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THIRD-ORDER OPERATOR-DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS AND OPERATORS IN

THE BOUNDARY CONDITIONS

ARAZ R. ALIEV, NAZILA L. MURADOVA

Abstract. We study a third-order operator-differential equation on the semi-
axis with a discontinuous coefficient and boundary conditions which include an

abstract linear operator. Sufficient conditions for the well-posed and unique

solvability are found by means of properties of the operator coefficients in a
Sobolev-type space.

1. Introduction

It is known that many problems of partial differential equations can be reduced to
problems for differential equations whose coefficients are unbounded operators in a
Hilbert space. Many articles are dedicated to the study of problems with operators
in the boundary conditions for operator-differential equations of second order (see,
for example, [1, 7, 10, 13, 16, 17, 18, 25] and the references therein); however, these
studies are far from the full completion. Note that only a few papers are dedicated
to the study of such boundary-value problems for operator-differential equations of
third order (see, for example, [5]).

This article is dedicated to the study of boundary-value problem for a class
of third-order operator-differential equations with a discontinuous coefficient; one
of the boundary conditions includes an abstract linear operator. Such equations
cover some non-classical problems of mathematical physics (see [8]), investigated in
inhomogeneous environments.

Let H be a separable Hilbert space with the scalar product (x, y), x, y ∈ H and
let A be a self-adjoint positive-definite operator in H (A = A∗ ≥ cE, c > 0, E is the
identity operator). By Hγ (γ ≥ 0) we denote the scale of Hilbert spaces generated
by the operator A; i.e., Hγ = D(Aγ), (x, y)γ = (Aγx,Aγy), x, y ∈ D(Aγ), for γ = 0
we consider that H0 = H, (x, y)0 = (x, y), x, y ∈ H.
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We denote by L2([a, b];H), −∞ ≤ a < b ≤ +∞, the Hilbert space of all vector
functions defined on [a, b] with values in H and endowed with the norm

‖f‖L2([a,b];H) =
(∫ b

a

‖f(t)‖2Hdt
)1/2

.

Following the book [14], we introduce the Hilbert space

W 3
2 ([a, b];H) = {u(t) : u′′′(t) ∈ L2([a, b];H), A3u(t) ∈ L2([a, b];H)}

endowed with the norm

‖u‖W 3
2 ([a,b];H) =

(
‖u′′′‖2L2([a,b];H) + ‖A3u‖2L2([a,b];H)

)1/2
.

Hereafter, derivatives are understood in the sense of distributions in a Hilbert
space [14]. The spaces L2((−∞,+∞);H), W 3

2 ((−∞,+∞);H), L2([0,+∞);H)
and W 3

2 ([0,+∞);H) will be denoted by L2(R;H), W 3
2 (R;H), L2(R+;H) and

W 3
2 (R+;H), respectively.
Further, we denote by L(X,Y ) the space of all linear bounded operators acting

from a Hilbert space X to another Hilbert space Y , and we denote by σ(·) the
spectrum of the operator (·).

Consider the boundary value problem in the Hilbert space H

−u′′′(t) + ρ(t)A3u(t) +
3∑
j=1

Aj
d3−ju(t)
dt3−j

= f(t), t ∈ R+, (1.1)

u′(0) = 0, u′′(0) = Ku(0), (1.2)

where A = A∗ ≥ cE, c > 0, K ∈ L(H5/2, H1/2), ρ(t) = α, if 0 ≤ t ≤ 1, ρ(t) = β, if
1 < t < +∞, here α, β are positive numbers, f(t) ∈ L2(R+;H), u(t) ∈W 3

2 (R+;H).

Definition 1.1. If a vector function u(t) ∈ W 3
2 (R+;H) satisfies (1.1) almost ev-

erywhere in R+, then it is called a regular solution of equation (1.1).

Definition 1.2. If for any f(t) ∈ L2(R+;H) there exists a regular solution of (1.1),
which satisfies the boundary conditions (1.2) in the sense that

lim
t→0
‖u′(t)‖H3/2 = 0, lim

t→0
‖u′′(t)−Ku(t)‖H1/2 = 0

and the following inequality holds

‖u‖W 3
2 (R+;H) ≤ const ‖f‖L2(R+;H),

then we say that the problem (1.1), (1.2) is regularly solvable.

