Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 216, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BLOW-UP OF SOLUTIONS FOR A SYSTEM OF NONLINEAR PARABOLIC EQUATIONS

SHUN-TANG WU

Abstract

The initial boundary value problem for a system of parabolic equations in a bounded domain is considered. We prove that, under suitable conditions on the nonlinearity and certain initial data, the lower bound for the blow-up time is determined if blow-up does occur. In addition, a criterion for blow-up to occur and conditions which ensure that blow-up does not occur are established.

1. Introduction

We consider the initial boundary value problem for the following nonlinear parabolic problems:

$$
\begin{gather*}
u_{t}-\operatorname{div}\left(\rho_{1}\left(|\nabla u|^{2}\right) \nabla u\right)=f_{1}(u, v) \quad \text { in } \Omega \times[0, \infty), \tag{1.1}\\
v_{t}-\operatorname{div}\left(\left(\rho_{2}\left(|\nabla v|^{2}\right) \nabla v\right)=f_{2}(u, v) \quad \text { in } \Omega \times[0, \infty),\right. \tag{1.2}\\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in \Omega, \tag{1.3}\\
u(x, t)=v(x, t)=0, \quad x \in \partial \Omega, t>0, \tag{1.4}
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with a smooth boundary $\partial \Omega, \rho_{i}$, $i=1,2$, are positive C^{1} functions and $f_{i}(\cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}, i=1,2$, are given functions which will be specified later. $u_{0}(x), v_{0}(x)$ are nonzero and nonnegative functions.

Questions related to the blow-up phenomena of the solutions for the nonlinear parabolic equations and systems have attracted considerable attention in recent years. A natural question concerning the blow-up properties is about whether the solution blows up and, if so, at what time t^{*} blow-up occurs. In this direction, there is a vast literature to deal with the blow-up time when the solution does blow up at finite time t^{*} [1, 2, 3, 4, 5, 6, [7, 8, 10, 12, [15, page 3]. Yet, this blow-up time can seldom be determined explicitly. Indeed, the methods used in the study of blow-up very often have yielded only upper bound for t^{*}. However, a lower bound on blow-up time is more important in some applied problems because of the explosive nature of the solution. To the authors knowledge, some of the first work on lower bounds for t^{*} was by Weissler [16, 17. Recently, a number of papers

Key words and phrases. Blow-up; lower bound of blow-up time; parabolic problem.
(C) 2013 Texas State University - San Marcos.

Submitted August 21, 2013. Published September 30, 2013.
deriving lower bounds for t^{*} in various problems have appeared, beginning with the paper of Payne and Schaefer [13]. Payne et al. [14] considered the single equation

$$
u_{t}-\operatorname{div}\left(\rho\left(|\nabla u|^{2}\right) \nabla u\right)=f(u)
$$

Under certain conditions on the nonlineartities, they obtained a lower bound for blow-up time if blow-up does occur. Additionally, a criterion for blow-up and conditions which ensure that blow-up does not occur are obtained.

Motivated by previous works, in this study, we establish the lower bound and the upper bound for problem (1.1)-(1.4) when blow-up does occur. Besides, the nonblow-up properties for a class of problem (1.1)-1.4 are also investigated. Our proof technique closely follows the arguments of [14], with some modifications being needed for our problems. The paper is organized as follows. In section 2 , under suitable conditions on $\rho_{i}, f_{i}, i=1,2$, the lower bound for the blow-up time is established if blow-up occurs when Ω is a bounded domain in \mathbb{R}^{3}. In Section 3 , the nonblow-up phenomena are investigated. Finally, the sufficient condition which guarantees the blow-up occurs is obtained and an upper bound for the blow-up time is also given.

2. LOWER BOUND FOR THE BLOW-UP TIME

In this section, we focus our attention to the lower bound time t^{*} for the blowup time of the solutions to problem $\sqrt{1.1}-(\sqrt{1.4})$. For this purpose, we give the assumptions on ρ_{i} and $f_{i}, i=1,2$ as follows.
(A1) $\rho_{i}(s), i=1,2$ are nonnegative C^{1} function for $s>0$ satisfying

$$
\rho_{1}(s) \geq b_{1}+b_{2} s^{q_{1}}, \quad \rho_{2}(s) \geq b_{3}+b_{3} s^{q_{2}}, \quad q_{1}, q_{2}, b_{i}>0, \quad i=1-4
$$

