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FINITE FRACTAL DIMENSIONALITY OF ATTRACTORS FOR
NONLOCAL EVOLUTION EQUATIONS

SEVERINO HORÁCIO DA SILVA, FLANK D. M. BEZERRA

Abstract. In this work we consider the Dirichlet problem governed by a non
local evolution equation. We prove the existence of exponential attractors for

the flow generated by this problem, and as a consequence we obtain the finite
dimensionality of the global attractor whose existence was proved in [1].

1. Introduction

Global attractors for dynamical systems generated by non local evolution equa-
tions in infinite dimensional Hilbert space have been considered in the literature
within past few years, see [1, 6, 8] and references therein.

In the literature, there are some works on existence of exponential attractors for
the flow governed by non local evolution equations and on the problem of deter-
mining upper bounds for the fractal dimension of these attractors (see for instance
[2, 10, 9]).

In this paper, we consider the non linear Dirichlet problem with non local terms

∂tu(x, t) = −u(x, t) + g
(
β(Ku)(x, t)

)
, x ∈ Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω

u(x, t) = 0, x 6∈ Ω, t > 0

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded smooth domain, β > 0 and K is an integral
operator with symmetric kernel

(Ku)(x) :=
∫

RN
J(x, y)u(y)dy.

Here, g : R → R is a non linear real function of class C1 with g(0) = 0, J is
a non negative, symmetric bounded function with bounded derivative, satisfying∫

RN J(x, y)dy = 1 and

sup
x∈RN

∫
RN
|∂xJ(x, y)|dy ≤ S, sup

y∈RN

∫
RN
|∂xJ(x, y)|dx ≤ S,

for some constant 0 < S <∞.
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For the sake of clarity and future reference, we list the hypotheses on g that were
used in [1].

(H1) The function g : R→ R, is globally Lipschitz continuous with constant k1.
(H2) The function g ∈ C1(R) and g′ is Lipschitz continuous with constant k2.
(H3) There exists a > 0 such that |g(x)| < a <∞, for all x ∈ R.

Note that if (H1) and (H2) hold then

|g′(x)| ≤ k1, ∀x ∈ R.

Remark 1.1. To prevent the flow generated by (1.1) becomes a contraction (see
Theorem 2.2) and, hence, the global attractor be reduced to single point, we assume
k1β > 1.

In this article, ‖ · ‖ = 〈·, ·〉1/2 denotes the L2(RN ) norm. We use ‖J‖∞ to denote
‖J‖L∞(RN×RN ;R) and ‖J ′‖∞ to denote ‖J ′‖L∞(RN×RN ;L(RN×RN ;R)).

Under hypothesis (H1)–(H3), it was proved in [1] that problem (1.1) has a global
compact attractor A which is contained in ball centered at the origin of radius
a
√
|Ω| in L2(RN ). Also, under some additional hypotheses on g, the continuity

of the global attractors and the existence of nonhomogeneous equilibria for (1.1)
were proved in [1]. In [2] bi-space global and exponential attractors for the time
continuous dynamical systems are considered and the bounds on their fractal di-
mension are discussed in the context of the smoothing properties of the system
between appropriately chosen function spaces and applications to the sample prob-
lems are given, but no remark is made on problems governed by operators of the
type Hilbert-Schmidt, where the symmetry of the problem is an extra difficulty
inherent in the evolution equations with non local terms.

Our goal is to investigate, under the above conditions, the existence of an expo-
nential attractor for the flow generated by (1.1) and consequently to obtain bounds
on the fractal dimension of the global attractor associated to problem (1.1).

This article is organized as follows. In Section 2 we prove Lipschitz continuity
of the dynamical system generated by (1.1), whose well posedness in X = {u ∈
L2(RN ) : u(x) = 0, if x /∈ Ω} has been established in [1]. In Section 3 we
prove that, in this phase space, the system has an exponential attractor and, as a
consequence , we conclude that the global attractor has finite fractal dimension.

2. Dynamical system generated by (1.1)

It is known from previous work, see [1], that under hypotheses (H1) and (H2)
the function

[F (u)](x) =

{
−u(x) + g(β(Ku)(x)), x ∈ Ω
0, x /∈ Ω,

is globally Lipschitz and continuously Fréchet differentiable in X = {u ∈ L2(RN ) :
u(x) = 0, if x /∈ Ω}. Therefore, the autonomous problem

∂tu = F (u) (2.1)

with initial condition u(x, 0) = u0(x) generates a C1 flow in X which is given by
T (t)u0 = u(x, t) where u(x, t) is given by the variation of constants formula by

u(x, t) = e−tu(x, 0) +
∫ t

0

e−(t−s)g(β(Ku)(x, s))ds.
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Furthermore, as consequence from Lemma 2.1 below, the problem (2.1) is also well
posed in H1.