Similar kind of problems on a semi-axis for elliptic operator-differential equations
of the second order is considered in papers [13, 16, 17]. We should especially note
the work [21] which considers the non-local boundary value problems for second
order elliptic operator-differential equations on the interval with the coefficients
belonging to a broader class of discontinuous functions, while the coefficients in
the boundary conditions are complex numbers. In [2, 8, 11, 12, 15, 19, 20, 22, 23]
along with other problems investigated the solvability of boundary-value problems
for elliptic operator-differential equations of the general form when the coefficients
in the boundary conditions are complex numbers and the equations do not contain
discontinuous coefficients. Such case also is considered in [3, 6] for the third and
fourth orders equations with multiple characteristics. Note that problem (1.1), (1.2)
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is investigated in the case A3 = 0, K = 0 in [4] and when ρ(t) ≡ 1, t ∈ R+, K = 0
in [15].

In this article, we obtain the conditions of regular solvability of the boundary-
value problem (1.1), (1.2) by means of properties of operator coefficients.

2. Main results

Before proceeding to the consideration of the question posed, let us introduce
additional notation. Let

W 3
2,K(R+;H) = {u(t) : u(t) ∈W 3

2 (R+;H), u′(0) = 0, u′′(0) = Ku(0)}

and denote by P0, P1 and P the operators acting from the space W 3
2,K(R+;H) into

the space L2(R+;H) by the following rules, respectively:

P0u(t) = −u′′′(t) + ρ(t)A3u(t),

P1u(t) = A1u
′′(t) +A2u

′(t) +A3u(t),

Pu(t) = P0u(t) + P1u(t), u(t) ∈W 3
2,K(R+;H).

Put B = A1/2KA−5/2, κ(c1, c2, c3) = c1
3
√
β2 + c2

3
√
αβ + c3

3
√
α2 and

Kα,β = (E +
1

3
√
α2
ω2A

−2K)(κ(1, 1, 1)ω2E − κ(1, ω2, ω1)e
3√α(ω2−1)A)

+
(
E +

1
3
√
α2
ω1A

−2K
)(
κ(1, ω1, ω2)e

3√α(ω1−1)A − κ(1, 1, 1)ω1E
)
,

where ω1 = − 1
2 +

√
3

2 i, ω2 = − 1
2 −

√
3

2 i.

Lemma 2.1. Let A = A∗ ≥ cE, c > 0, K ∈ L(H5/2, H1/2), − 3
√
α2ω2 /∈ σ(B)

and the operator Kα,β have a bounded inverse operator in H5/2. Then the equation
P0u = 0 has only the trivial solution in the space W 3

2,K(R+;H).

Proof. The general solution of the equation P0u(t) = 0 in the space W 3
2 (R+;H)

has the following form [24]:

u0(t) =

{
u0,1(t) = e

3√αω1tAϕ0 + e
3√αω2tAϕ1 + e−

3√α(1−t)Aϕ2, 0 ≤ t < 1,
u0,2(t) = e

3√βω1(t−1)Aϕ3 + e
3√βω2(t−1)Aϕ4, 1 < t < +∞,

where the vectors ϕk ∈ H5/2, k = 0, 1, 2, 3, 4, are determined from the boundary
conditions (1.2) and the condition u0(t) ∈ W 3

2 (R+;H). Therefore, to determine
the vectors ϕk, k = 0, 1, 2, 3, 4, we have the following relations:

u′0,1(0) = 0, u′′0,1(0) = Ku0,1(0), u0,1(1) = u0,2(1),

u′0,1(1) = u′0,2(1), u′′0,1(1) = u′′0,2(1).
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From these relations we obtain the following system of equations with respect to
ϕk, k = 0, 1, 2, 3, 4:

ω1ϕ0 + ω2ϕ1 + e−
3√αAϕ2 = 0 ,

ω2
1ϕ0 + ω2

2ϕ1 + e−
3√αAϕ2 =

1
3
√
α2
A−2K(ϕ0 + ϕ1 + e−

3√αAϕ2),

e
3√αω1Aϕ0 + e

3√αω2Aϕ1 + ϕ2 = ϕ3 + ϕ4 ,

3
√
αω1e

3√αω1Aϕ0 + 3
√
αω2e

3√αω2Aϕ1 + 3
√
αϕ2 = 3

√
βω1ϕ3 + 3

√
βω2ϕ4 ,

3
√
α2ω2

1e
3√αω1Aϕ0 + 3

√
α2ω2

2e
3√αω2Aϕ1 + 3

√
α2ϕ2 = 3

√
β2ω2

1ϕ3 + 3
√
β2ω2

2ϕ4 .