(A2) Concerning the functions $f_{1}(u, v)$ and $f_{2}(u, v)$, we take (see [9])

$$
\begin{align*}
& f_{1}(u, v)=\left(a|u+v|^{m-1}(u+v)+b|u|^{\frac{m-3}{2}}|v|^{\frac{m+1}{2}} u\right), \tag{2.1}\\
& f_{2}(u, v)=\left(a|u+v|^{m-1}(u+v)+b|v|^{\frac{m-3}{2}}|u|^{\frac{m+1}{2}} v\right), \tag{2.2}
\end{align*}
$$

where $a, b>0$ are constants and m satisfies

$$
m>1, \text { if } N=1,2 \quad \text { or } \quad 1<m \leq \frac{N+2}{N-2}, \text { if } N \geq 3
$$

One can easily verify that

$$
u f_{1}(u, v)+v f_{2}(u, v)=(m+1) F(u, v), \quad \forall(u, v) \in \mathbb{R}^{2}
$$

where

$$
F(u, v)=\frac{1}{m+1}\left(a|u+v|^{m+1}+2 b|u v|^{\frac{m+1}{2}}\right)
$$

As in [9], we still have the following result.
Lemma 2.1. There exists a positive constant β such that, for $p>0$,

$$
u^{p} f_{1}(u, v)+v^{p} f_{2}(u, v) \leq \beta\left(|u|^{p+m}+|v|^{p+m}\right), \quad \forall(u, v) \in \mathbb{R}^{2} .
$$

We define

$$
\begin{align*}
\phi(t) & =\int_{\Omega} u^{2(n-1)\left(q_{1}+1\right)+2} d x+\int_{\Omega} v^{2(n-1)\left(q_{2}+1\right)+2} d x \tag{2.3}\\
& =\int_{\Omega} u^{\sigma_{1}} d x+\int_{\Omega} v^{\sigma_{2}} d x
\end{align*}
$$

where $\sigma_{1}=2(n-1)\left(q_{1}+1\right)+2, \sigma_{2}=2(n-1)\left(q_{2}+1\right)+2$ and n is a positive constant satisfying

$$
\begin{align*}
n>\max \{ & \frac{3(m-1)-2 q_{1}}{2\left(q_{1}+1\right)}, \frac{3(m-1)-2 q_{2}}{2\left(q_{2}+1\right)}, \frac{3(m-1)-2\left(3 q_{1}-2 q_{2}\right)}{2\left(3 q_{1}-2 q_{2}+1\right)}, \tag{2.4}\\
& \left.\frac{3(m-1)-2\left(3 q_{2}-2 q_{1}\right)}{2\left(3 q_{2}-2 q_{1}+1\right)}\right\}
\end{align*}
$$

Theorem 2.2. Suppose that (A1), (A2), (2.4) hold and $\Omega \subset \mathbb{R}^{3}$ is a bounded domain. Assume further that $m-1>2 \max \left(q_{1}, q_{2}\right)>0$ and $q_{1}>\frac{2}{3} q_{2}>\frac{4}{9} q_{1}>0$. Let (u, v) be the nonnegative solution of problem (1.1)-(1.4), which become unbounded in the measure ϕ at time t^{*}, then t^{*} is bounded below as

$$
t^{*} \geq \int_{\phi(0)}^{\infty} \frac{1}{\sum_{i=1}^{4} k_{i} \phi(s)^{\mu_{i}}} d s
$$

where $k_{i}>0$ and $\mu_{i}>0, i=1-4$ are constnats given in the proof.

Proof. Differentiating (2.3) and using (1.1)-(1.2), (A1) and Lemma 2.1, we obtain

$$
\begin{align*}
\phi^{\prime}(t)= & \sigma_{1} \int_{\Omega} u^{\sigma_{1}-1} u_{t} d x+\sigma_{2} \int_{\Omega} v^{\sigma_{2}-1} v_{t} d x \\
= & -\sigma_{1}\left(\sigma_{1}-1\right) \int_{\Omega} u^{\sigma_{1}-2} \rho_{1}\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x+\sigma_{1} \int_{\Omega} u^{\sigma_{1}-1} f_{1}(u, v) d x \\
& -\sigma_{2}\left(\sigma_{2}-1\right) \int_{\Omega} v^{\sigma_{2}-2} \rho_{2}\left(|\nabla v|^{2}\right)|\nabla v|^{2} d x+\sigma_{2} \int_{\Omega} v^{\sigma_{2}-1} f_{2}(u, v) d x \\
\leq & -\sigma_{1}\left(\sigma_{1}-1\right) \int_{\Omega} u^{\sigma_{1}-2}|\nabla u|^{2}\left(b_{1}+b_{2}|\nabla u|^{2 q_{1}}\right) d x \tag{2.5}\\
& +\beta \sigma_{1} \int_{\Omega}\left(u^{m+\sigma_{1}-1}+v^{m+\sigma_{1}-1}\right) d x \\
& -\sigma_{2}\left(\sigma_{2}-1\right) \int_{\Omega} v^{\sigma_{2}-2}|\nabla v|^{2}\left(b_{3}+b_{4}|\nabla v|^{2 q_{2}}\right) d x \\
& +\beta \sigma_{2} \int_{\Omega}\left(u^{m+\sigma_{2}-1}+v^{m+\sigma_{2}-1}\right) d x
\end{align*}
$$

