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ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENTS
AND CONSTANT DIRICHLET CONDITIONS

MARIA-MAGDALENA BOUREANU, CRISTIAN UDREA, DIANA-NICOLETA UDREA

Abstract. We study a general class of anisotropic problems involving ~p(·)-
Laplace type operators. We search for weak solutions that are constant on

the boundary by introducing a new subspace of the anisotropic Sobolev space
with variable exponent and by proving that it is a reflexive Banach space. Our

argumentation for the existence of weak solutions is mainly based on a variant
of the mountain pass theorem of Ambrosetti and Rabinowitz.

1. Introduction

In this article, we consider Ω ⊂ RN (N ≥ 2) a rectangular-like domain; that is,
a union of finitely many rectangular domains (or cubes) with edges parallel to the
coordinate axes. We will analyze the existence of solutions of the nonhomogeneous
anisotropic problem

−
N∑
i=1

∂xi
ai(x, ∂xi

u) + b(x)|u|pM (x)−2u = λf(x, u), for x ∈ Ω

u(x) = constant, for x ∈ ∂Ω

(1.1)

where λ ≥ 0 and the functions involved in this problem will be described in Section
3. We mention that the assumptions that will be imposed on functions ai allow us
to take

ai(x, s) = |s|pi(x)−2s for all i ∈ {1, . . . , N},
so that the operator

N∑
i=1

∂xi
ai (x, ∂xi

u) (1.2)

becomes in particular the ~p(·) - Laplace operator

∆~p(x)(u) =
N∑
i=1

∂xi

(
|∂xi

u|pi(x)−2∂xi
u
)
.
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This is why the operators (1.2) are often known as generalized ~p(·) - Laplace type
operators. At the same time, when choosing

ai(x, s) = (1 + |s|2)(pi(x)−2)/2s for all i ∈ {1, . . . , N},

we are led to the anisotropic mean curvature operator with variable exponent

N∑
i=1

∂xi

[(
1 + |∂xi

u|2
)(pi(x)−2)/2

∂xi
u
]
.

Note that the space in which we work is a subspace of the anisotropic Sobolev space,
W 1,~p(·)(Ω), where ~p(·) =

(
p1(·), . . . , pN (·)

)
is a vector with variable components.

The problem considered here extends [5, Theorem 4], where the discussion was
conducted in the framework of the isotropic Sobolev space with variable exponent
and actually goes back to [22, Theorem 3.1], where the authors worked in the clas-
sical Sobolev space. The interest in transposing the problems into new problems
with variable exponents is linked to a large scale of applications that are involving
some nonhomogeneous materials. It was established that for an appropriate treat-
ment of these materials we can not rely on the classical Sobolev space and that we
have to allow the exponent to vary instead. We can refer here to the electrorheo-
logical fluids or to the thermorheological fluids that have multiple applications to
hydraulic valves and clutches, brakes, shock absorbers, robotics, space technology,
tactile displays etc (see for example [1, 16, 19, 20, 21]). Moreover, the variable
exponent spaces are involved in studies that provide other types of applications,
like the ones in elastic materials [23], image restoration [6], contact mechanics [4]
etc. Lately, a new development of the theory appeared due to the preoccupation
for the nonhomogeneous materials that behave differently on different space direc-
tions. As a result, the anisotropic spaces with variable exponent were introduced,
see [7, 10, 17].

It is not a surprise that, when passing from a variable exponent to an anisotropic
variable exponent, new difficulties occur. To overpass these difficulties, we combine
the classical techniques with the recent techniques that appeared when treating
anisotropic problems with variable exponents. Two such problems that are related
to our study were presented in [2, 3]. Nonetheless, the problem handled here is
more complicated. That is because, on the one hand, we work on the anisotropic
with variable exponent of the functions that are constant on the boundary (further
denoted by V ), instead of the anisotropic space with variable exponent of the func-
tions that are vanishing on the boundary (later we will prove that V is a reflexive
Banach space). On the other hand, we use more general hypotheses than in [2, 3]
on the functions involved in (1.1). As an example, in [2, 3] it is used the critical
exponent P−,∞, which is a constant and it is optimal when dealing with constant
exponents. Here we replace it by a variable critical exponent, which is more ap-
propriate. Other improvements are made to the assumptions on functions f and ai
and, of course, some of them generate more difficulties. However, the discussion of
our results is better to be made after we present the functional framework of the
variable exponent spaces and after we remind some of their properties in the next
section.
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2. Preliminary results

In what follows, we will recall the definition and the main properties of the spaces
with variable exponents together with some results that are needed for the proof
of our main results.