(2.1)

Taking into account ω1ω2 = 1, ω1 + ω2 = −1, ω2
1 = ω2, ω2

2 = ω1, from the system
(2.1) after simple transformations with respect to ϕ0 we have

(E +
1

3
√
α2
ω2A

−2K)(κ(1, 1, 1)ω2E − κ(1, ω2, ω1)e
3√α(ω2−1)A)ϕ0

+ (E +
1

3
√
α2
ω1A

−2K)(κ(1, ω1, ω2)e
3√α(ω1−1)A − κ(1, 1, 1)ω1E)ϕ0 = 0.

Consequently,

Kα,βϕ0 ≡
[(
E +

1
3
√
α2
ω2A

−2K
)(
κ(1, 1, 1)ω2E − κ(1, ω2, ω1)e

3√α(ω2−1)A
)

+
(
E +

1
3
√
α2
ω1A

−2K
)(
κ(1, ω1, ω2)e

3√α(ω1−1)A − κ(1, 1, 1)ω1E
)
]ϕ0 = 0.

(2.2)
By the assumption of this lemma, Kα,β has a bounded inverse operator in the space
H5/2, then from equation (2.2) follows that ϕ0 = 0. Considering ϕ0 = 0 in the first
and second equations of (2.1), we obtain

ϕ1 = −ω1e
− 3√αAϕ2, (2.3)

(E +
1

3
√
α2
ω1A

−2K)e−
3√αAϕ2 = 0. (2.4)

In turn, by assumption − 3
√
α2ω2 /∈ σ(B) from (2.4) it follows that ϕ2 = 0, and

therefore, from (2.3) ϕ1 = 0. Now, considering ϕ0 = ϕ1 = ϕ2 = 0 in the fourth and
fifth equations of (2.1), we obtain:

ω1ϕ3 + ω2ϕ4 = 0,
ω2ϕ3 + ω1ϕ4 = 0.

And from these equations we have that ϕ3 = ϕ4 = 0. Thus, u0(t) = 0. The proof
is complete. �

Let us consider the question of regular solvability of problem (1.1), (1.2) when
A1 = A2 = A3 = 0.

Lemma 2.2. In the conditions of Lemma 2.1, the problem

−u′′′(t) + ρ(t)A3u(t) = f(t), t ∈ R+, (2.5)

u′(0) = 0, u′′(0) = Ku(0) (2.6)

is regularly solvable.
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Proof. We show that the equation P0u(t) = f(t) has a solution u(t) ∈W 3
2,K(R+;H)

for any f(t) ∈ L2(R+;H). First, we continue the vector-function f(t) in such a way
that f(t) = 0 for t < 0. We denote the new function by g(t). Let ĝ(ξ) be the Fourier
transform of the vector-function g(t); i.e.,

ĝ(ξ) =
1√
2π

∫ +∞

−∞
g(t)e−iξtdt,

where the integral on the right side is understood in the sense of convergence on
the average in H. Then, using the direct and inverse Fourier transforms, it is clear
that the vector-functions

υ1(t) =
1

2π

∫ +∞

−∞
(iξ3E + αA3)−1

(∫ +∞

0

f(s)e−iξsds
)
eitξdξ, t ∈ R,

υ2(t) =
1

2π

∫ +∞

−∞
(iξ3E + βA3)−1

(∫ +∞

0

f(s)e−iξsds
)
eitξdξ, t ∈ R,

satisfy the equations

−d
3υ(t)
dt3

+ αA3υ(t) = g(t),

−d
3υ(t)
dt3

+ βA3υ(t) = g(t),

respectively, almost everywhere in R. We prove that υ1(t) and υ2(t) belong to
W 3

2 (R;H). By Plancherel’s theorem

‖υ1(t)‖2W 3
2 (R;H) = ‖υ′′′1 (t)‖2L2(R;H) + ‖A3υ1(t)‖2L2(R;H)

= ‖ − iξ3υ̂1(ξ)‖2L2(R;H) + ‖A3υ̂1(ξ)‖2L2(R;H),

where υ̂1(ξ) is the Fourier transform of the function υ1(t). Since

υ̂1(ξ) = (iξ3E + αA3)−1ĝ(ξ),

we have
‖ − iξ3υ̂1(ξ)‖L2(R;H) = ‖ − iξ3(iξ3E + αA3)−1ĝ(ξ)‖L2(R;H)

≤ sup
ξ∈R
‖ − iξ3(iξ3E + αA3)−1‖H→H‖ĝ(ξ)‖L2(R;H)

= sup
ξ∈R
‖ − iξ3(iξ3E + αA3)−1‖H→H‖g(t)‖L2(R;H).