Dropping the terms $\sigma_{1}\left(\sigma_{1}-1\right) b_{1} \int_{\Omega} u^{\sigma_{1}-2}|\nabla u|^{2} d x$ and $\sigma_{2}\left(\sigma_{2}-1\right) b_{3} \int_{\Omega} v^{\sigma_{2}-2}|\nabla v|^{2} d x$ on the right-hand side of (2.5) and using $\left|\nabla w^{n}\right|^{2}=n^{2} w^{2(n-1)}|\nabla w|^{2}$, we deduce that

$$
\begin{aligned}
\phi^{\prime}(t) \leq & -\frac{\sigma_{1}\left(\sigma_{1}-1\right) b_{2}}{n^{2\left(q_{1}+1\right)}} \int_{\Omega}\left|\nabla u^{n}\right|^{2\left(q_{1}+1\right)} d x+\beta \sigma_{1} \int_{\Omega}\left(u^{m+\sigma_{1}-1}+v^{m+\sigma_{1}-1}\right) d x \\
& -\frac{\sigma_{2}\left(\sigma_{2}-1\right) b_{4}}{n^{2\left(q_{2}+1\right)}} \int_{\Omega}\left|\nabla v^{n}\right|^{2\left(q_{2}+1\right)} d x+\beta \sigma_{2} \int_{\Omega}\left(u^{m+\sigma_{2}-1}+v^{m+\sigma_{2}-1}\right) d x
\end{aligned}
$$

For simplicity, setting $w_{1}=u^{n}, w_{2}=v^{n}$ and $\gamma_{i}=m-1-2 q_{i}>0, i=1,2$, then we obtain

$$
\begin{align*}
\phi^{\prime}(t) \leq & -\frac{\sigma_{1}\left(\sigma_{1}-1\right) b_{2}}{n^{2\left(q_{1}+1\right)}} \int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x \\
& +\beta \sigma_{1} \int_{\Omega}\left(w_{1}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}}+w_{2}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}}\right) d x \\
& -\frac{\sigma_{2}\left(\sigma_{2}-1\right) b_{4}}{n^{2\left(q_{2}+1\right)}} \int_{\Omega}\left|\nabla w_{2}\right|^{2\left(q_{2}+1\right)} d x+\beta \sigma_{2} \int_{\Omega} w_{1}^{2\left(q_{2}+1\right)+\frac{\gamma_{2}}{n}} d x \tag{2.6}\\
& +\beta \sigma_{2} \int_{\Omega} w_{2}^{2\left(q_{2}+1\right)+\frac{\gamma_{2}}{n}} d x .
\end{align*}
$$

Next, we will estimate the right-hand side of 2.6). It follows from [14, (2.12)] that

$$
\begin{equation*}
\int_{\Omega} w_{1}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}} d x \leq K_{1}\left(\int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x\right)^{2 / 3}\left(\int_{\Omega} w_{1}^{q_{1}+1+\frac{3 \gamma_{1}}{2 n}} d x\right)^{2 / 3} \tag{2.7}
\end{equation*}
$$

where $K_{1}=\alpha \lambda_{1}^{-\frac{4 q_{1}+1}{6}}\left(q_{1}+1\right)^{\frac{4\left(q_{1}+1\right)}{3}}, \alpha=4^{1 / 3} \cdot 3^{-1 / 2} \cdot \pi^{-2 / 3}$ and λ_{1} is the first eigenvalue in the fixed membrane problem

$$
\Delta w+\lambda w=0, \quad w>0 \text { in } \Omega, \quad \text { and } \quad w=0 \text { on } \partial \Omega .
$$