Lemma 2.1. Under hypotheses (H1), (H2), the subset H1 of X given by H1 =
{u ∈ H1(RN ) : u(x) = 0, if x /∈ Ω} is invariant under the map F .

Proof. If u ∈ H1, from hypothesis (H2) it follows that F (u) is differentiable and

∂xiF (u)(x) = −∂xiu(x) + g′(β(Ku)(x))β∂xi(Ku)(x)

= −∂xiu(x) + g′(β(Ku)(x))β
∫

RN
∂xiJ(x, y)u(y)dy.

Using hypotheses (H1) and (H2) and Generalized Young’s Inequality (see [4]), we
obtain

‖∂xiF (u)‖ ≤ ‖∂xiu‖+ ‖g′(β(Ku))β
∫

RN
∂xiJ(x, y)u(y)dy‖

≤ ‖∂xiu‖+ k1βS‖u‖.

It implies F (u) ∈ H1, as claimed. �

In the next result we prove the Lipschitz continuity of the flow T (t) generated
by problem (2.1).

Theorem 2.2. Assume hypothesis (H1) holds. Then, for u1, u2 ∈ X and t ≥ 0,
we have

‖T (t)u1 − T (t)u2‖ ≤ ect‖u1 − u2‖, (2.2)

for c = k1β − 1 > 0.

Proof. Let u1, u2 ∈ X. Suppose that T (t)u1(x) and T (t)u2(x) are solutions of (2.1)
with initial conditions u1 and u2, respectively. Then

‖T (t)u1−T (t)u2‖ ≤ e−t‖u1−u2‖+
∫ t

0

e−(t−s)‖g(β(KT (s)u1))−g(β(KT (s)u2))‖ds,

(2.3)
for t ≥ 0. Using (H1) and Young’s inequality, it follows that

‖g(β(KT (s)u1))− g(β(KT (s)u2))‖ ≤ k1β‖K(T (s)u1 − T (s)u2)‖
≤ k1β‖T (s)u1 − T (s)u2‖.

Then

‖T (t)u1 − T (t)u2‖ ≤ e−t‖u1 − u2‖+
∫ t

0

e−(t−s)k1β‖T (s)u1 − T (s)u2‖ds.

Thus, using Gronwall’s inequality, we obtain

‖T (t)u1 − T (t)u2‖ ≤ e(k1β−1)t‖u1 − u2‖.

Hence (2.2) is satisfied. �
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3. Existence of an exponential attractor

First we need to introduce some terminology. For a general introduction to
theory of exponential attractors and fractal dimension see, for example [2, 3].

Recall that if B 6= ∅ is a precompact set in the Banach space X then its fractal
dimension is given by

dXf (B) = lim sup
ε→0

log1/εNε(B),

where Nε(B) denotes the smallest number of ε-balls in X needed to cover B.
We recall that a set B ⊂ X is an absorbing set for the flow T (t) if, for any

bounded set C in X , there is a t1 = t1(C) such that T (t)C ⊂ B for any t ≥ t1 (see
[9]).

Let Y and X be Banach spaces such that Y is compactly embedded in X . Re-
calling the generalization of the notion of an exponential attractor, see [2], we will
say that a nonvoid set M ⊂ Y is called an exponential (Y − X ) attractor for T (t)
if M is positively invariant under T (t), closed in Y, compact in X , dXf (M) < ∞
and there exists ω > 0 such that for all B bounded in Y,

lim
t→∞

eωt distX (T (t)B,M) = 0.

Remark 3.1. If u ∈ X, proceeding as in [7], using Hölder’s inequality, we obtain

|K(u)(x, s)| ≤
∫

RN
J(x, y)|u(y, s)|dy

≤
∫

RN
‖J‖∞|u(y, s)|dy

≤ ‖J‖∞
√
|Ω|‖u(·, s)‖.

(3.1)

Theorem 3.2. Assume that (H1)–(H3) hold. Then , for any ε > 0, the ball
centered at origin and radius ρ = (1 + k1β‖J ′‖∞|Ω|)a

√
|Ω| + ε in H1 = {u ∈

H1(RN ) : u(x) = 0, if x 6= Ω} absorbs bounded subsets of H1.