For r ∈ C+(Ω), we introduce the Lebesgue space with variable exponent defined
by

Lr(·)(Ω) = {u : u is a measurable real-valued function,
∫

Ω

|u(x)|r(x) dx <∞},

where
C+(Ω) = {r ∈ C(Ω; R) : inf

x∈Ω
r(x) > 1}.

This space, endowed with the Luxemburg norm,

‖u‖Lr(·)(Ω) = inf{µ > 0 :
∫

Ω

|u(x)
µ
|r(x) dx ≤ 1},

is a separable and reflexive Banach space [13, Theorem 2.5, Corollary 2.7]. We also
have an embedding result.

Theorem 2.1 ([13, Theorem 2.8]). Assume that Ω is bounded and r1, r2 ∈ C+(Ω)
such that r1 ≤ r2 in Ω. Then the embedding Lr2(·)(Ω) ↪→ Lr1(·)(Ω) is continuous.

Furthermore, the Hölder-type inequality∣∣ ∫
Ω

u(x)v(x) dx
∣∣ ≤ 2‖u‖Lr(·)(Ω)‖v‖Lr′(·)(Ω) (2.1)

holds for all u ∈ Lr(·)(Ω) and v ∈ Lr
′(·)(Ω) (see [13, Theorem 2.1]), where we

denoted by Lr
′(·)(Ω) the conjugate space of Lr(·)(Ω), obtained by conjugating the

exponent pointwise; that is, 1/r(x)+1/r′(x) = 1 (see [13, Corollary 2.7]). Moreover,
we denote

r+ = sup
x∈Ω

r(x), r− = inf
x∈Ω

r(x)

and for u ∈ Lr(·)(Ω), we have the following properties (see for example [9, Theorem
1.3, Theorem 1.4]):

‖u‖Lr(·)(Ω) < 1 (= 1; > 1) ⇔
∫

Ω

|u(x)|r(x) dx < 1 (= 1; > 1); (2.2)

‖u‖Lr(·)(Ω) > 1 ⇒ ‖u‖r
−

Lr(·)(Ω) ≤
∫

Ω

|u(x)|r(x) dx ≤ ‖u‖r
+

Lr(·)(Ω); (2.3)

‖u‖Lr(·)(Ω) < 1 ⇒ ‖u‖r
+

Lr(·)(Ω) ≤
∫

Ω

|u(x)|r(x) dx ≤ ‖u‖r
−

Lr(·)(Ω); (2.4)

‖u‖Lr(·)(Ω) → 0 (→∞) ⇔
∫

Ω

|u(x)|r(x) dx→ 0 (→∞). (2.5)

To recall the definition of the isotropic Sobolev space with variable exponent,
W 1,r(·)(Ω), we set

W 1,r(·)(Ω) = {u ∈ Lr(·)(Ω) : ∂xiu ∈ Lr(·)(Ω) for all i ∈ {1, . . . , N}},
endowed with the norm

‖u‖W 1,r(·)(Ω) = ‖u‖Lr(·)(Ω) +
N∑
i=1

‖∂xi
u‖Lr(·)(Ω).



4 M.-M. BOUREANU, C. UDREA, D.-N. UDREA EJDE-2013/220

The space
(
W 1,r(·)(Ω), ‖ ·‖W 1,r(·)(Ω)

)
is a separable and reflexive Banach space (see

[13, Theorem 1.3]).
To pass to the anisotropic spaces with variable exponent, everywhere below we

consider ~p : Ω→ RN to be the vectorial function

~p(x) = (p1(x), . . . , pN (x))

with pi ∈ C+(Ω) for all i ∈ {1, . . . , N} and we put

pM (x) = max{p1(x), . . . , pN (x)}, pm(x) = min{p1(x), . . . , pN (x)}.
The anisotropic space with variable exponent is

W 1,~p(·)(Ω) = {u ∈ LpM (·)(Ω) : ∂xiu ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}}
and it is endowed with the norm

‖u‖W 1,~p(·)(Ω) = ‖u‖LpM (·)(Ω) +
N∑
i=1

‖∂xi
u‖Lpi(·)(Ω) .

