists M3 > 0 such that for any m,
‖um‖ ≤M3. Let

M4 = sup{f(t, u) : (t, u) ∈ [0, 1]× [0,M3]}.
Then for any m and t ∈ [0, 1], we have

G(t, s)f(s, um(s)) ≤MM4, s ∈ [0, 1].

By applying Lebesgue Dominated Convergence theorem, we obtain

lim
m→∞

(Tum)(t) = lim
m→∞

∫ 1

0

G(t, s)f(s, um(s))ds

=
∫ 1

0

G(t, s) lim
m→∞

f(s, um(s))ds

=
∫ 1

0

G(t, s)f(s, u0(s))ds = (Tu0)(t), t ∈ [0, 1],
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which indicates that T is continuous. Therefore, T : K → K is completely contin-
uous. �

Theorem 2.2. Assume that f(t, 0) 6≡ 0 for t ∈ [0, 1] and there exist two positive
constants a and b such that the following conditions are satisfied:

(C3) f(0, a) ≤ 2a;
(C4) b(u2 − u1) ≤ f(t, u2)− f(t, u1) ≤ 2b(u2 − u1), 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ a.

If we construct a iterative sequence vn+1 = Tvn, n = 0, 1, 2, . . . , where v0(t) ≡ 0
for t ∈ [0, 1], then {vn}∞n=1 converges to v∗ in E and v∗ is a decreasing positive
solution of the BVP (1.1).

Proof. Let Ka = {u ∈ K : ‖u‖ ≤ a}. Then we may assert that T : Ka → Ka. In
fact, if u ∈ Ka, then it follows from Lemma 2.1 that Tu ∈ K. In view of (C3) and
0 ≤ u(s) ≤ a for s ∈ [0, 1], we have

0 ≤ (Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds ≤ 2aM ≤ a, t ∈ [0, 1],

which shows that ‖Tu‖ ≤ a. So, T : Ka → Ka.
Now, we prove that {vn}∞n=1 converges to v∗ in E and v∗ is a decreasing positive

solution of (1.1). Indeed, in view of v0 ∈ Ka and T : Ka → Ka, we have vn ∈
Ka, n = 1, 2, . . . . Since the set {vn}∞n=0 is bounded and T is completely continuous,
we know that the set {vn}∞n=1 is relatively compact. In what follows, we prove that
{vn}∞n=0 is monotone by induction. First, it is obvious that v1 − v0 = v1 ∈ K,
which shows that v0 . v1. Next, we assume that vk−1 . vk. Then it follows from
(C4) that for 0 ≤ t ≤ η,

v′k+1(t)− v′k(t)

= (Tvk)′(t)− (Tvk−1)′(t)

=
∫ 1

0

∂G(t, s)
∂t

[f(s, vk(s))− f(s, vk−1(s))]ds

= −
{∫ t

0

s[f(s, vk(s))− f(s, vk−1(s))]ds+ t

∫ η

t

[f(s, vk(s))− f(s, vk−1(s))]ds
}

≤ 0,

and for η ≤ t ≤ 1,

v′k+1(t)− v′k(t)

= (Tvk)′(t)− (Tvk−1)′(t)

=
∫ 1

0

∂G(t, s)
∂t

[f(s, vk(s))− f(s, vk−1(s))]ds

= −
∫ η

0

s[f(s, vk(s))− f(s, vk−1(s))]ds+
∫ t

η

(t− s)[f(s, vk(s))− f(s, vk−1(s))]ds

≤ b[vk(η)− vk−1(η)]
(
t2 − 2ηt+

η2

2
)
≤ 0,

hence
v′k+1(t)− v′k(t) ≤ 0, t ∈ [0, 1]; (2.7)
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that is, vk+1(t) − vk(t) is decreasing on [0, 1]. At the same time, it is easy to see
that

vk+1(1)− vk(1) =
∫ 1

0

G(1, s)[f(s, vk(s))− f(s, vk−1(s))]ds = 0,

therefore,

vk+1(t)− vk(t) ≥ vk+1(1)− vk(1) = 0, t ∈ [0, 1]. (2.8)