Proof. Let u(x, t) be the solution of (2.1) with initial condition u(·, 0) ∈ B, where
B is a bounded subset of H1. Then, if x 6∈ Ω we have u(x, t) = 0, and if x ∈ Ω we
obtain, by the variation of constants formula,

u(x, t) = e−tu(x, 0) +
∫ t

0

e−(t−s)g(β(Ku)(x, s))ds. (3.2)

By (H3) we have
‖u(·, t)‖ ≤ e−t‖u(·, 0)‖+ a

√
|Ω|. (3.3)

Hence, given ε > 0 there exists t1 = ln( 2‖u(·,0)‖
ε ) such that, for t > t1, we obtain

‖u(·, t)‖ < ε

2
+ a
√
|Ω|. (3.4)

Furthermore, using hypothesis (H2), from (3.2) we obtain

∂xu(x, t) = e−t∂xu(x, 0) +
∫ t

0

e−(t−s)g′(β(Ku)(x, s))β∂x(Ku)(x, s)ds.

From (H1) and (H2) it follows that |g′(x)| ≤ k1, for all x ∈ R. Then

|∂xu(x, t)| ≤ e−t|∂xu(x, 0)|+
∫ t

0

e−(t−s)k1β|∂x(Ku)(x, s)|ds.
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But, as in (3.1), using Hölder’s inequality, we obtain

|∂xK(u)(x, s)| ≤
∫

RN
|∂xJ(x, y)||u(y, s)|dy

≤
∫

RN
‖J ′‖∞|u(y, s)|dy

≤ ‖J ′‖∞
√
|Ω|‖u(·, s)‖.

(3.5)

Thus, using (3.3) and (3.5), we obtain

|∂xu(x, t)| ≤ e−t|∂xu(x, 0)|+ k1β‖J ′‖∞
√
|Ω|
∫ t

0

e−(t−s)(e−s‖u(·, 0)‖+ a
√
|Ω|)ds

≤ e−t|∂xu(x, 0)|+ k1β‖J ′‖∞
√
|Ω|‖u(·, 0)‖e−tt+ k1β‖J ′‖∞a|Ω|.

Hence

‖∂xu(·, t)‖ ≤ e−t‖∂xu(·, 0)‖+ k1β‖J ′‖∞|Ω|‖u(·, 0)‖e−tt+ k1β‖J ′‖∞|Ω|a
√
|Ω|.
(3.6)

But, there exists t2 = ln(4‖∂xu(·, 0)‖/ε) such that for t > t2 we have

e−t‖∂xu(·, 0)‖ < ε

4
, (3.7)

and, since limt→∞ e−tt = 0, there exists t3 > 0 such that, for t > t3, we have

k1β‖J ′‖∞|Ω|‖u(·, 0)‖e−tt < ε

4
. (3.8)

Then, using (3.6), (3.7) and (3.8), we obtain

‖∂xu(·, t)‖ < ε

2
+ k1β‖J ′‖∞|Ω|a

√
|Ω|.

for all t > t∗ := max{t2, t3}. It follows that for t > max{t1, t∗},

‖u(·, t)‖+ ‖∂xu(·, t)‖ ≤ (1 + k1β‖J ′‖∞|Ω|)a
√
|Ω|+ ε.

From this, the result follows immediately. �

For the rest of this article, we denote by B0 the ball in H1 centered at origin
and radius ρ = (1 + k1β‖J ′‖∞|Ω|)a

√
|Ω|+ ε, (with ε > 0 fixed arbitrarily).

Theorem 3.3. Assume (H1)–(H3), and let B0 be the set that absorbs bounded
subsets of H1, given in Theorem 3.2. Then, there exists t0 ≥ t1(B0) such that the
following conditions hold: T (t0) admits a decomposition

T (t0) = P (t0) +M(t0)

where P (t0) : B0 → X ⊂ L2(RN ) is a contraction on B0; that is,

‖P (t0)u1 − P (t0)u2‖ ≤ δ‖u1 − u2‖, ∀u1, u2 ∈ B0, (3.9)

for some 0 ≤ δ < 1/2, and M(t0) : B0 → H1 satisfies

‖M(t0)u1 −M(t0)u2‖H1 ≤ k‖u1 − u2‖, ∀u1, u2 ∈ B0, (3.10)

for some k > 0.
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Proof. Let u(x, t) be the solution of (2.1) with initial condition u, then

T (t)u = e−tu+
∫ t

0

e−(t−s)g(β(KT (s))u)ds.

Write P (t)u = e−tu and M(t)u =
∫ t
0
e−(t−s)g(β(KT (s))u)ds. Note that, choosing

t0 > ln 2, it follows that

‖P (t0)u1 − P (t0)u2‖ ≤ e−t0‖u1 − u2‖, ∀u1, u2 ∈ B0,

then (3.9) is satisfied with δ = e−t0 . Now, from (H3), it follows that

‖M(t)u‖ ≤
∫ t

0

e−(t−s)‖g(β(KT (s)u)‖ds ≤
∫ t

0

e−(t−s)a
√
|Ω|ds ≤ a

√
|Ω|.