The space
(
W 1,~p(·)(Ω), ‖ · ‖W 1,~p(·)(Ω)

)
is a reflexive Banach space (see [7, Theorems

2.1 and 2.2]). Furthermore, an embedding theorem takes place for all the exponents
that are strictly less than a variable critical exponent, which is introduced with the
help of the notations

p̄(x) =
N∑N

i=1 1/pi(x)
, r?(x) =

{
Nr(x)/[N − r(x)] if r(x) < N,

∞ if r(x) ≥ N.

Theorem 2.2 ([7, Theorem 2.5]). Let Ω ⊂ RN be a rectangular-like domain and
pi ∈ C+(Ω) for all i ∈ {1, . . . , N}. If q ∈ C(Ω; R), 1 ≤ q(x) < max{p∗(x), pM (x)}
for all x ∈ Ω, then we have the compact embedding W 1,~p(·)(Ω) ↪→ Lq(·)(Ω).

An important subspace of W 1,~p(·)(Ω) is W
1,~p(·)
0 (Ω), that is, the subspace of

the functions that are vanishing on the boundary. According to [17], the space(
W

1,~p(·)
0 (Ω), ‖u‖

W
1,~p(·)
0 (Ω)

)
is a reflexive Banach space, where

‖u‖
W

1,~p(·)
0 (Ω)

=
N∑
i=1

‖∂xi
u‖Lpi(·)(Ω) .

We introduce a new subspace of W 1,~p(·)(Ω), that is,

V = {u ∈W 1,~p(·)(Ω) : u
∣∣
∂Ω
≡ constant}. (2.6)

As announced at the beginning of this section, we are going to find a weak solution to
our problem in the space V . The main tool in finding such a solution is represented
by the following Ambrosetti-Rabinowitz mountain pass theorem (see for example
[11, 14, 18]).

Theorem 2.3. Let (X, ‖ · ‖X) be a Banach space. Assume that Φ ∈ C1(X; R)
satisfies the Palais-Smale condition; that is, any sequence (un)n ⊂ X such that(
Φ(un)

)
n

is bounded and Φ′(un) → 0 in X? as n → ∞, contains a subsequence
converging to a critical point of Φ. Also, assume that Φ has a mountain pass
geometry; that is,

(i) there exist two constants τ > 0 and ρ ∈ R such that Φ(u) ≥ ρ if ‖u‖X = τ ;
(ii) Φ(0) < ρ and there exists e ∈ X such that ‖e‖X > τ and Φ(e) < ρ.
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Then Φ has a critical point u0 ∈ X \ {0, e} with critical value

Φ(u0) = inf
γ∈P

sup
u∈γ

Φ(u) ≥ ρ > 0,

where P denotes the class of the paths γ ∈ C([0, 1];X) joining 0 to e.

3. Main results

For presenting our main result, we have to describe the functions involved in our
problem. Let us denote by Ai : Ω×R→ R, i ∈ {1, . . . , N}, and by F : Ω×R→ R
the antiderivatives of the Carathéodory functions ai : Ω × R → R, respectively
f : Ω× R→ R; that is,

Ai(x, s) =
∫ s

0

ai(x, t) dt, F (x, s) =
∫ s

0

f(x, t) dt.

For every i ∈ {1, . . . , N}, we work under the following hypotheses.
(B1) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.
(A1) There exists a positive constant c̄i such that ai fulfills

|ai(x, s)| ≤ c̄i
(
di(x) + |s|pi(x)−1

)
,

for all x ∈ Ω and all s ∈ R, where di ∈ Lp
′
i(·)(Ω) (with 1/pi(x)+1/p′i(x) = 1)

is a nonnegative function.
(A2) There exists ki > 0 such that

ki|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ Ω and all s ∈ R.
(A3) The monotonicity condition

[ai(x, s)− ai(x, t)](s− t) > 0

takes place for all x ∈ Ω and all s, t ∈ R with s 6= t.
(A4) ai(x, 0) = 0 for all x ∈ ∂Ω.
(F1) There exist k > 0 and q ∈ C+(Ω) with p+

M < q− < q+ < p∗(x) for all
x ∈ Ω, such that f verifies

|f(x, s)| ≤ k
(
1 + |s|q(x)−1

)
for all x ∈Ω and all s ∈R.

(F2) There exist γ > p+
M and s0 > 0 such that the Ambrosetti-Rabinowitz

condition
0 < γF (x, s) ≤ sf(x, s)

holds for all x ∈ Ω and for all s ∈ R with |s| > s0.
(F3) lim|s|→0

f(x,s)

|s|p
+
M
−1

= 0 for all x ∈ Ω.