By using Hölder inequality and 2.3, we obtain

$$
\begin{align*}
\int_{\Omega} w_{1}^{q_{1}+1+\frac{3 \gamma_{1}}{2 n}} d x & =\int_{\Omega} u^{n\left(q_{1}+1\right)+\frac{3 \gamma_{1}}{2}} d x \\
& \leq\left(\int_{\Omega} u^{\sigma_{1}} d x\right)^{\mu_{1}} \cdot|\Omega|^{1-\mu_{1}} \tag{2.8}\\
& \leq \phi(t)^{\mu_{1}} \cdot|\Omega|^{1-\mu_{1}}
\end{align*}
$$

which together with (2.7) implies

$$
\int_{\Omega} w_{1}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}} d x \leq K_{1}|\Omega|^{\frac{2\left(1-\mu_{1}\right)}{3}} \phi(t)^{\frac{2 \mu_{1}}{3}}\left(\int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x\right)^{2 / 3} .
$$

with $\mu_{1}=\frac{2 n\left(q_{1}+1\right)+3 \gamma_{1}}{2 \sigma_{1}}$, we note that $\mu_{1}<1$ in view of 2.4 . Further, thanks to the inequality

$$
\begin{equation*}
x^{r} y^{s} \leq r x+s y, \quad r+s=1, \quad x, y \geq 0 \tag{2.9}
\end{equation*}
$$

we obtain, for $\alpha_{1}>0$,

$$
\begin{equation*}
\int_{\Omega} w_{1}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}} d x \leq K_{1}|\Omega|^{\frac{2\left(1-\mu_{1}\right)}{3}}\left[\frac{1}{3 \alpha_{1}^{2}} \phi(t)^{2 \mu_{1}}+\frac{2 \alpha_{1}}{3} \int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x\right] \tag{2.10}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\int_{\Omega} w_{2}^{2\left(q_{2}+1\right)+\frac{\gamma_{2}}{n}} d x \leq K_{2}|\Omega|^{\frac{2\left(1-\mu_{2}\right)}{3}}\left[\frac{1}{3 \alpha_{2}^{2}} \phi(t)^{2 \mu_{2}}+\frac{2 \alpha_{2}}{3} \int_{\Omega}\left|\nabla w_{2}\right|^{2\left(q_{2}+1\right)} d x\right] \tag{2.11}
\end{equation*}
$$

where $\alpha_{2}>0, K_{2}=\alpha \lambda_{1}^{-\frac{4 q_{2}+1}{6}}\left(q_{2}+1\right)^{\frac{4\left(q_{2}+1\right)}{3}}$ and $\mu_{2}=\frac{2 n\left(q_{2}+1\right)+3 \gamma_{2}}{2 \sigma_{2}}<1$.
To estimate the other two terms in the right hand side of (2.6), we use Hölder inequality and the following result (see [14, (2.7)-(2.10)])

$$
\begin{equation*}
\int_{\Omega} w^{4(q+1)} d x \leq \alpha^{3}(q+1)^{4(q+1)} \lambda_{1}^{-\frac{4 q+1}{2}}\left(\int_{\Omega}|\nabla w|^{2(q+1)} d x\right)^{2}, \quad q>0 \tag{2.12}
\end{equation*}
$$

to obtain

$$
\begin{align*}
& \int_{\Omega} w_{2}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}} d x \\
& =\int_{\Omega} w_{2}^{\frac{4\left(q_{2}+1\right)}{3}} \cdot w_{2}^{2\left(q_{1}+1\right)-\frac{4\left(q_{2}+1\right)}{3}+\frac{\gamma_{1}}{n}} d x \\
& \leq\left(\int_{\Omega} w_{2}^{4\left(q_{2}+1\right)} d x\right)^{1 / 3}\left(\int_{\Omega} w_{2}^{3 q_{1}-2 q_{2}+1+\frac{3 \gamma_{1}}{2 n}} d x\right)^{2 / 3} \tag{2.13}\\
& \leq K_{2}\left(\int_{\Omega}\left|\nabla w_{2}\right|^{2\left(q_{2}+1\right)} d x\right)^{2 / 3}\left(\int_{\Omega} w_{2}^{3 q_{1}-2 q_{2}+1+\frac{3 \gamma_{1}}{2 n}} d x\right)^{2 / 3} .
\end{align*}
$$

As in deriving (2.8), we see that

$$
\begin{align*}
\int_{\Omega} w_{2}^{3 q_{1}-2 q_{2}+1+\frac{3 \gamma_{1}}{2 n}} d x & =\int_{\Omega} v^{n\left(3 q_{1}-2 q_{2}+1\right)+\frac{3 \gamma_{1}}{2}} d x \\
& \leq\left(\int_{\Omega} v^{\sigma_{2}} d x\right)^{\mu_{3}} \cdot|\Omega|^{1-\mu_{3}} \tag{2.14}\\
& \leq \phi(t)^{\mu_{3}} \cdot|\Omega|^{1-\mu_{3}}
\end{align*}
$$