(2.7)

It follows from the spectral theory of self-adjoint operators that

‖ − iξ3(iξ3E + αA3)−1‖ = sup
σ∈σ(A)

∣∣− iξ3(iξ3 + ασ3)−1
∣∣

= sup
σ∈σ(A)

|ξ|3

(ξ6 + α2σ6)1/2
≤ 1.

(2.8)

Therefore, from (2.7) it follows that −iξ3υ̂1(ξ) ∈ L2(R; H). Since

‖A3υ̂1(ξ)‖L2(R;H) = ‖A3(iξ3E + αA3)−1ĝ(ξ)‖L2(R;H)

≤ sup
ξ∈R
‖A3(iξ3E + αA3)−1‖H→H‖ĝ(ξ)‖L2(R;H)

= sup
ξ∈R
‖A3(iξ3E + αA3)−1‖H→H‖g(t)‖L2(R;H),

(2.9)
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again from the spectral theory of self-adjoint operators, we have

‖A3(iξ3E + αA3)−1‖ = sup
σ∈σ(A)

|σ3(iξ3 + ασ3)−1| = sup
σ∈σ(A)

σ3

(ξ6 + α2σ6)1/2
≤ 1
α
.

Thus, from (2.9) it follows that A3υ̂1(ξ) ∈ L2(R; H). Hence, υ1(t) ∈ W 3
2 (R;H).

Thus υ2(t) ∈W 3
2 (R;H).

Let us denote the restriction of the vector-function υ1(t) on [0, 1) by uα(t) and
the restriction of the vector-function υ2(t) on (1,+∞) by uβ(t). It is obvious, that
uα(t) ∈W 3

2 ([0, 1);H), uβ(t) ∈W 3
2 ((1,+∞);H). Then, from the theorem on traces

[14, ch. 1] it follows that dsuα(0)
dts , dsuα(1)

dts , dsuβ(0)
dts , dsuβ(1)

dts ∈ H5/2−s, s = 0, 1, 2.
Now, we denote

u(t) =

{
u1(t) = uα(t) + e

3√αω1tAψ0 + e
3√αω2tAψ1 + e−

3√α(1−t)Aψ2, 0 ≤ t < 1,
u2(t) = uβ(t) + e

3√βω1(t−1)Aψ3 + e
3√βω2(t−1)Aψ4, 1 < t < +∞,

where ψk ∈ H5/2, k = 0, 1, 2, 3, 4. The function u(t) belongs to W 3
2,K(R+;H), so

the vectors ψk, k = 0, 1, 2, 3, 4, can be determined from the following relations:

u′1(0) = 0, u′′1(0) = Ku1(0), u1(1) = u2(1), u′1(1) = u′2(1), u′′1(1) = u′′2(1).

From here with respect to ψk, k = 0, 1, 2, 3, 4, we have the system of equations

u′α(0) + 3
√
αω1Aψ0 + 3

√
αω2Aψ1 + 3

√
αAe−

3√αAψ2 = 0 ,

u′′α(0) + 3
√
α2A2

(
ω2

1ψ0 + ω2
2ψ1 + e−

3√αAψ2

)
= Kuα(0) +K

(
ψ0 + ψ1 + e−

3√αAψ2

)
,

uα(1) + e
3√αω1Aψ0 + e

3√αω2Aψ1 + ψ2 = uβ(1) + ψ3 + ψ4 ,

u′α(1) + 3
√
αω1Ae

3√αω1Aψ0 + 3
√
αω2Ae

3√αω2Aψ1 + 3
√
αAψ2

= u′β(1) + 3
√
βω1Aψ3 + 3

√
βω2Aψ4 ,

u′′α(1) + 3
√
α2ω2

1A
2e

3√αω1Aψ0 + 3
√
α2ω2

2A
2e

3√αω2Aψ1 + 3
√
α2A2ψ2

= u′′β(1) + 3
√
β2ω2

1A
2ψ3 + 3

√
β2ω2

2A
2ψ4 .

From this system we obtain:
3
√
αω1ψ0 + 3

√
αω2ψ1 + 3

√
αe−

3√αAψ2 = −A−1u′α(0),
3
√
α2(ω2

1ψ0 + ω2
2ψ1 + e−

3√αAψ2)−A−2K(ψ0 + ψ1 + e−
3√αAψ2)

= A−2(Kuα(0)− u′′α(0)) ,

e
3√αω1Aψ0 + e

3√αω2Aψ1 + ψ2 − ψ3 − ψ4 = uβ(1)− uα(1),
3
√
αω1e

3√αω1Aψ0 + 3
√
αω2e

3√αω2Aψ1 + 3
√
αψ2 − 3

√
βω1ψ3 − 3

√
βω2ψ4

= A−1(u′β(1)− u′α(1)) ,
3
√
α2ω2

1e
3√αω1Aψ0 + 3

√
α2ω2

2e
3√αω2Aψ1 + 3

√
α2ψ2 − 3

√
β2ω2

1ψ3 − 3
√
β2ω2

2ψ4

= A−2(u′′β(1)− u′′α(1)) .