Taking into consideration condition (A4) we can introduce the notion of weak
solution to our problem.

Definition 3.1. We define the weak solution for problem (1.1) as a function u ∈ V
satisfying:∫

Ω

N∑
i=1

ai(x, ∂xiu)∂xiv dx+
∫

Ω

b(x)|u|pM (x)−2uv dx− λ
∫

Ω

f(x, u)v dx = 0,

for all v ∈ V .
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The energy functional corresponding to (1.1) is defined as I : V → R,

I(u) =
∫

Ω

N∑
i=1

Ai(x, ∂xiu) dx+
∫

Ω

b(x)
pM (x)

|u|pM (x) dx− λ
∫

Ω

F (x, u) dx. (3.1)

By a standard calculus one can see that functional I is well defined and of class C1

(see for example [22, Lemma 3.4]), its Gâteaux derivative being described by

〈I ′(u), v〉 =
∫

Ω

N∑
i=1

ai(x, ∂xi
u)∂xi

v dx+
∫

Ω

b(x)|u|pM (x)−2uv dx− λ
∫

Ω

f(x, u)v dx,

for all u, v ∈ V .

Theorem 3.2. Let pi ∈ C+(Ω) for all i ∈ {1, . . . , N} with p+
M < p∗(x) for all x ∈

Ω. Assume that b : Ω→ R satisfies (B1) and that f : Ω×R→ R and ai : Ω×R→ R,
i ∈ {1, . . . , N}, are Carathéodory functions satisfying (F1)-(F3), respectively (A1)–
(A4). Then, problem (1.1) has at least one nontrivial weak solution in V for every
λ > 0.

Given the assumptions of Theorem 3.2 we can show that functional I satisfies
the Palais-Smale condition and it has a mountain pass geometry, which we will
accomplish by proving three lemmas. But first we need two theorems.

Theorem 3.3. (V, ‖ · ‖W 1,~p(·)(Ω)) is a reflexive Banach space.

Proof. Our goal is to prove that V is a closed subspace of the reflexive Banach
space W 1,~p(·)(Ω) with respect to ‖ · ‖W 1,~p(·)(Ω). The idea of the proof is taken from
[22, Lemma 2.1] and it is adapted to the case of anisotropic spaces with variable
exponents (see also [5, Theorem 3]).

We consider a sequence (vn)n ⊂ V which converges to a function v ∈W 1,~p(·)(Ω)
and we will prove that v ∈ V . We note that V can be represented in a different
way than it is in (2.6), that is,

V = {u+ c : u ∈W 1,~p(·)
0 (Ω), c ∈ R}.

As a consequence, there exist (un)n ∈ W 1,~p(·)
0 (Ω) and (cn)n ⊂ R such that, for all

n ∈ N, vn = un + cn. We have

‖un − um‖W 1,~p(·)
0 (Ω)

≤
N∑
i=1

‖∂xi
(un − um − cn + cm)‖Lpi(·)(Ω) + ‖un − um − cn + cm‖LpM (·)(Ω)

= ‖vn − vm‖W 1,~p(·)(Ω).

Keeping in mind that (vn)n is a Cauchy sequence in
(
W 1,~p(·)(Ω), ‖ · ‖W 1,~p(·)(Ω)

)
,

the previous relation implies that (un)n is a Cauchy sequence in the Banach space(
W

1,~p(·)
0 (Ω), ‖ · ‖

W
1,~p(·)
0 (Ω)

)
. Hence

(un)n converges to a function ũ ∈W 1,~p(·)
0 (Ω). (3.2)

At the same time, by the Poincaré inequality, there exists a positive constant m1

such that

‖cn − cm‖Lp
−
m (Ω)

≤ ‖un − cn − um + cm‖Lp
−
m (Ω)

+m1

N∑
i=1

‖∂xi
(um − un)‖

Lp
−
m (Ω)

.
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Then, by Theorem 2.1,

‖cn − cm‖L1(Ω) ≤ m2‖vn − vm‖LpM (·)(Ω) +m3

N∑
i=1

‖∂xi
(vn − vm)‖Lpi(·)(Ω),

where m2,m3 are positive constants. The sequence (vn)n being Cauchy in the
space

(
W 1,~p(·)(Ω), ‖ · ‖W 1,~p(·)(Ω)

)
and Ω being bounded, it follows from the above

that (cn)n is a Cauchy sequence in (R, | · |), thus

(cn)n converges to a number c̃ ∈ R. (3.3)

Using (3.2) and (3.3), the uniqueness of the limit yields that v = ũ+ c̃. Therefore,
v ∈ V and the proof is complete. �

We introduce the second useful theorem.

