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REGULARITY CRITERIA OF SUPERCRITICAL
BETA-GENERALIZED QUASI-GEOSTROPHIC EQUATIONS

IN TERMS OF PARTIAL DERIVATIVES

KAZUO YAMAZAKI

Abstract. We study the two-dimensional beta-generalized supercritical quasi-

geostrophic equation, and in particular show that to obtain global regularity
results, one needs to bound only its partial derivative. Results may be gener-

alized to similar active scalars, e.g. the porous media equation.

1. Introduction and statement of results

We study the two-dimensional β-generalized surface quasi-geostrophic equation
(β-SQG)

∂θ

∂t
+ (u · ∇)θ + νΛ2αθ = 0

θ(x, 0) = θ0(x), u = Λ1−2β(−R2θ,R1θ)
(1.1)

and the three-dimensional porous media equation
∂θ

∂t
+ (u · ∇)θ + νΛ2αθ = 0

θ(x, 0) = θ0(x), u = −κ(∇p+ gγθ), ∇ · u = 0
(1.2)

In both equations, θ is a scalar function and Λ = (−∆)1/2 with α ∈ (0, 1/2), β ∈
[1/2, 1) as fixed parameters. In (1.1), θ represents temperature and we denoted
Riesz transform by R. In (1.2), θ represents density, κ the matrix medium perme-
ability divided by viscosity in different directions respectively, g the acceleration
due to gravity, vector γ the last canonical vector e3. Moreover, p is the pressure
and u the liquid discharge by Darcy’s law (flux per unit area). Hereafter, without
loss of generality we set ν = 1 and denote ∂t = ∂

∂t and ∂i = ∂
∂xi

, i = 1, 2, 3. We
denote by Lp the Lebesgue space equipped with the norm ‖ · ‖Lp while those of
Sobolev space Hs with ‖ · ‖Hs and a horizontal gradient operator by ∇h = (∂1, ∂2).

The β-SQG was formally introduced in [19]. At β = 1/2, the equation reduces
to an important model in geophysical fluid dynamics used in meteorology and
oceanography (cf. [26]). The physical and mathematical similarity between the
β-SQG at ν = 0, β = 1

2 and the three-dimensional Euler equation as well as the
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β-SQG at ν > 0, α = β = 1
2 and the Navier-Stokes equation (NSE) are discussed

in [8]. The latter case is also physically relevant, modeling the Eckmann pumping
effect in the boundary layer near the surface. We also note that while the Navier-
Stokes and the Stokes systems are both microscopic equations, Darcy’s law yields
a macroscopic description of a flow in the porous medium (cf. [1]).

Due to the rescaling of the solutions to the β-SQG and the fact that the Lp-
norms of the solutions for 1 ≤ p ≤ ∞ are non-increasing (cf. [13]), we consider the
case α+ β ∈ (1, 3/2) the subcritical case, the case α+ β = 1 the critical case, and
the case α + β ∈ (1/2, 1) the supercritical case. We do so similarly for the system
(1.2) with β = 1/2.

The existence of global weak solution to (1.1) in case α > 0, β = 1/2 was
established in [27], followed by the existence of the global unique smooth solution
in case β = 1/2, α > 1/2 in [10]. The same result in the case β = 1/2, α = 1/2 was
completed in [22] while the authors in [2] showed that solutions with initial data
in L2 are locally smooth for any space dimension. These works were subsequently
generalized to allow β 6= 1/2 in [7, 24, 25, 36]; in particular, in [19] the author
proved the global regularity of the unique solution in the critical case for α and β
in the range of our consideration. More recently, the third and fourth proofs in the
case α = β = 1/2 appeared in [9, 20].