(2.10)

Since uα(t) ∈W 3
2 ([0, 1);H) and uβ(t) ∈W 3

2 ((1,+∞);H), by the theorem on traces
[14, ch. 1] A−1u′α(0), A−2(Kuα(0) − u′′α(0)), uβ(1) − uα(1), A−1(u′β(1) − u′α(1))
and A−2(u′′β(1)−u′′α(1)) belong to H5/2. Then by these values acting also as in the
system (2.1), in this case, taking into account that the operator Kα,β has a bounded
inverse operator in the space H5/2 and − 3

√
α2ω2 /∈ σ(B), obviously, from (2.10) it is
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possible to find the vectors ψk, k = 0, 1, 2, 3, 4, where all ψk ∈ H5/2, k = 0, 1, 2, 3, 4.
Therefore, u(t) ∈W 3

2 (R+;H) satisfies equation (2.5) almost everywhere in R+ and
conditions (2.6).

By lemma 2.1, the problem

−u′′′(t) + ρ(t)A3u(t) = 0,

u′(0) = 0, u′′(0) = Ku(0)

has only the trivial solution in the space W 3
2,K(R+;H).

Now we show that the operator P0 : W 3
2,K(R+;H) → L2(R+;H) is bounded.

Indeed, for u(t) ∈W 3
2,K(R+;H) we have

‖P0u‖2L2(R+;H)

= ‖u′′′‖2L2(R+;H) + ‖ρ(t)A3u‖2L2(R+;H) − 2 Re(u′′′, ρ(t)A3u)L2(R+;H)

≤ ‖u′′′‖2L2(R+;H) + ‖ρ(t)A3u‖2L2(R+;H) + 2‖u′′′‖L2(R+;H)‖ρ(t)A3u‖L2(R+;H)

≤ 2
(
‖u′′′‖2L2(R+;H) + ‖ρ(t)A3u‖2L2(R+;H)

)
≤ 2 max(1;α2;β2)‖u‖2W 3

2
(R+;H).

Thus, according to the Banach theorem on the inverse operator, there exists P−1
0 :

L2(R+;H)→W 3
2,K(R+;H) and it is bounded. Hence, it follows that

‖u‖W 3
2 (R+;H) ≤ const‖f‖L2(R+H).

The proof is complete. �

On the basis of Lemmas 2.1 and 2.2 we obtain the following conclusion.

Theorem 2.3. Let the conditions of Lemma 2.1 be satisfied. Then the operator P0

is an isomorphism between the spaces W 3
2,K(R+;H) and L2(R+;H).

Let us prove the following coercive inequality which will be used further.

Lemma 2.4. Let Re(B) ≥ 0. Then for any u(t) ∈ W 3
2,K(R+;H), the following

inequality holds

‖ρ−1/2(t)u′′′‖2L2(R+;H) + ‖ρ1/2(t)A3u‖2L2(R+;H) ≤
1

min(α;β)
‖P0u‖2L2(R+;H). (2.11)

Proof. Consider the following equalities:

(P0u,A
3u)L2(R+;H) = (−u′′′ + ρ(t)A3u,A3u)L2(R+;H)

= (−u′′′, A3u)L2(R+;H) + (ρ(t)A3u,A3u)L2(R+;H)

= (−u′′′, A3u)L2(R+;H) + ‖ρ1/2(t)A3u‖2L2(R+;H),

(2.12)

(P0u,−ρ−1(t)u′′′)L2(R+;H) = (−u′′′ + ρ(t)A3u,−ρ−1(t)u′′′)L2(R+;H)

= (−u′′′,−ρ−1(t)u′′′)L2(R+;H) − (A3u, u′′′)L2(R+;H)

= ‖ρ−1/2(t)u′′′‖2L2(R+;H) − (A3u, u′′′)L2(R+;H).