where $\mu_{3}=\frac{2 n\left(3 q_{1}-2 q_{2}+1\right)+3 \gamma_{1}}{2 \sigma_{2}}<1$. Substituting (2.14) into 2.13) and using 2.9 once more, we obtain, for $\alpha_{3}>0$,

$$
\begin{equation*}
\int_{\Omega} w_{2}^{2\left(q_{1}+1\right)+\frac{\gamma_{1}}{n}} d x \leq K_{2}|\Omega|^{\frac{2\left(1-\mu_{3}\right)}{3}}\left[\frac{1}{3 \alpha_{3}^{2}} \phi(t)^{2 \mu_{3}}+\frac{2 \alpha_{3}}{3} \int_{\Omega}\left|\nabla w_{2}\right|^{2\left(q_{2}+1\right)} d x\right] \tag{2.15}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\int_{\Omega} w_{1}^{2\left(q_{2}+1\right)+\frac{\gamma_{2}}{n}} d x \leq K_{1}|\Omega|^{\frac{2\left(1-\mu_{4}\right)}{3}}\left[\frac{1}{3 \alpha_{4}^{2}} \phi(t)^{2 \mu_{4}}+\frac{2 \alpha_{4}}{3} \int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x\right] \tag{2.16}
\end{equation*}
$$

where $\alpha_{4}>0$ and $\mu_{4}=\frac{2 n\left(3 q_{2}-2 q_{1}+1\right)+3 \gamma_{2}}{2 \sigma_{1}}<1$. Combining 2.10, 2.11, 2.15 and 2.16 with 2.6 , we conclude that

$$
\begin{aligned}
\phi^{\prime}(t) \leq & -C_{1} \int_{\Omega}\left|\nabla w_{1}\right|^{2\left(q_{1}+1\right)} d x-C_{2} \int_{\Omega}\left|\nabla w_{2}\right|^{2\left(q_{2}+1\right)} d x \\
& +k_{1} \phi(t)^{2 \mu_{1}}+k_{2} \phi(t)^{2 \mu_{2}}+k_{3} \phi(t)^{2 \mu_{3}}+k_{4} \phi(t)^{2 \mu_{4}}
\end{aligned}
$$

where

$$
\begin{gathered}
C_{1}=\frac{\sigma_{1}\left(\sigma_{1}-1\right) b_{2}}{n^{2\left(q_{1}+1\right)}}-\frac{2 \alpha_{1} K_{1} \beta \sigma_{1}}{3}|\Omega|^{\frac{2\left(1-\mu_{1}\right)}{3}}-\frac{2 \alpha_{4} K_{1} \beta \sigma_{2}}{3}|\Omega|^{\frac{2\left(1-\mu_{4}\right)}{3}}, \\
C_{2}=\frac{\sigma_{2}\left(\sigma_{2}-1\right) b_{4}}{n^{2\left(q_{2}+1\right)}}-\frac{2 \alpha_{2} K_{2} \beta \sigma_{1}}{3}|\Omega|^{\frac{2\left(1-\mu_{2}\right)}{3}}-\frac{2 \alpha_{3} K_{2} \beta \sigma_{2}}{3}|\Omega|^{\frac{2\left(1-\mu_{3}\right)}{3}}, \\
k_{1}=\frac{K_{1}|\Omega|^{\frac{2\left(1-\mu_{1}\right)}{3}} \beta \sigma_{1}}{3 \alpha_{1}^{2}}, \quad k_{2}=\frac{K_{2}|\Omega|^{\frac{2\left(1-\mu_{2}\right)}{3}} \beta \sigma_{2}}{3 \alpha_{2}^{2}}, \\
k_{3}=\frac{K_{2}|\Omega|^{\frac{2\left(1-\mu_{3}\right)}{3}} \beta \sigma_{1}}{3 \alpha_{3}^{2}}, \quad k_{4}=\frac{K_{1}|\Omega|^{\frac{2\left(1-\mu_{4}\right)}{3}} \beta \sigma_{2}}{3 \alpha_{4}^{2}} .
\end{gathered}
$$

Now, setting $\alpha_{1}=\alpha_{2}, \alpha_{3}=\alpha_{4}$, and choosing α_{1}, α_{3} such that $C_{1}=0$ and $C_{2}=0$, hence, we have

$$
\begin{equation*}
\phi^{\prime}(t) \leq g(\phi) \tag{2.17}
\end{equation*}
$$

where

$$
g(s)=k_{1} s^{2 \mu_{1}}+k_{2} s^{2 \mu_{2}}+k_{3} s^{2 \mu_{3}}+k_{4} s^{2 \mu_{4}}
$$

An integration of (2.17) from 0 to t leads to

$$
\int_{\phi(0)}^{\phi(t)} \frac{d s}{g(s)} \leq t
$$

so that if (u, v) blows up in the measure of ϕ as $t \rightarrow t^{*}$, we derive the lower bound

$$
\int_{\phi(0)}^{\infty} \frac{d s}{g(s)} \leq t^{*}
$$

and Theorem 2.2 is proved. Clearly, the integral is bounded since $2 \mu_{1}>1$.