Concerning the system (1.2), the authors in [3] showed the existence of the
unique global solution in the critical and subcritical cases. In the supercritical
case, they obtained local results in Hs, s > (5 − 2α)/2 and extended to be global
under the condition ‖θ0‖Hs ≤ cν for some fixed small constant c > 0. In [33], the
author considered the supercritical case and obtained local results using iterative
process while in [39], the authors considered the critical case and obtained the
global existence and uniqueness of the solution in critical Besov spaces Ḃ3/p

p,1 (R3)
with 1 ≤ p ≤ ∞ by the method introduced in [22]. Finally, in [35] the author
considered a modified porous media equation, analogously to the modified QG
in [7] and obtained global regularity results in the critical case with initial data
θ0 ∈ Hs, s > 5/2.

Regularity criteria results for β-SQG started in [8]: at β = 1/2, ν = 0,

lim sup
t↗T

‖θ(t)‖Hm <∞ if and only if
∫ T

0

‖∇⊥θ(t)‖L∞dt <∞

Extension and improvements of this type of results were followed by many (e.g.
[4, 5, 11, 12, 14, 16, 29, 31, 32, 38, 40]). In particular, the author in [4] obtained
a Serrin-type regularity criteria which showed that at β = 1/2, α ∈ (0, 1

2 ], if the
solution θ(x, t) satisfied∫ T

0

‖∇⊥θ‖rLpdt <∞ for some p, r such that
2
p

+
2α
r
≤ 2α,

1
α
< p <∞,

then there is no singularity up to time T . These results are in harmony with
the finding of [8] that ∇⊥θ plays an analogous role for the system (1.1) as the
vorticity of the three-dimensional Euler equation does. Recently, the author in [34]
provided a first regularity criteria that relies only on a partial derivative of θ in the
critical case. In the proof, the fact that α + β = 1 was crucial and hence in the
supercritical case, it was not clear whether the global regularity relies only on a
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bound of a partial derivative of any order. In this paper we provide an affirmative
answer to this question. Let us present our results:

Theorem 1.1. Let α ∈ (0, 1
2 ), β ∈ [1/2, 1) so that α + β ∈ ( 1

2 , 1). If the solution
θ(x, t) to (1.1) in R2 or T2 satisfied∫ T

0

‖∂1θ‖rLpdt <∞ (1.3)

for some p, r such that

2
p

+
2α
r
≤ 2α,

2(1− α)
α2

< p <∞ if β = 1/2

2
p

+
2α
r
≤ 2α+ 2β − 1,

2(1− α)
α2 + 2β − 1

< p <
2(1− α)
2β − 1

if β > 1/2

then there is no singularity up to time T . Also, if

sup
t∈[0,T ]

‖∂1θ‖
L

2
2α+2β−1

is sufficiently small, then there is no singularity up to time T .

Theorem 1.2. Let α ∈ (0, 1/2). If the solution θ(x, t) to (1.2) in R3 or T3 satisfies∫ T

0

‖∇hθ‖rLpdt <∞ (1.4)

for some p, r such that
3
p

+
2α
r
≤ 2α,

9− 6α
2α2

< p <∞,

then there is no singularity up to time T . Also, if

sup
t∈[0,T ]

‖∇hθ(t)‖
L

3
2α

is sufficiently small, then there is no singularity up to time T .

Next theorem was partially inspired by the work in [28] where the author ob-
tained a regularity criteria for the NSE in terms of div(u/|u|) (see also [6]). We
make use of the fact that that due to the incompressibility of u,

−
2∑
i=1

∂1ui∂1iθ = (∂1θ)2
2∑
i=1

∂i

(
∂1ui
∂1θ

)
= (∂1θ)2 div

(
∂1u

∂1θ

)
Theorem 1.3. Let α ∈ (0, 1/2), β ∈ [1/2, 1) so that α+β ∈ (1/2, 1). If the solution
θ(x, t) to (1.1) in R2 or T2 satisfies∫ T

0

‖ div(
∂1u

∂1θ
)‖rLpdt <∞ (1.5)

for some p, r such that

2
p

+
2α
r
≤ 2α,

2(1− α)2

α3
< p <∞ if β = 1/2

2
p

+
2α
r
≤ 2α,

2(1− α)2

α(α2 + 2β − 1)
< p <

2(1− α)2

α(2β − 1)
if β > 1/2
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then there is no singularity up to time T . Also, if

sup
t∈[0,T ]

‖ div(
∂1u

∂1θ
)‖L1/α <∞,

then there exists C = C(α, β) such that

‖θ0‖L∞ < C

which implies that there is no singularity up to time T .