Theorem 3.4. Let Ω ⊂ RN , (N ≥ 2) be a rectangular-like domain. Assume that
ai : Ω × R → R, i ∈ {1, . . . , N}, are Carathéodory functions satisfying (A3). If
un ⇀ n (weakly) in W 1,~p(·)(Ω) and

lim sup
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
u)(∂xi

un − ∂xi
u)dx ≤ 0,

then un → u (strongly) in W 1,~p(·)(Ω).

Proof. The same property was proved in the framework of the space W 1,~p(·)
0 (Ω) by

applying Vitali Theorem to obtain

lim sup
n→∞

∫
Ω

N∑
i=1

|∂xiun − ∂xiu|pi(x)dx = 0, (3.4)

see [2, Lemma 2, relation (11)]. In our case, in order to complete the proof, we
use Theorem 2.2 to establish that W 1,~p(·)(Ω) ↪→ LpM (·)(Ω) compactly. Since un ⇀
u in W 1,~p(·)(Ω), we deduce that

un → u in LpM (·)(Ω). (3.5)

Then, by (2.5), (3.4) and (3.5) we conclude that un → u in W 1,~p(·)(Ω). �

Remark 3.5. In [2, Lemma 2], the author considers Ω to be a bounded domain
with smooth boundary, but this does not change the proof of relation (3.4) in the
situation when Ω is a rectangular-like domain. However, in the case when Ω is a
bounded domain with smooth boundary, [2, Lemma 2] could not be extended to
W 1,~p(·)(Ω) due to the lack of a compactness embedding between W 1,~p(·)(Ω) and
LpM (·)(Ω).

Now we can proceed with our first lemma. Everywhere below we work under the
hypotheses of Theorem 3.2.

Lemma 3.6. The energy functional I introduced by (3.1) satisfies the Palais-Smale
condition.

Proof. Let β ∈ R and (un)n ⊂V be such that

|I(un)| < β, I ′(un)→ 0 in V ? as n→∞. (3.6)
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Our goal is to show that (un)n is strongly convergent in V . The first step is to
show that (un)n is bounded. To this end, we assume by contradiction that, passing
eventually to a subsequence still denoted by (un)n, we have

‖un‖W 1,~p(·)(Ω) →∞ as n→∞.

Using relation (3.6) and assumptions (B1), (A2), for n large enough we infer

1 + β + ‖un‖W 1,~p(·)(Ω) ≥ I(un)− 1
γ
〈I ′(un), un〉

≥
N∑
i=1

∫
Ω

( 1
pi(x)

− 1
γ

)
ai(x, ∂xi

un)∂xi
un dx

+ b0
( 1
p+
M

− 1
γ

) ∫
Ω

|un|pM (x) dx

− λ
∫
{x∈Ω:|un(x)|>s0}

[
F (x, un)− 1

γ
f(x, un)un

]
dx

− λ|Ω| sup{|F (x, t)− 1
γ
f(x, t)t| : x ∈ Ω, |t| ≤ s0},

where γ and s0 are the constants from (F2). Using (A2) and (F2) we deduce that,
for n large enough,

1 + β + ‖un‖W 1,~p(·)(Ω) ≥
( 1
p+
M

− 1
γ

)
min{ki : i ∈ {1, . . . , N}}

N∑
i=1

∫
Ω

|∂xi
un|pi(x) dx

+ b0
( 1
p+
M

− 1
γ

) ∫
Ω

|un|pM (x) dx− C1,

(3.7)
where C1 = λ|Ω| sup{|F (x, t)− 1

γ f(x, t)t| : x ∈ Ω, |t| ≤ s0} > 0. We denote

I1 = {i ∈ {1, . . . , N} : ‖∂xi
un‖Lpi(·)(Ω) ≤ 1},

I2 = {i ∈ {1, . . . , N} : ‖∂xiun‖Lpi(·)(Ω) > 1}.

Then, by (2.2), (2.3) and (2.4),
N∑
i=1

∫
Ω

|∂xi
un|pi(x)dx =

∑
i∈I1

∫
Ω

|∂xi
un|pi(x)dx+

∑
i∈I2

∫
Ω

|∂xi
un|pi(x) dx

≥
∑
i∈I1

‖∂xiun‖
p+M
Lpi(·)

+
∑
i∈I2

‖∂xiun‖
p−m
Lpi(·)

≥
N∑
i=1

‖∂xiun‖
p−m
Lpi(·)

−
∑
i∈I1

‖∂xiun‖
p−m
Lpi(·)

.