3. NON BLOW-UP CASE

In this section, we consider the non blow-up property of problem $\sqrt{1.1})-(1.4)$ when $2 \max \left(q_{1}, q_{2}\right)>m-1>0$. To achieve this, we define the auxiliary function

$$
\begin{equation*}
\phi(t)=\frac{1}{2} \int_{\Omega} u^{2} d x+\frac{1}{2} \int_{\Omega} v^{2} d x \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Suppose that (A1), (A2) hold and that $2 \max \left(q_{1}, q_{2}\right)>m-1>0$. Let (u, v) be the nonnegative solution of problem 1.1)-1.4), then (u, v) can not blow up in the measure ϕ in finite time.

Proof. From(3.1), 1.1), 1.2 and (A2), we have

$$
\begin{align*}
\phi^{\prime}(t)= & \int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x \\
\leq & -\int_{\Omega}|\nabla u|^{2}\left(b_{1}+b_{2}|\nabla u|^{2 q_{1}}\right) d x-\int_{\Omega}|\nabla v|^{2}\left(b_{3}+b_{4}|\nabla v|^{2 q_{2}}\right) d x \\
& +\beta \int_{\Omega}\left(u^{m+1}+v^{m+1}\right) d x \\
\leq & \int_{\Omega}\left(\beta u^{m+1}-b_{2}|\nabla u|^{2\left(q_{1}+1\right)}\right) d x+\int_{\Omega}\left(\beta v^{m+1}-b_{4}|\nabla v|^{2\left(q_{2}+1\right)}\right) d x \tag{3.2}\\
\leq & \int_{\Omega}\left(\beta u^{m+1}-b_{2}\left(\frac{\lambda_{1}}{\left(q_{1}+1\right)^{2}}\right)^{q_{1}+1} u^{2\left(q_{1}+1\right)}\right) d x \\
& +\int_{\Omega}\left(\beta v^{m+1}-b_{4}\left(\frac{\lambda_{1}}{\left(q_{2}+1\right)^{2}}\right)^{q_{2}+1} v^{2\left(q_{2}+1\right)}\right) d x
\end{align*}
$$

where the last inequality is obtained by using [14, (2.10]. For $q>0$,

$$
\int_{\Omega} w^{2(q+1)} d x \leq\left(\frac{(q+1)^{2}}{\lambda_{1}}\right)^{q+1} \int_{\Omega}|\nabla w|^{2(q+1)} d x
$$

where λ_{1} is the first eigenvalue in the fixed membrane problem, as defined in Section 2. Employing Hölder inequality, we have

$$
\begin{align*}
\int_{\Omega} u^{m+1} d x & \leq\left(\int_{\Omega} u^{2\left(q_{1}+1\right)} d x\right)^{\frac{m+1}{2\left(q_{1}+1\right)}} \cdot|\Omega|^{\frac{2 q_{1}-m+1}{2\left(q_{1}+1\right)}} \tag{3.3}\\
\int_{\Omega} v^{m+1} d x & \leq\left(\int_{\Omega} v^{2\left(q_{2}+1\right)} d x\right)^{\frac{m+1}{2\left(q_{21}+1\right)}} \cdot|\Omega|^{\frac{2 q_{2}-m+1}{2\left(q_{2}+1\right)}} \tag{3.4}\\
\int_{\Omega} u^{2} d x & \leq\left(\int_{\Omega} u^{m+1} d x\right)^{\frac{2}{m+1}} \cdot|\Omega|^{\frac{m-1}{m+1}} \tag{3.5}
\end{align*}
$$

Inserting (3.3)-(3.5) into (3.2), we see that

$$
\begin{align*}
\phi^{\prime}(t) \leq & \int_{\Omega} u^{m+1} d x\left(\beta-M_{1}\left(\int_{\Omega} u^{2} d x\right)^{\frac{2 q_{1}-m+1}{2}}\right) d x \tag{3.6}\\
& +2 \int_{\Omega} v^{m+1} d x\left(\beta-M_{2}\left(\int_{\Omega} v^{2} d x\right)^{\frac{2 q_{2}-m+1}{2}}\right) d x
\end{align*}
$$

where

$$
M_{1}=b_{2}\left(\frac{\lambda_{1}}{\left(q_{1}+1\right)^{2}}\right)^{q_{1}+1}|\Omega|^{-\frac{2 q_{1}-m+1}{2}}, \quad M_{2}=b_{4}\left(\frac{\lambda_{1}}{\left(q_{2}+1\right)^{2}}\right)^{q_{2}+1}|\Omega|^{-\frac{2 q_{2}-m+1}{2}}
$$