Remark 1.4. (1) The Roles of x1, x2, x3 in the hypothesis may be switched.
(2) Theorem 1.1 may be seen as a component reduction type results in compari-

son to the [4, Theorem 1.1]. In the case of T3, one may also compare our Theorem
1.2 with [39, Theorem 1.3] (wee also [3, Remark 2.4]). Upon succeeding the reduc-
tion component type result, it is common that the range of p, r become restrictive
(cf. e.g. [23]). From the proof, it becomes clear that one can also extend Theorems
1.1 and 1.3 for dispersive SQG introduced in [21].

(3) In fact, in the case of β-SQG with β = 1
2 , because Λ̂u2(ξ) = ∂̂1θ(ξ) we have

shown that ∫ T

0

‖Λu2‖rLpdt <∞

under the same condition of Theorem 1.1 implies global regularity. It is not difficult
to show that there exists a constant c > 0 such that

‖Λu2‖Lp ≤ c‖∇u2‖Lp

holds for p ∈ (1,∞). Hence, we have also shown that∫ T

0

‖∇u2‖rLpdt <∞

implies global regularity of the solution. In relevance, we refer readers to [29] in
which the author obtained a regularity criteria that involves ∇u.

(4) Results of this type exist for NSE (e.g. [23]). However, to the best of our
knowledge, there does not exist any regularity criteria in terms of partial derivatives
for the generalized NSE with fractional Laplacian with power arbitrary close to zero.

(5) In general for systems like NSE or MHD, one relies on a decomposition of
nonlinear term such as the [23, Lemma 2.2] that makes use of the incompressibility
of the solution itself. The key observation in this paper is that if we start with
the Lp estimate of a partial derivative for p > 2, then because the vector u dotted
with a gradient within the nonlinear term is incompressible, the partial derivatives
within the nonlinear term may be shifted to miss one direction.

(6) It is not clear if we can obtain analogous results for different range of α and
β as considered in [25].

In the next section, we prove Theorems 1.1 and 1.3. The proof of Theorem 1.2 is
similar to that of Theorem 1.1 and will be addressed in [37] with different results;
hence we just sketch it in the Appendix.

2. Proofs

To prove Theorem 1.1, we need the following proposition.
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Proposition 2.1. Let α ∈ (0, 1
2 ), β ∈ [1/2, 1) so that α+β ∈ ( 1

2 , 1). If the solution
θ(x, t) to (1.1) in [0, T ] satisfies (1.3), then

sup
t∈[0,T ]

‖∂1θ(t)‖
2αp

2+p(1−2β)

L
2αp

2+p(1−2β)
+ ‖∂2θ(t)‖

2αp
2+p(1−2β)

L
2αp

2+p(1−2β)

+
∫ T

0

‖∂1θ‖
2αp

2+p(1−2β)

L
( α
1−α )[ 2p

2+p(1−2β) ]
+ ‖∂2θ‖

2αp
2+p(1−2β)

L
( α
1−α )[ 2p

2+p(1−2β) ]
dt <∞

Proof. We fix p and r that satisfy (1.3) and then define

q =
2αp

2 + p(1− 2β)

One can check that q ∈ (2,∞). We apply ∂1 on (1.1), multiply by q|∂1θ|q−2∂1θ and
integrate in space to obtain

∂t‖∂1θ‖qLq + q

∫
(Λ2α∂1θ)|∂1θ|q−2∂1θ = −q

∫
∂1((u · ∇)θ)|∂1θ|q−2∂1θ

�

We use the following lemma from [17].

Lemma 2.2. For α ∈ [0, 1], x ∈ R2, T2,Λ2αθ ∈ Ls, s ≥ 2, we have

2
∫
|Λαθ s2 |2 ≤ s

∫
Λ2αθ|θ|s−2θ .