(2.13)
Note that by integrating by parts for u(t) ∈W 3

2,K(R+;H), we have

− Re(u′′′, A3u)L2(R+;H) = Re(BA5/2u(0), A5/2u(0)). (2.14)
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By (2.12) and (2.13) and taking into account (2.14), we obtain

(P0u,A
3u− ρ−1(t)u′′′)L2(R+;H)

= ‖ρ1/2(t)A3u‖2L2(R+;H) + ‖ρ−1/2(t)u′′′‖2L2(R+;H) + 2 Re(BA5/2u(0), A5/2u(0)).
(2.15)

Applying the Cauchy-Schwarz inequality to the left side and then the Young’s
inequality and taking into account (2.14), we obtain

(P0u,A
3u− ρ−1(t)u′′′)L2(R+;H)

≤ ‖ρ−1/2(t)P0u‖L2(R+;H)‖ρ1/2(t)A3u− ρ−1/2(t)u′′′‖L2(R+;H)

≤ 1
2 min(α;β)

‖P0u‖2L2(R+;H) +
1
2
‖ρ1/2(t)A3u− ρ−1/2(t)u′′′‖2L2(R+;H)

=
1

2 min(α;β)
‖P0u‖2L2(R+;H) +

1
2
‖ρ1/2(t)A3u‖2L2(R+;H)

+
1
2
‖ρ−1/2(t)u′′′‖2L2(R+;H) + Re

(
BA5/2u(0), A5/2u(0)

)
.

(2.16)

Taking into account (2.16) into (2.15), we have

‖ρ−1/2(t)u′′′‖2L2(R+;H) + ‖ρ1/2(t)A3u‖2L2(R+;H) + 2 Re(BA5/2u(0), A5/2u(0))

≤ 1
min(α;β)

‖P0u‖2L2(R+;H).

(2.17)
Since ReB ≥ 0, then from inequality (2.17), we obtain the validity of inequality
(2.11). The proof is complete. �

Theorem 2.3 implies that the norm ‖P0u‖L2(R+;H) is equivalent to the norm
‖u‖W 3

2 (R+;H) in the space W 3
2,K(R+;H). Therefore, the norms of the intermedi-

ate derivative operators Aj d
3−j

dt3−j : W 3
2,K(R+;H) → L2(R+;H), j = 1, 2, 3, can

be estimated with respect to ‖P0u‖L2(R+;H) (by the continuity of these operators
[14]). Methods for solution of equations with scalar boundary conditions are often
inapplicable to the problems with boundary conditions which include abstract op-
erators. For example, when K = 0, operator pencil factorization method for the
estimation of the norms of intermediate derivative operators has been developed in
[4] (this method was first mentioned in [15] when considering operator-differential
equations with constant coefficients). The estimates for the norms of intermediate
derivative operators are playing an important role in obtaining solvability condi-
tions. But, the method of [4] is not applicable to the boundary value problems
for odd order operator-differential equations with the boundary conditions which
include abstract operators. In this work, to estimate the norms of intermediate
derivative operators we use the classical inequalities of mathematical analysis and
the coercive inequality (2.11).

Theorem 2.5. Let ReB ≥ 0. Then for any u(t) ∈ W 3
2,K(R+;H) the following

inequalities hold:

‖Aj d
3−ju

dt3−j
‖L2(R+;H) ≤ aj‖P0u‖L2(R+;H), j = 1, 2, 3, (2.18)
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where

a1 =
21/3 max1/3(α;β)
31/2 min2/3(α;β)

, a2 =
21/3 max1/6(α;β)
31/2 min5/6(α;β)

, a3 =
1

min(α;β)
.

Proof. Let u(t) ∈ W 3
2,K(R+;H). Integrating by parts and applying the Cauchy-

Schwarz inequality, and then the Young’s inequality, we obtain

‖Au′′‖2L2(R+;H) =
∫ +∞

0

(Au′′, Au′′)Hdt

= (Au′, Au′′)H |+∞0 −
∫ +∞

0

(Au′, Au′′′)Hdt

= −
∫ +∞

0

(A2u′, u′′′)Hdt ≤ ‖A2u′‖L2(R+;H)‖u′′′‖L2(R+;H)

≤ max
t
ρ1/2(t)‖A2u′‖L2(R+;H)‖ρ−1/2(t)u′′′‖L2(R+;H)

≤ ε

2
max(α;β)‖A2u′‖2L2(R+;H) +

1
2ε
‖ρ−1/2(t)u′′′‖2L2(R+;H),

(2.19)

with ε > 0. Proceeding in a similar manner, we have

‖A2u′‖2L2(R+;H) =
∫ +∞

0

(A2u′, A2u′)Hdt

= (A2u,A2u′)H |+∞0 −
∫ +∞

0

(A2u,A2u′′)Hdt

= −
∫ +∞

0

(A3u,Au′′)Hdt

≤ ‖A3u‖L2(R+;H)‖Au′′‖L2(R+;H)