Apparently, if (u, v) blows up in the ϕ measure at some time t then $\phi^{\prime}(t)$ would be negative which leads to a contradiction. Thus, the solution (u, v) can not blow up in the measure ϕ. The proof is complete.

4. Criterion for Blow-up

In this section, we investigate the blow up properties of solutions for 1.1$)-1.4$ with

$$
\begin{equation*}
\rho_{1}(s)=b_{1}+b_{2} s^{q_{1}}, \quad \rho_{2}(s)=b_{3}+b_{3} s^{q_{2}}, \quad q_{1}, q_{2}, b_{i}>0, \quad i=1-4 . \tag{4.1}
\end{equation*}
$$

For this purpose, we first define

$$
\begin{equation*}
\phi(t)=\frac{1}{2} \int_{\Omega} u^{2} d x+\frac{1}{2} \int_{\Omega} v^{2} d x \tag{4.2}
\end{equation*}
$$

and

$$
\begin{align*}
\psi(t)= & -\frac{b_{1}}{2}\|\nabla u\|_{2}^{2}-\frac{b_{2}}{2\left(q_{1}+1\right)} \int_{\Omega}|\nabla u|^{2\left(q_{1}+1\right)} d x-\frac{b_{3}}{2}\|\nabla v\|_{2}^{2} \tag{4.3}\\
& -\frac{b_{4}}{2\left(q_{2}+1\right)} \int_{\Omega}|\nabla v|^{2\left(q_{2}+1\right)} d x+\int_{\Omega} F(u, v) d x
\end{align*}
$$

where $\|\cdot\|_{2}$ is the $L^{2}(\Omega)$-norm.
Theorem 4.1. Suppose that (4.1) and (A2) hold. Assume further that $m-1>$ $2 \max \left(q_{1}, q_{2}\right) \geq 0$ and $\psi(0)>0$. If (u, v) is the non-negative solution of problem (1.1)-(1.4), then the solution blows up at finite time t^{*} with

$$
t^{*} \leq \frac{\phi(0)^{-2 m-1}}{(2 m+1)(m+1)}
$$

Proof. From (4.1)- 4.3), we have

$$
\begin{align*}
\phi^{\prime}(t)= & -\int_{\Omega}|\nabla u|^{2}\left(b_{1}+b_{2}|\nabla u|^{2 q_{1}}\right) d x-\int_{\Omega}|\nabla v|^{2}\left(b_{3}+b_{4}|\nabla v|^{2 q_{2}}\right) d x \\
& +(m+1) \int_{\Omega} F(u, v) d x \\
\geq & (m+1)\left[-\frac{b_{1}}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{b_{2}}{2\left(q_{1}+1\right)} \int_{\Omega}|\nabla u|^{2\left(q_{1}+1\right)} d x\right. \tag{4.4}\\
& \left.-\frac{b_{3}}{2}\|\nabla v\|_{2}^{2}-\frac{b_{4}}{2\left(q_{2}+1\right)} \int_{\Omega}|\nabla v|^{2\left(q_{2}+1\right)} d x+\int_{\Omega} F(u, v) d x\right] \\
= & (m+1) \psi(t)
\end{align*}
$$

and

$$
\begin{align*}
\psi^{\prime}(t)= & -b_{1} \int_{\Omega} \nabla u \cdot \nabla u_{t} d x-b_{2} \int_{\Omega}|\nabla u|^{2 q_{1}} \nabla u \cdot \nabla u_{t} d x-b_{3} \int_{\Omega} \nabla v \cdot \nabla v_{t} d x \\
& -b_{4} \int_{\Omega}|\nabla v|^{2 q_{2}} \nabla v \cdot \nabla v_{t} d x-\int_{\Omega} a|u+v|^{m-1}(u+v)\left(u_{t}+v_{t}\right) d x \tag{4.5}\\
& -b \int_{\Omega}\left(|u|^{\frac{m-3}{2}}|v|^{\frac{m+1}{2}} u u_{t}+|v|^{\frac{m-3}{2}}|u|^{\frac{m+1}{2}} v v_{t}\right) d x \\
= & \int_{\Omega}\left(u_{t}^{2}+v_{t}^{2}\right) d x \geq 0 .
\end{align*}
$$