Proof of Theorem 1.1. By this lemma and the homogeneous Sobolev embedding
Ḣα ↪→ L

2
1−α , we have

c(q, α)‖∂1θ‖q
L

q
1−α
≤ 2

∫
|Λα(∂1θ)q/2|2 ≤ q

∫
(Λ2α∂1θ)|∂1θ|q−2∂1θ

Expanding the right hand side now, we have

q

∫
∂1((u · ∇)θ)|∂1θ|q−2∂1θ = q

∫
∂1u · ∇θ|∂1θ|q−2∂1θ + u · ∇∂1θ|∂1θ|q−2∂1θ

The second term vanishes by the incompressibility of u. We further bound by

− q
∫
∂1u1∂1θ|∂1θ|q−2∂1θ + ∂1u2∂2θ|∂1θ|q−2∂1θ

≤ c
(
‖∂1u1‖

L
2q

2(1−α)−q(2β−1)
‖∂1θ‖q−1

Lq ‖∂1θ‖
L

2q
2α+q(2β−1)

+ ‖∂1u2‖
L

2q
2(1−α)−q(2β−1)

‖∂2θ‖Lq‖∂1θ‖q−2
Lq ‖∂1θ‖

L
2q

2α+q(2β−1)

)
≤ c
(
‖∂1R2θ‖

L
q

1−α
‖∂1θ‖q−1

Lq ‖∂1θ‖
L

2q
2α+q(2β−1)

+ ‖∂1R1θ‖
L

q
1−α
‖∂2θ‖Lq‖∂1θ‖q−2

Lq ‖∂1θ‖
L

2q
2α+q(2β−1)

)
by Hölder’s inequality and the homogeneous Sobolev embedding

Ẇ 2β−1, q
1−α ↪→ L

2q
2(1−α)−q(2β−1) .

Now we use continuity of the Riesz transform in Ls, s ∈ (1,∞) for a bound from
above,

c
(
‖∂1θ‖

L
q

1−α
‖∂1θ‖q−1

Lq ‖∂1θ‖
L

2q
2α+q(2β−1)
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+ ‖∂1θ‖
L

q
1−α
‖∂2θ‖Lq‖∂1θ‖q−2

Lq ‖∂1θ‖
L

2q
2α+q(2β−1)

)
≤ ε‖∂1θ‖q

L
q

1−α
+ c‖∂1θ‖

q
q−1

L
2q

2α+q(2β−1)
(‖∂1θ‖qLq + ‖∂2θ‖qLq )

for any ε > 0 where we used Young’s inequality twice. Next, applying ∂2 on (1.1)
and following similar procedure as above leads to

∂t‖∂2θ‖qLq + c(q, α)‖∂2θ‖q
L

q
1−α

≤ −q
∫
∂2u1∂1θ|∂2θ|q−2∂2θ + ∂2u2∂2θ|∂2θ|q−2∂2θ

= −q
∫
∂2u1∂1θ|∂2θ|q−2∂2θ − ∂1u1∂2θ|∂2θ|q−2∂2θ

≤ ε‖∂2θ‖q
L

q
1−α

+ c‖∂1θ‖
q
q−1

L
2q

2α+q(2β−1)
‖∂2θ‖qLq

where the only difference from the previous estimate was the equality which made
use of the incompressibility of u so that ∂1u1 = −∂2u2.

In summary, for ε > 0 sufficiently small we have

∂t(‖∂1θ‖qLq + ‖∂2θ‖qLq ) + ‖∂1θ‖q
L

q
1−α

+ ‖∂2θ‖q
L

q
1−α

≤ c‖∂1θ‖
q
q−1

L
2q

2α+q(2β−1)
(‖∂1θ‖qLq + ‖∂2θ‖qLq )

Thus, by Gronwall’s inequality and (1.3),

sup
t∈[0,T ]

‖∂1θ(t)‖qLq + ‖∂2θ(t)‖qLq +
∫ T

0

‖∂1θ‖q
L

q
1−α

+ ‖∂2θ‖q
L

q
1−α

dt

≤ c(‖∂1θ0‖qLq + ‖∂2θ0‖qLq )e
R T
0 ‖∂1θ‖

r
Lpdt <∞

This completes the proof. �

We will use the following well-known commutator estimate due to [18].