It follows from (2.7) and (2.8) that vk+1− vk ∈ K, which indicates that vk . vk+1.
Thus, we have shown that vn . vn+1, n = 0, 1, 2 . . . . Since {vn}∞n=1 is relatively
compact and monotone, there exists a v∗ ∈ Ka such that ‖vn − v∗‖ → 0(n→∞),
which together with the continuity of T and the fact that vn+1 = Tvn implies that
v∗ = Tv∗. This indicates that v∗ is a decreasing nonnegative solution of (1.1).
Moreover, in view of f(t, 0) 6≡ 0, t ∈ [0, 1], we know that zero function is not a
solution of (1.1), which shows that v∗ is a positive solution of (1.1). �

3. An example

Consider the boundary value problem

u′′′(t) =
1
4
u2(t) + u(t) + (1− t), t ∈ [0, 1],

u′(0) = u′′(
2
3

) = u(1) = 0.
(3.1)

If we let η = 2/3 and f(t, u) = 1
4u

2 + u + (1 − t), (t, u) ∈ [0, 1] × [0,+∞), then
all the hypotheses of Theorem 2.2 are fulfilled with a = 2 and b = 1. It follows
from Theorem 2.2 that (3.1) has a decreasing positive solution v∗. Moreover, the
iterative scheme is v0(t) ≡ 0 for t ∈ [0, 1],

vn+1(t) =



∫ t
0
s(1− t)

[
1
4 (vn(s))2 + vn(s) + (1− s)

]
ds

+
∫ 2/3

t
−t2−s2+2s

2

[
1
4 (vn(s))2 + vn(s) + (1− s)

]
ds

−
∫ 1

2/3
(1−s)2

2 [ 14 (vn(s))2 + vn(s) + (1− s)]ds,
if t ∈ [0, 2/3], n = 0, 1, 2, . . . ,∫ 2/3

0
s(1− t)[ 14 (vn(s))2 + vn(s) + (1− s)]ds

+
∫ t
2/3

t2−2st+2s−1
2 [ 14 (vn(s))2 + vn(s) + (1− s)]ds

−
∫ 1

t
(1−s)2

2 [ 14 (vn(s))2 + vn(s) + (1− s)]ds,
if t ∈ [2/3, 1], n = 0, 1, 2, . . . .

The first, second, third and fourth terms of the scheme are as follows:

v0(t) ≡ 0, v1(t) = −2
9
t2 +

1
6
t3 − 1

24
t4 +

7
72
,

v2(t) = −18305
62208

t2 +
26425
124416

t3 +
1915
62208

t4 − 779
7776

t5 +
1291
31104

t6 +
23

62208
t7

− 95
13824

t8 +
1

324
t9 − 5

6912
t10 +

1
13824

t11 +
14161
124416

,
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v3(t) = − 58154370371
185752092672

t2 +
27688166033
123834728448

t3 +
1099507181
15479341056

t4 − 4628786297
30958682112

t5

+
3441194273

123834728448
t6 +

223703119
3869835264

t7 − 169069657
3869835264

t8 +
1231643521

371504185344
t9

+
89491399

7739670528
t10 − 1210466063

185752092672
t11 − 824305

92876046336
t12 +

52150655
30958682112

t13

− 153634915
185752092672

t14 +
3356471

92876046336
t15 +

18718607
123834728448

t16

− 15792949
185752092672

t17 +
1212829

61917364224
t18 +

223969
123834728448

t19

− 10753
3439853568

t20 +
1087

859963392
t21 − 157

509607936
t22 +

169
3439853568

t23

− 11
2293235712

t24 +
1

4586471424
t25 +

43366416289
371504185344

.
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