This, together with $\psi(0)>0$, implies that $\psi(t) \geq \psi(0)>0$, for $t \geq 0$. By using Hölder inequality, Schwarz inequality, 4.2 and 4.5 , we obtain

$$
\begin{align*}
\left(\phi^{\prime}(t)\right)^{2} & =\left(\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x\right)^{2} \\
& \leq\|u\|_{2}^{2}\left\|u_{t}\right\|_{2}^{2}+\|v\|_{2}^{2}\left\|v_{t}\right\|_{2}^{2}+\|u\|_{2}^{2}\left\|v_{t}\right\|_{2}^{2}+\|u\|_{2}^{2}\left\|u_{t}\right\|_{2}^{2} \tag{4.6}\\
& =\frac{1}{2} \phi(t) \psi^{\prime}(t)
\end{align*}
$$

Then, using 4.4 and 4.6, we deduce that

$$
\phi^{\prime}(t) \psi(t) \leq \frac{1}{m+1}\left(\phi^{\prime}(t)\right)^{2} \leq \frac{1}{2(m+1)} \phi \psi^{\prime}(t)
$$

which implies that

$$
\begin{equation*}
\left(\psi(t) \phi(t)^{-2 m-2}\right)^{\prime} \geq 0 \tag{4.7}
\end{equation*}
$$

An integration of 4.7) from 0 to t gives to

$$
\begin{equation*}
\psi(t) \phi(t)^{-2 m-2} \geq \psi(0) \phi(0)^{-2 m-2} \equiv M \tag{4.8}
\end{equation*}
$$

Combining (4.4) with 4.8 and integrating the resultant differential inequality, we have

$$
\begin{equation*}
\phi(t)^{-2 m-1} \leq \phi(0)^{-2 m-1}-(2 m+1)(m+1) M t \tag{4.9}
\end{equation*}
$$

Since $\phi(0)>0,4.9$ shows that ϕ becomes infinite in a finite time

$$
t^{*} \leq T=\frac{\phi(0)^{-2 m-1}}{(2 m+1)(m+1)}
$$

This completes the proof.
Acknowledgments. The authors would like to thank the anonymous referees for their valuable comments and useful suggestions on this work.

References

[1] J. M. Ball; Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Q. J. Math. Oxford 28 (1977) 473-486.
[2] C. Bandle, H. Brunner; Blow-up in diffusion equations: A survey, J. Comput. Appl. Math. 97 (1998) 3-22.
[3] L. A. Caffarrelli, A. Friedman; Blow-up of solutions of nonlinear heat equations, J. Math. Anal. Appl. 129 (1988) 409-419.
[4] A. Friedman, B. McLeod; Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985) 425-447.
[5] V. A. Galaktionov, J. L. Váquez; The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst. 8 (2002) 399-433.
[6] H. Kielhöfer; Existenz und Regularität von Lösungen semilinearer parabolischer AnfangsRandwertprobleme, Math. Z. 142 (1975) 131-160.
[7] H. A. Levine; Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann. 214 (1975) 205-220.
[8] H. A. Levine; The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990) 262-288.
[9] F. Liang; Blow-up phenomena for a system of semilinear heat equations with nonlinear boundary flux, Nonlinear Anal. 75 (2012) 2189-2198.
[10] L. E. Payne, P .W. Schaefer; Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl. 328 (2007) 1196-1205.
[11] L. E. Payne, G. A. Philippin, P. W. Schaefer; Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl. 338 (2008) 438-447.
[12] L. E. Payne, G. A. Philippin, S. V. Piro; Blow-up phenomena for a semilinear heat equation with non-linear boundary condition II, Nonlinear. Anal. 73 (2010) 971-978.
[13] L. E. Payne, P. W. Schaefer; Lower bounds for blow-up time in parabolic problems under Newmann conditions, Appl. Anal. 85 (2006) 1301-1311.
[14] L. E. Payne, G. A. Philippin, P. W. Schaefer; Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. 69 (2008) 3495-3502.
[15] B. Straughan; Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998.
[16] F. B. Weissler; Local existence and nonexistence for semilinear parabolic equations in L_{p}, Indiana Univ. Math. J. 29 (1980) 79-102
[17] F. B. Weissler; Existence and nonexistence of global solutions for a heat equation, Israel J. Math. 38 (1-2) (1981) 29-40.

Shun-Tang Wu
General Education Center, National Taipei University of Technology, Taipei, 106 TaiWAN

E-mail address: stwu@ntut.edu.tw