Lemma 2.3. Let p ∈ (1,∞), s > 0, f, g ∈ W s,p. Then there exists some constant
c > 0 independent of f, g such that for 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4
, p2, p3 ∈ (1,∞)

‖Λs(fg)− fΛsg‖Lp ≤ c(‖∇f‖Lp1 ‖Λs−1g‖Lp2 + ‖Λsf‖Lp3‖g‖Lp4 )

Proof of Theorem 1.1. For any s ∈ R+, applying Λs on (1.1), taking an L2-inner
product with Λsθ we have

1
2
∂t‖Λsθ‖2L2 + ‖Λα+sθ‖2L2

≤ c
(
‖∇u‖

L
2
α
‖Λs−1∇θ‖L2 + ‖Λsu‖

L
1

1−β
‖∇θ‖

L
2

2β+α−1

)
‖Λsθ‖

L
2

1−α

≤ c‖∇θ‖
L

2
α+2β−1

‖Λsθ‖L2‖Λs+αθ‖L2

by the homogeneous Sobolev embeddings

Ẇ 2β−1, 2
α+2β−1 ↪→ L

2
α , Ḣ2β−1 ↪→ L

1
1−β , Ḣα ↪→ L

2
1−α

By Young’s and Gagliardo-Nirenberg inequalities we have the bound
1
2
‖Λs+αθ‖2L2 + c‖θ‖2(

2α+2β−1
1+α )

L∞ ‖Λ2+αθ‖2(
2−α−2β

1+α )

L2 ‖Λsθ‖2L2 .
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Let us use the fact that (cf. [13])

‖θ(t)‖L∞ ≤ ‖θ0‖L∞

Gronwall’s inequality implies that to complete the proof it suffices to show that∫ T

0

‖Λ2+αθ‖2L2dt <∞

We apply ∆ to (1.1) and take an L2-inner product with ∆θ to estimate

1
2
∂t‖∆θ‖2L2 + ‖Λα∆θ‖2L2

≤ c
(
‖∇u‖

L
2
εα
‖Λ∇θ‖L2 + ‖Λ2u‖

L
1

1−β
‖∇θ‖

L
2

εα+2β−1

)
‖∆θ‖

L
2

1−εα

by Lemma 2.3 where we choose

ε =
2 + p(1− 2β)− 2α

pα2

One can readily check using (1.3) and the range of α and β that ε ∈ (0, 1). Now by
the homogeneous Sobolev embeddings of

Ẇ 2β−1, 2
εα+2β−1 ↪→ L

2
εα , Ḣ2β−1 ↪→ L

1
1−β

and Gagliardo-Nirenberg inequality, followed by Young’s inequality we bound the
right-hand side as

c‖∇θ‖
L

2
2β+εα−1

‖∆θ‖2−εL2 ‖Λ2+αθ‖εL2 ≤
1
2
‖Λα∆θ‖2L2 + c‖∇θ‖

2
2−ε

L
2

2β+εα−1
‖∆θ‖2L2

Hence, absorbing the dissipative term, Gronwall’s inequality implies

‖∆θ(t)‖2L2 +
∫ t

0

‖Λα∆θ‖2L2dt ≤ c‖∆θ0‖2L2e

R T
0 ‖∇θ‖

2
2−ε

L
2

2β+εα−1
dt

for any t ∈ [0, T ]. Next, we will use the following elementary inequality several
times: for a, b ≥ 0,

(a+ b)s ≤ 2s(as + bs), ∀s ≥ 0 (2.1)

Using this inequality, we observe that∫ T

0

‖∇θ‖
2

2−ε

L
2

2β+εα−1
dt

≤
∫ T

0

(∫
2

1
2β+εα−1 [|∂1θ|

2
2β+εα−1 + |∂2θ|

2
2β+εα−1 ]