≤ max
t
ρ−1/2(t)‖Au′′‖L2(R+;H)‖ρ1/2(t)A3u‖L2(R+;H)

≤ η

2
1

min(α;β)
‖Au′′‖2L2(R+;H) +

1
2η
‖ρ1/2(t)A3u‖2L2(R+;H),

(2.20)

with η > 0. Taking into account inequality (2.20) in (2.19):

‖Au′′‖2L2(R+;H) ≤
ε

2
max(α;β)(

η

2
1

min(α;β)
‖Au′′‖2L2(R+;H)

+
1
2η
‖ρ1/2(t)A3u‖2L2(R+;H)) +

1
2ε
‖ρ−1/2(t)u′′′‖2L2(R+;H).

(2.21)

From this inequality we obtain(
1− εηmax(α;β)

4 min(α;β)
)
‖Au′′‖2L2(R+;H) ≤

εmax(α;β)
4η

‖ρ1/2(t)A3u‖2L2(R+;H)

+
1
2ε
‖ρ−1/2(t)u′′′‖2L2(R+;H).

(2.22)

Choosing η = ε2 max(α;β)
2 , from inequality (2.22) we have

‖Au′′‖2L2(R+;H)

≤ 4 min(α;β)
8εmin(α;β)− ε4 max2(α;β)

[
‖ρ1/2(t)A3u‖2L2(R+;H) + ‖ρ−1/2(t)u′′′‖2L2(R+;H)

]
.



10 A. R. ALIEV, N. L. MURADOVA EJDE-2013/219

Then, by minimizing ε, we find ε = 3
√

2 min(α;β)/max2(α;β). Therefore,

‖Au′′‖2L2(R+;H)

≤ 22/3 max2/3(α;β)
3 min1/3(α;β)

[
‖ρ1/2(t)A3u‖2L2(R+;H) + ‖ρ−1/2(t)u′′′‖2L2(R+;H)

]
.

(2.23)

Now, taking into account inequality (2.11), from inequality (2.23) we obtain

‖Au′′‖2L2(R+;H) ≤
22/3 max2/3(α;β)

3 min4/3(α;β)
‖P0u‖2L2(R+;H).

As a result,

‖Au′′‖L2(R+;H) ≤
21/3 max1/3(α;β)
31/2 min2/3(α;β)

‖P0u‖L2(R+;H).

To estimate the norm ‖A2u′‖L2(R+;H), we take into account (2.19) in (2.20):(
1− εηmax(α;β)

4 min(α;β)
)
‖A2u′‖2L2(R+;H)

≤ η

4εmin(α;β)
‖ρ−1/2(t)u′′′‖2L2(R+;H) +

1
2η
‖ρ1/2(t)A3u‖2L2(R+;H).

(2.24)

Choosing ε = η2/(2 min(α;β)), from inequality (2.24) we have

‖A2u′‖2L2(R+;H)

≤ 4 min2(α;β)
8ηmin2(α;β)− η4 max(α;β)

[
‖ρ−1/2(t)u′′′‖2L2(R+;H) + ‖ρ1/2(t)A3u‖2L2(R+;H)

]
.

In this case, minimizing η, we find η = 3

√
2 min2(α;β)/max(α;β). Therefore,

‖A2u′‖2L2(R+;H)

≤ 22/3 max1/3(α;β)
3 min2/3(α;β)

[‖ρ−1/2(t)u′′′‖2L2(R+;H) + ‖ρ1/2(t)A3u‖2L2(R+;H)].
(2.25)

From this inequality, taking into account inequality (2.11), we obtain

‖A2u′‖2L2(R+;H) ≤
22/3 max1/3(α;β)

3 min5/3(α;β)
‖P0u‖2L2(R+;H).

Thus,

‖A2u′‖L2(R+;H) ≤
21/3 max1/6(α;β)
31/2 min5/6(α;β)

‖P0u‖L2(R+;H).

Now we estimate the norm ‖A3u‖L2(R+;H). From inequality (2.11) we have

1
min(α;β)

‖P0u‖2L2(R+;H) ≥ ‖ρ
1/2(t)A3u‖2L2(R+;H) ≥ min(α;β)‖A3u‖2L2(R+;H).

Hence, we obtain

‖A3u‖2L2(R+;H) ≤
1

min2(α;β)
‖P0u‖2L2(R+;H)

or
‖A3u‖L2(R+;H) ≤

1
min(α;β)

‖P0u‖L2(R+;H).