Using (H1),(H2), and (3.5), we have

|∂xM(t)u(x)| ≤
∫ t

0

e−(t−s)β|g′(β(KT (s)u)(x))||∂x(KT (s)u)(x)|ds

≤
∫ t

0

e−(t−s)k1β‖J ′‖∞
√
|Ω|‖T (s)u‖ds.

Since u ∈ B(0, ρ), it follows that ‖T (s)u‖ ≤ ρ+ a
√
|Ω|. Hence

|∂xM(t)u(x)| ≤ k1β‖J ′‖∞
√
|Ω|(ρ+ a

√
|Ω|).

Therefore, M(t) : B0 → H1 for all t ≥ 0.
Also, using (H1) and Theorem 2.2, we obtain

‖M(t)u1 −M(t)u2‖ ≤
∫ t

0

e−(t−s)‖g(βKT (s)u1)− g(βKT (s)u2)‖ds

≤
∫ t

0

e−(t−s)βk1‖T (s)u1 − T (s)u2‖ds

≤
∫ t

0

e−(t−s)βk1e
(k1β−1)s‖u1 − u2‖ds

= k1β‖u1 − u2‖
∫ t

0

e−(t−s)e(k1β−1)sds

≤ ‖u1 − u2‖e(k1β−1)t.

Using hypothesis (H1), (H2), (3.1) and (3.5), it follows that

|∂xM(t)u1(x)− ∂xM(t)u2(x)|

≤
∫ t

0

e−(t−s)β|g′(β(KT (s)u1)(x))− g′(β(KT (s)u2)(x))||∂x(KT (s)u1)(x)|ds

+
∫ t

0

e−(t−s)β|g′(β(KT (s)u2)(x))||∂x[K(T (s)u1 − T (s)u2)](x)|ds

≤
∫ t

0

e−(t−s)k2β
2‖J‖∞

√
|Ω|‖T (s)u1 − T (s)u2‖‖J ′‖∞

√
|Ω|‖T (s)u1‖ds

+
∫ t

0

e−(t−s)k1β‖J ′‖∞
√
|Ω|‖T (s)u1 − T (s)u2‖ds.

Thus, using Theorem 2.2, we have

|∂xM(t)u1(x)− ∂xM(t)u2(x)|
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≤
∫ t

0

e−(t−s)k2β
2‖J‖∞|Ω|‖J ′‖∞(ρ+ a

√
|Ω|)e(k1β−1)s‖u1 − u2‖ds

+
∫ t

0

e−(t−s)k1β‖J ′‖∞
√
|Ω|e(k1β−1)s‖u1 − u2‖ds

≤
[
k2β

2‖J‖∞|Ω|‖J ′‖∞(ρ+ a
√
|Ω|) + k1β‖J ′‖∞

√
|Ω|

k1β − 1

]
e(k1β−1)t‖u1 − u2‖.

Therefore, (3.10) is satisfied with t0 > ln 2 and

k = max
{
e(k1β−1)t0 ,

[k2β
2‖J‖∞|Ω|‖J ′‖∞(ρ+ a

√
|Ω|) + k1β‖J ′‖∞

√
|Ω|

k1β − 1
]

×
√
|Ω|e(k1β−1)t0

}
.

(3.11)

It completes the proof. �

The proof of the following lemma is very easy and it will be omitted.

Lemma 3.4. For any bounded interval I, there exist 0 < θ < 1 and c > 0 such
that for t, s ∈ I we have

|e−t − e−s| ≤ c|t− s|θ. (3.12)
In particular, when I = [t0, 2t0] the inequality above is obtained with c = 1.

Theorem 3.5. Assume (H1) and (H3). Then, for t1, t2 ∈ [t0, 2t0] and u1, u2 ∈ B0,
T (t) satisfies

‖T (t1)u1 − T (t2)u2‖ ≤ µ(|t1 − t2|θ + ‖u1 − u2‖) (3.13)

with some µ > 0 and 0 < θ < 1.

Proof. Note that

T (t1)u1 − T (t2)u2 = (e−t1u1 − e−t2u2) +
(∫ t1

0

e−(t1−s)g(βKT (s)u1)ds

−
∫ t2

0

e−(t2−s)g(βKT (s)u2)ds
)
.