) 2β+εα−1
2−ε

dt

≤ 2
2β+εα
2−ε

∫ T

0

‖∂1θ‖
2

2−ε

L
2

2β+εα−1
+ ‖∂2θ‖

2
2−ε

L
2

2β+εα−1
dt

≤ c(α, β, ε, T )
∫ T

0

‖∂1θ‖
2αp

2+p(1−2β)

L
( α
1−α ) 2p

2+p(1−2β)
+ ‖∂2θ‖

2αp
2+p(1−2β)

L
( α
1−α ) 2p

2+p(1−2β)
dt <∞ ,

due to Proposition 2.1. This completes the proof of the first claim.
Now we prove the second claim. By the first claim, it suffices to show that∫ T

0

‖∂2θ‖rLpdt <∞
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for some p, r that satisfy(1.3). We fix p in such a range, apply ∂2 on (1.1), multiply
by p|∂2θ|p−2∂1θ and integrate in space to estimate

∂t‖∂2θ‖pLp + p

∫
(Λ2α∂2θ)|∂2θ|p−2∂2θ = −p

∫
∂2((u · ∇)θ)|∂2θ|p−2∂2θ

Since p ≥ 2, by Lemma 2.2 and the same homogeneous Sobolev embedding, as
before, we see that due to the incompressibility of u,

∂t‖∂2θ‖pLp + c(p, α)‖∂2θ‖p
L

p
1−α

≤ −p
∫
∂2u1∂1θ|∂2θ|p−2∂2θ + p

∫
∂1u1∂2θ|∂2θ|p−2∂2θ

≤ p‖∂2u1‖
L

2p
2(1−α)−p(2β−1)

‖∂1θ‖
L

2
2α+2β−1

‖∂2θ‖p−1

L
p

1−α
+ p‖∂1u1‖

L
1
α
‖∂2θ‖p

L
p

1−α

by Hölder’s inequality. Now Sobolev’s embeddings

Ẇ 2β−1, 2
2α+2β−1 ↪→ L

1
α , Ẇ 2β−1, p

1−α ↪→ L
2p

2(1−α)−p(2β−1)

we obtain

∂t‖∂2θ‖pLp ≤
(
c sup
t∈[0,T ]

‖∂1θ‖
L

2
2α+2β−1

− c(p, α)
)
‖∂2θ‖p

L
p

1−α

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.3. We fix p and r that satisfy (1.5). It is important for the
proof below to note that

2(1− α)2

α(α2 + 2β − 1)
>

2
α(2α+ 2β − 1)

Now define q = pα for which one can verify that q ∈ (2,∞). We apply ∂1 on (1.1),
multiply by q|∂1θ|q−2∂1θ and integrate in space to obtain