The proof is complete. �
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Now, we prove the boundedness of the operator P1 : W 3
2,K(R+;H)→ L2(R+;H).

Lemma 2.6. Let AjA−j ∈ L(H,H), j = 1, 2, 3. Then P1 is a bounded operator
from the space W 3

2,K(R+;H) into the space L2(R+;H).

Proof. For any u(t) ∈W 3
2,K(R+;H) we have

‖P1u‖L2(R+;H) = ‖A1u
′′ +A2u

′ +A3u‖L2(R+;H)

≤ ‖A1A
−1‖H→H‖Au′′‖L2(R+;H) + ‖A2A

−2‖H→H‖A2u′‖L2(R+;H)

+ ‖A3A
−3‖H→H‖A3u‖L2(R+;H).

Applying the theorem on intermediate derivatives [14, ch. 1], we obtain from the
last inequality that

‖P1u‖L2(R+;H) ≤ const‖u‖W 3
2 (R+;H).

The proof is complete. �

Let us consider the question of regular solvability of problem (1.1), (1.2).

Theorem 2.7. Let A = A∗ ≥ cE, c > 0, K ∈ L(H5/2, H1/2), − 3
√
α2ω2 /∈ σ(B),

the operator Kα,β has a bounded inverse in the space H5/2, ReB ≥ 0 and AjA−j ∈
L(H,H), j = 1, 2, 3, moreover, the following inequality holds

a1‖A1A
−1‖H→H + a2‖A2A

−2‖H→H + a3‖A3A
−3‖H→H < 1,

where the numbers aj, j = 1, 2, 3, are defined in Theorem 2.5. Then the boundary
value problem (1.1), (1.2) is regularly solvable.

Proof. Boundary value problem (1.1), (1.2) can be represented in the operator form

P0u(t) + P1u(t) = f(t),

where f(t) ∈ L2(R+;H), u(t) ∈W 3
2,K(R+;H).

Under conditions A = A∗ ≥ cE, c > 0, K ∈ L(H5/2, H1/2), − 3
√
α2ω2 /∈ σ(B),

the operator Kα,β has a bounded inverse in the space H5/2, by Theorem 2.3 the
operator P0 has a bounded inverse P−1

0 acting from the space L2(R+;H) into the
space W 3

2,K(R+;H). If we put v(t) = P0u(t) we obtain the following equation in
L2(R+;H):

(E + P1P
−1
0 )v(t) = f(t).

We show that under the conditions of the theorem, the norm of the operator P1P
−1
0

is less than unity. Taking into account inequalities (2.18), we have

‖P1P
−1
0 v‖L2(R+;H)

= ‖P1u‖L2(R+;H)

≤ ‖A1u
′′‖L2(R+;H) + ‖A2u

′‖L2(R+;H) + ‖A3u‖L2(R+;H)

≤ ‖A1A
−1‖H→H‖Au′′‖L2(R+;H) + ‖A2A

−2‖H→H‖A2u′‖L2(R+;H)

+ ‖A3A
−3‖H→H‖A3u‖L2(R+;H)

≤ a1‖A1A
−1‖H→H‖P0u‖L2(R+;H) + a2‖A2A

−2‖H→H‖P0u‖L2(R+;H)

+ a3‖A3A
−3‖H→H‖P0u‖L2(R+;H)

=
3∑
j=1

aj‖AjA−j‖H→H‖v‖L2(R+;H).
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Thus,

‖P1P
−1
0 ‖L2(R+;H)→L2(R+;H) ≤

3∑
j=1

aj‖AjA−j‖H→H < 1.

Therefore, the operator E + P1P
−1
0 is invertible in the space L2(R+;H) and u(t)

is defined by the formula

u(t) = P−1
0 (E + P1P

−1
0 )−1f(t),

moreover

‖u‖W 3
2 (R+;H)

≤ ‖P−1
0 ‖L2(R+;H)→W 3

2 (R+;H)‖(E + P1P
−1
0 )−1‖L2(R+;H)→L2(R+;H)‖f‖L2(R+;H)

≤ const‖f‖L2(R+;H).

The proof is complete. �

Corollary 2.8. In the conditions of Theorem 2.7, the operator P is an isomorphism
between the spaces W 3

2,K(R+;H) and L2(R+;H).

In conclusion, we remark that our solvability results imply the results of [4] when
K = 0 and A3 = 0, and the results of [15] when K = 0 and α = β = 1.

Acknowledgements. We are very grateful to the referees for their careful reading
of the original manuscript, for their helpful comments which led to the improvement
of this article.
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