Thus,
N∑
i=1

∫
Ω

|∂xi
un|pi(x)dx ≥

N∑
i=1

‖∂xi
un‖

p−m
Lpi(·)

−N. (3.8)

On the other hand, we analyze the two cases corresponding to the values of
‖un‖LpM (·)(Ω). By (2.3),∫

Ω

|un|pM (x) dx ≥ ‖un‖
p−m
LpM (·)(Ω)

, when ‖un‖LpM (·)(Ω) > 1. (3.9)
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In addition,∫
Ω

|un|pM (x) dx ≥ ‖un‖
p−m
LpM (·)(Ω)

− 1, when ‖un‖LpM (·)(Ω) ≤ 1. (3.10)

No matter if ‖un‖LpM (·)(Ω) is subunitary or superunitary, by (3.7), (3.8), (3.9) and
(3.10) we deduce that there exists a positive constant C2 such that

1 + β + ‖un‖W 1,~p(·)(Ω)

≥
( 1
p+
M

− 1
γ

)
min{b0, ki : i ∈ {1, . . . , N}}

( N∑
i=1

‖∂xi
un‖

p−m
Lpi(·)(Ω)

dx+ ‖un‖
p−m
LpM (·)(Ω)

)
− C2.

Due to the fact that( N∑
i=1

‖∂xi
un‖Lpi(·)(Ω) + ‖un‖LpM (·)(Ω)

)p−m
≤ (N + 1)p

−
m

(
max{‖un‖LpM (·)(Ω), ‖∂xi

un‖Lpi(·)(Ω) : i ∈ {1, . . . , N}}
)p−m

,

there exist two positive constants C3 and C4 such that

1 + β + ‖un‖W 1,~p(·)(Ω) ≥ C3‖un‖
p−m
W 1,~p(·)(Ω)

− C4.

Then, by dividing the previous inequality by ‖un‖W 1,~p(·)(Ω) we obtain a contra-
diction when n goes to ∞. Consequently, (un)n is bounded in W 1,~p(·)(Ω). Also,
W 1,~p(·)(Ω) is a reflexive space, so this implies that there exists a subsequence, still
denoted by (un)n and u ∈W 1,~p(·)(Ω) such that

un ⇀ u weakly in W 1,~p(·)(Ω). (3.11)

By Theorem 2.2, we know thatW 1,~p(·)(Ω) is compactly embedded in L1(Ω), Lq(·)(Ω)
and LpM (·)(Ω), where q is given in (F1). Therefore, since un ⇀ u in the Banach
space W 1,~p(·)(Ω), we infer that

un → u in L1(Ω), Lq(·)(Ω), respectively LpM (·)(Ω). (3.12)

Using (3.6) and (3.11) and the fact that

|〈I ′(un), un − u〉| ≤ ‖I ′(un)‖V ∗ ‖un − u‖W 1,~p(·)(Ω),

we obtain
lim
n→∞

|〈I ′(un), un − u〉| = 0.

The previous relation can be rewritten as

lim
n→∞

∫
Ω

[ N∑
i=1

ai(x, ∂xi
un)
(
∂xi

un − ∂xi
u
)

+ b(x)|un|pM (x)−2un(un − u)

− λf(x, un)(un − u)
]
dx = 0.

(3.13)

Applying (B1) and (2.1), we find that

|
∫

Ω

b(x)|un|pM (x)−2un(un − u) dx|

≤ 2‖b‖L∞(Ω)‖|un|pM (x)−1‖
Lp′

M
(·)(Ω)

‖un − u‖LpM (·)(Ω).
(3.14)
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Suppose by contradiction that ‖|un|pM (x)−1‖
Lp′

M
(·)(Ω)

→∞. So, by relation (2.5),∫
Ω

(
|un|pM (x)−1

)p′M (x)
dx→∞⇔

∫
Ω

(
|un|pM (x)

)
dx→∞⇔ ‖un‖LpM (·) →∞.