∂t‖∂1θ‖qLq + q

∫
(Λ2α∂1θ)|∂1θ|q−2∂1θ = −q

∫
∂1((u · ∇)θ)|∂1θ|q−2∂1θ

Lemma 2.2, and the same homogeneous Sobolev embedding, as before, lead to

∂t‖∂1θ‖qLq + c(q, α)‖∂1θ‖q
L

q
1−α
≤ −q

∫
∂1((u · ∇)θ)|∂1θ|q−2∂1θ

= −q
2∑
i=1

∫
∂1ui∂iθ|∂1θ|q−2∂1θ

due to the incompressibility of u. We integrate by parts once more and obtain

∂t‖∂1θ‖qLq + c(q, α)‖∂1θ‖q
L

q
1−α
≤ c‖θ‖L∞‖∂1θ‖

L
q

1−α
‖∂1θ‖q−1

Lq ‖ div
(∂1u

∂1θ

)
‖
L
q
α

by Hölder’s inequality. Now Young’s inequality gives

∂t‖∂1θ‖qLq + c(q, α)‖∂1θ‖q
L

q
1−α
≤ ε‖∂1θ‖q

L
q

1−α
+ c‖θ‖

q
q−1
L∞ ‖∂1θ‖qLq‖ div

(∂1u

∂1θ

)
‖

q
q−1

L
q
α

As shown in [13], for ε > 0 sufficiently small Gronwall’s inequality implies

‖∂1θ(T )‖qLq +
∫ T

0

‖∂1θ‖q
L

q
1−α

dt ≤ c‖∂1θ0‖qLqe
R T
0 ‖ div

(
∂1u
∂1θ

)
‖

q
q−1

L
q
α

dt



EJDE-2013/217 REGULARITY CRITERIA OF SUPERCRITICAL SQG 9

By the definition of q and (1.5), we have∫ T

0

‖∂1θ‖q
L

q
1−α

dt <∞

That is, we have proved the hypothesis of Theorem 1.1. This completes the proof
of the first claim.

Next, we prove the second claim. We take p that satisfies (1.3). An identical
process as above gives

∂t‖∂1θ‖pLp + c(p, α)‖∂1θ‖p
L

p
1−α
≤ p(p− 1)‖θ0‖L∞‖∂1θ‖p

L
p

1−α
‖div(

∂1u

∂1θ
)‖
L

1
α

Thus,

∂t‖∂1θ‖pLp ≤
(
p(p− 1)‖θ0‖L∞ sup

t∈[0,T ]

‖ div(
∂1u

∂1θ
)(t)‖

L
1
α
− c(p, α)

)
‖∂1θ‖p

L
p

1−α

This completes the proof of Theorem 1.3. �

3. Appendix

In this section we prove Theorem 1.2. It was shown in [3] that u of (1.2) may be
decomposed as u = c(θ+Pθ) for some constant c > 0 where P is a type of singular
integral operator bounded in Lp, p ∈ (1,∞). Immediately, we have

‖u‖Lp ≤ c‖θ‖Lp , p ∈ (1,∞). (3.1)

Proposition 3.1. Let α ∈ (0, 1/2). If the solution θ(x, t) to (1.2) in [0, T ] satisfies
(1.4), then

sup
t∈[0,T ]

‖∂3θ(t)‖
2pα
3

L
2pα
3

+
∫ T

0

‖∂3θ‖
2pα
3

L
2pα

3−2α
dt <∞

Proof. We fix p and r that satisfy (1.4) and define q = 2pα
3 for which it is easy to

check that q ∈ (2,∞). We apply ∂3 to (1.2), multiply by q|∂3θ|q−2∂3θ, integrate in
space to obtain

∂t‖∂3θ‖qLq + q

∫
(Λ2α∂3θ)|∂3θ|q−2∂3θ = −q

∫
∂3((u · ∇)θ)|∂3θ|q−2∂3θ

The proof of Lemma 2.2 is generalizable to higher dimension (See [3, 30] for details);
hence, by the homogeneous Sobolev embedding

c(q, α)‖∂3θ‖q
L

3q
3−2α

≤ c‖(∂3θ)q/2‖2Ḣα ≤ q
∫

(Λ2α∂3θ)|∂3θ|q−2∂3θ

On the right hand side, we have due to the incompressibility of u,∫
∂3u1∂1θ|∂3θ|q−2∂3θ + ∂3u2∂2θ|∂3θ|q−2∂3θ + (−∂1u1 − ∂2u2)∂3θ|∂3θ|q−2∂3θ

which by Hölder’s and Young’s inequalities and (3.1), we can bound by

c‖∂3θ‖
L

3q
3−2α
‖∇hθ‖

L
3q
2α
‖∂3θ‖q−1

Lq ≤ ε‖∂3θ‖q
L

3q
3−2α

+ c‖∇hθ‖
q
q−1

L
3q
2α
‖∂3θ‖qLq

Thus, for ε > 0 sufficiently small,

∂t‖∂3θ‖qLq + ‖∂3θ‖q
L

3q
3−2α

≤ c‖∇hθ‖
q
q−1

L
3q
2α
‖∂3θ‖qLq

Gronwall’s inequality and (1.4) completes the proof. �
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The following proposition can be obtained by a similar process.