Using Lemma 3.4, we obtain

‖e−t1u1 − e−t2u2‖ ≤ |e−t1 − e−t2 |‖u1‖+ e−t2‖u1 − u2‖

≤ ‖u1‖|t1 − t2|θ + ‖u1 − u2‖

= µ1(|t1 − t2|θ + ‖u1 − u2‖),
where µ1 = max{ρ, 1}. Now,

‖
∫ t1

0

e−(t1−s)g(βKT (s)u1)ds−
∫ t2

0

e−(t2−s)g(βKT (s)u2)ds‖

≤ ‖
∫ t1

0

e−(t1−s)g(βKT (s)u1)ds−
∫ t1

0

e−(t2−s)g(βKT (s)u2)ds‖

+ ‖
∫ t1

0

e−(t2−s)g(βKT (s)u2)ds−
∫ t2

0

e−(t2−s)g(βKT (s)u2)ds‖.

Using (H1) and (H3), Young’s inequality, Lemma 3.12 and Theorem 3.4, we have

‖
∫ t1

0

e−(t1−s)g(βKT (s)u1)ds−
∫ t1

0

e−(t2−s)g(βKT (s)u2)ds‖
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≤
∫ t1

0

‖e−(t1−s)g(βKT (s)u1)− e−(t2−s)g(βKT (s)u2)‖ds

≤
∫ t1

0

|e−(t1−s) − e−(t2−s)|‖g(βKT (s)u1)‖ds

+
∫ t1

0

e−(t2−s)‖g(βKT (s)u1)− g(βKT (s)u2)‖ds

≤
∫ t1

0

a
√
|Ω|c|t1 − t2|θds+

∫ t1

0

e−(t2−s)k1βe
(k1β−1)s‖u1 − u2‖ds

≤ 2t0a
√
|Ω|c|t1 − t2|θ + ‖u1 − u2‖ek1β2t0

= µ2(|t1 − t2|θ + ‖u1 − u2‖),

where µ2 = max{2t0ac
√
|Ω|, ek1β2t0}.

Without loss of generality assuming that t1 < t2, using hypothesis (H3), we
obtain

‖
∫ t1

0

e−(t2−s)g(βKT (s)u2)ds−
∫ t2

0

e−(t2−s)g(βKT (s)u2)ds‖

≤
∫ t2

t1

e−(t2−s)‖g(βKT (s)u2)‖ds

≤
∫ t2

t1

e−(t2−s)a
√
|Ω|ds

≤ (t2 − t1)a
√
|Ω|

≤ t1−θ0 a
√
|Ω|(t2 − t1)θ

= µ3(t2 − t1)θ,

where µ3 = t1−θ0 a
√
|Ω|. Therefore,

‖T (t1)u1 − T (t2)u2‖ ≤ µ(|t2 − t1|θ + ‖u1 − u2‖)
for some µ > 0 and 0 < θ < 1. �

Since W 1,2(Ω) ↪→ L2(Ω) it follows that H1 ↪→ X. Then, from Theorems 3.2, 3.3
and 3.5, it follows that the assumptions in the Proposition 2.7 of [2] are satisfied.
Therefore, we have the following result.

Theorem 3.6. Under the hypotheses (H1)-(H3), for any ν ∈ (0, 1
2−δ), there exists

a nonvoid set M =Mν ⊂ B(0, ρ), positively invariant under T (t) and precompact
in X, with the following properties:

(1) there exists ω > 0 such that for any bounded set B ⊂ H1 we have

lim
t→∞

eωt dist(T (t)B,M) = 0

where dist(·, ·) denotes the Hausdorff semi-distance in X (see [5]).
(2) M possesses finite fractal dimension in X; more precisely, we have for any

ν ∈ (0, 1
2 − δ)

dXf (M) ≤ 1
θ

(1 + log 1
2(δ+ν)

Nν/k(B(0, 1)),

where df (M) denotes the fractal dimension ofM, B(0, 1) denotes the open
ball centered at 0 and radius 1 in H1 = {u ∈ H1(RN ) : u(x) = 0, if x /∈ Ω},
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Nν/k(B) denotes the smallest number of νk−balls in L2(RN ) needed to cover
B(0, 1) and k is the constant given in (3.11).

Denoting byMν the closure in X of the setMν , from [2, Corollary 2.8] we have
the following result.

Corollary 3.7. Under the hypotheses of Theorem 3.6, for any ν ∈ (0, 1
2 − δ):

(1) Mν is an exponential (H1 −X) attractor bounded in H1;
(2) there exists a finite dimensional global (H1 −X) attractor A ⊂Mν .
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Rua Apŕıgio Veloso, 882, Bairro Universitário, Campina Grande-PB 58429-900, Brazil

E-mail address: horaciousp@gmail.com, horacio@dme.ufcg.edu.br

Flank D. M. Bezerra
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