But ‖un‖LpM (·)(Ω) → ‖u‖LpM (·)(Ω), thus we have obtained a contradiction. Conse-
quently, by (3.14) and (3.12),

lim
n→∞

∫
Ω

b(x)|un|pM (x)−2un(un − u) dx = 0. (3.15)

At the same time, by (F1) and (2.1), we arrive at

|
∫

Ω

f(x, un)(un − u) dx|

≤
∫

Ω

|f(x, un)||un − u| dx

≤ k
∫

Ω

|un − u| dx+ k

∫
Ω

|un|q(x)−1|un − u| dx

≤ k‖un − u‖L1(Ω) + 2k‖|un|q(x)−1‖Lq′(·)(Ω)‖un − u‖Lq(·)(Ω).

By (3.12) and (2.5), we conclude as above that

lim
n→∞

∫
Ω

f(x, un)(un − u) dx = 0. (3.16)

Combining (3.13), (3.15) and (3.16), we obtain

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
un) (∂xi

un − ∂xi
u) dx = 0. (3.17)

Relations (3.11) and (3.17) and Theorem 3.4 give us

un → u strongly in W 1,~p(·)(Ω).

Since V is a closed subspace of W 1,~p(·)(Ω) and (un)n ⊂ V we obtain that u ∈ V ,
therefore the proof of Lemma 1 is complete. �

After the Palais-Smale condition, we are concerned with the mountain pass ge-
ometry of functional I. The other two lemmas take care of this matter.

Lemma 3.7. There exist τ , ρ > 0 such that I(u) ≥ ρ for all u ∈ W 1,~p(·)(Ω) with
‖u‖W 1,~p(·)(Ω) = τ .

Proof. By (A2) and (B1), we infer that

I(u) ≥ min{ki : i ∈ {1, . . . , N}}
p+
M

∫
Ω

N∑
i=1

|∂xiu|pi(x) dx+
b0

p+
M

∫
Ω

|u|pM (x) dx

− λ
∫

Ω

F (x, u) dx.
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Choosing τ < 1 we have ‖u‖LpM (·)(Ω) < 1 and ‖∂xi
u‖Lpi(·)(Ω) < 1. Using relation

(2.4) in the above inequality,

I(u) ≥ min{ki : i ∈ {1, . . . , N}}
p+
M

N∑
i=1

‖∂xiu‖
p+M
Lpi(·)(Ω)

+
b0

p+
M

‖u‖p
+
M

LpM (·)(Ω)

− λ
∫

Ω

F (x, u) dx

≥ min{b0, ki : i ∈ {1, . . . , N}}
(N + 1)p

+
mp+

M

‖u‖p
+
M (x)

W 1,~p(·)(Ω)
− λ

∫
Ω

F (x, u) dx,

(3.18)

for all u ∈ W 1,~p(·)(Ω) with ‖u‖W 1,~p(·)(Ω) = τ < 1. Let us now deal with the last
term of this inequality by keeping in mind that the continuous embedding from
Theorem 2.2 generates the existence of two constants α1, α2 > 0 such that

‖u‖
Lp

+
M (Ω)

≤ α1‖u‖W 1,~p(·)(Ω), ‖u‖Lq+ (Ω), ‖u‖Lq− (Ω) ≤ α2‖u‖W 1,~p(·)(Ω) (3.19)

for all u ∈ V . From (F1), we know that

F (x, s) ≤ k
(
|s|+ |s|

q(x)

q(x)
)

for all x ∈ Ω and all s ∈ R. Hence

F (x, s) ≤ 2k|s|q(x) for all x ∈ Ω and all s ∈ R with |s| > 1.

Let us take ε = min{b0,ki:i∈{1,...,N}}
2(N+1)p

+
mα1λ

. By (F3), there exists δ > 0 such that

|f(x, s)| ≤ ε|s|p
+
M−1 for all x ∈ Ω and all s ∈ R with |s| < δ.

By the previous two inequalities we deduce that∫
Ω

F (x, u) dx ≤ ε

p+
M

∫
Ω

|u|p
+
M dx+ α3

∫
Ω

|u|q(x) dx for all u ∈ V,

where α3 is a positive constant. Using relations (2.2), (2.3) and (2.4),∫
Ω

F (x, u) dx ≤ ε

p+
M

‖u‖p
+
M

Lp
+
M

+ α3

[
‖u‖q

+

Lq(·)(Ω)
+ ‖u‖q

−

Lq(·)(Ω)

]
for all u ∈ V.