Proposition 3.2. Let α ∈ (0, 1
2 ). If the solution θ(x, t) to (1.2) in [0, T ] satisfies

(1.4), then

sup
t∈[0,T ]

‖∇hθ(t)‖
2pα
3

L
2pα
3

+
∫ T

0

‖∇hθ‖
2pα
3

L
2pα

3−2α
dt <∞

Proof of Theorem 1.2. Using (1.4) and the range of α, one can readily check that

4pα2

4pα2 − 9 + 6α
≤ 2pα

3
With this in mind, by (2.1), Propositions 3.1 and 3.2, as before, we obtain∫ T

0

‖∇θ‖
4pα2

4pα2−9+6α

L
2pα

3−2α
dt ≤ c

∫ T

0

‖∇hθ‖
2pα
3

L
2pα

3−2α
+ ‖∂3θ‖

2pα
3

L
2pα

3−2α
dt <∞

Now we use Lemma 2.3 to estimate (1.2), after applying Λ2 and taking an L2-inner
product with Λ2θ,

∂t‖Λ2θ‖2L2 + ‖Λ2+αθ‖2L2

≤ c(‖∇u‖
L

3
εα
‖Λ∇θ‖L2 + ‖∆u‖L2‖∇θ‖

L
3
εα

)‖∆θ‖
L

6
3−2εα

≤ c‖∇θ‖
L

3
εα
‖Λ2θ‖2−εL2 ‖Λ2+αθ‖εL2

≤ 1
2
‖Λ2+αθ‖2L2 + c‖∇θ‖

2
2−ε

L
3
εα
‖Λ2θ‖2L2

by (3.1), Gagliardo-Nirenberg and Young’s inequalities. We choose ε = 3
α ( 3−2α

2pα )
for which it is easy to check that ε ∈ (0, 1). By Gronwall’s inequality,

sup
t∈[0,T ]

‖Λ2θ(t)‖2L2 +
∫ T

0

‖Λ2+αθ‖2L2dt ≤ ‖Λ2θ0‖2L2e

R T
0 ‖∇θ‖

4pα2

4pα2−9+6α

L

2pα
3−2α

dt

Similarly, by Lemma 2.3 choosing the same ε, we see that

sup
t∈[0,T ]

‖Λ3θ(t)‖2L2 +
∫ T

0

‖Λ3+αθ‖2L2dt <∞

In summary, by the inhomogeneous Sobolev embedding we have∫ T

0

‖∇θ‖L∞dt ≤ c
∫ T

0

‖θ‖H3dt ≤ c sup
t∈[0,T ]

‖θ(t)‖H3T <∞

This completes the proof of the first claim.
For the second claim, let us denote by ∇2,3 = (0, ∂2, ∂3). By the previous result,

it suffices to show that ∫ T

0

‖∇2,3θ‖rLpdt <∞

for some p, r that (1.4) is satisfied. We fix p in such a range, apply ∇2,3 on (1.2),
multiply by p|∇2,3θ|p−2∇2,3θ and integrate in space to estimate as before

∂t‖∇2,3θ‖pLp + c(p, α)‖∇2,3θ‖p
L

3p
3−2α

≤ −p
∫
∂2u1∂1θ|∇2,3θ|p−2∂2θ + ∂3u1∂1θ|∇2,3θ|p−2∂3θ

+ ∂2u2∂2θ|∇2,3θ|p−2∂2θ + ∂3u2∂2θ|∇2,3θ|p−2∂3θ
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+ ∂2u3∂3θ|∇2,3θ|p−2∂2θ + (−∂1u1 − ∂2u2)∂3θ|∇2,3θ|p−2∂3θ

≤ c‖∇hθ‖
L

3
2α
‖∇2,3θ‖p

L
3p

3−2α

Hence,

∂t‖∇2,3θ‖pLp ≤ c
(

sup
t∈[0,T ]

‖∇hθ(t)‖
L

3
2α
− c(p, α)

)
‖∇2,3θ‖p

L
3p

3−2α

This completes the proof of Theorem 1.2. �
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