From this and (3.19), there exists α4 > 0 such that∫
Ω

F (x, u) dx ≤ εα1

p+
M

‖u‖p
+
M

W 1,~p(·)(Ω)
+ α4‖u‖q

−

W 1,~p(·)(Ω)
, (3.20)

for all u ∈ V with ‖u‖W 1,~p(·)(Ω) = τ < 1. Putting together (3.18) and (3.20) we
come to

I(u) ≥ min{b0, ki : i ∈ {1, . . . , N}}
2(N + 1)p

+
mp+

M

‖u‖p
+
M

W 1,~p(·)(Ω)
− α4λ‖u‖q

−

W 1,~p(·)(Ω)

for all u ∈ V with ‖u‖W 1,~p(·)(Ω) = τ < 1. We have assumed that 1 < p+
M < q−, thus

it is clear that for τ sufficiently small we can choose ρ > 0 such that I(u) ≥ ρ for
all u ∈ V with ‖u‖W 1,~p(·)(Ω) = τ . �

Finally, we prove the last lemma.

Lemma 3.8. There exists e ∈ V with ‖e‖W 1,~p(·)(Ω) > τ (τ given in Lemma 2) such
that I(e) < 0.
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Proof. By (F2), there exists α̃ = α̃(x) > 0 such that

F (x, s) ≥ α̃(x)|s|γ for all s ∈ R with |s| > s0 and all x ∈ Ω. (3.21)

Then, due to (A1), (3.21) and the Hölder-type inequality (2.1), for any t > 1 we
have

I(tu) ≤ t
N∑
i=1

∫
Ω

c̄i|di(x)||∂xi
u| dx+ tp

+
M

N∑
i=1

∫
Ω

c̄i
|∂xi

u|pi(x)

pi(x)
dx

+ tp
+
M

∫
Ω

b(x)
pM (x)

|u|pM (x) dx− λtγ
∫
{x∈Ω:|u(x)|>s0}

α̃(x)|u|γ dx

− λ|Ω| inf{F (x, s) : x ∈ Ω, |s| ≤ s0}

≤ 2tmax{c̄i : i ∈ {1, . . . , N}}
N∑
i=1

‖di‖Lp′
i
(·)(Ω)

‖∂xi
u‖Lpi(·)(Ω)

+ tp
+
M

max{c̄i : i ∈ {1, . . . , N}}
p−m

N∑
i=1

∫
Ω

|∂xi
u|pi(x) dx

+ tp
+
M
‖b‖L∞(Ω)

p−M

∫
Ω

|u|pM (x) dx− λtγ
∫
{x∈Ω:|u(x)|>s0}

α̃(x)|u|γ dx

− λ|Ω| inf{F (x, s) : x ∈ Ω, |s| ≤ s0}.

Since γ > p+
M > 1, for t sufficiently large, we can find e ∈ V such that ‖e‖W 1,~p(·)(Ω) >

τ and I(e) < 0. �

Taking into account Theorem 2.3, one can easily see that Lemmas 3.6-3.8 are
sufficient to conclude that Theorem 3.2 holds, therefore our work is complete.

Acknowledgments. The first author was supported by grant CNCS PCE-47/2011.

References

[1] S. N. Antontsev, J. F. Rodrigues; On stationary thermorheological viscous flows, Ann. Univ.

Ferrara Sez. VII Sci. Mat., 52 (2006), 19–36.

[2] M.-M. Boureanu; Infinitely many solutions for a class of degenerate anisotropic elliptic prob-
lems with variable exponent, Taiwanese Journal of Mathematics, 5 (2011), 2291–2310.

[3] M.-M Boureanu; Critical point methods in degenerate anisotropic problems with variable
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Addendum posted on December 23, 2013

In what follows we correct an error that occurs in our paper. Thus, to our
problem we add the condition∫

∂Ω

N∑
i=1

∂xiai(x, ∂xiu)νi dS = 0,

where νi, i ∈ {1, . . . , N}, represent the components of the unit outer normal vector.
This means that the problem under consideration becomes

−
N∑
i=1

∂xi
ai(x, ∂xi

u) + b(x)|u|pM (x)−2u = λf(x, u), for x ∈ Ω

u(x) ≡ constant, for x ∈ ∂Ω∫
∂Ω

N∑
i=1

∂xiai(x, ∂xiu)νi dS = 0.

This is a “no-flux” type of problem. In addition, we remove hypothesis (A4) because
it is not needed. We mention that the rest of the paper will not suffer alterations and
we point out that various problems with ”no-flux” boundary conditions received a
lot of interest lately, see for example [1, 2, 3, 4, 5, 6] below.
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