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OSGOOD TYPE REGULARITY CRITERION FOR THE 3D
NEWTON-BOUSSINESQ EQUATION

ZUJIN ZHANG, SADEK GALA

ABSTRACT. In this article, we show an Osgood type regularity criterion for the
three-dimensional Newton-Boussinesq equations, which improves the recent
results in [4].

1. INTRODUCTION

In this article, we consider the three-dimensional Newton-Boussinesq equation
wi+ (u-V)w — Aw =V x (fe3),
O: + (u-V)0 — A6 =0,
(w0 V) )
V-u=0,
11(0) = o, 9(0) = 907
where w = V x u, and u is the velocity field, 6 is the scalar temperature, while ug,
0y are the prescribed initial data with V - ug = 0 in distributional sense.

System (|1.1]) arises from the study of Bénard flow [I]. Guo [2, B] investigated
the two-dimensional (2D) periodic case by using spectral methods and nonlinear
Galerkin methods. Meanwhile, the existence and regularity of a global attractor
for the 2D Newton-Boussinesq equations were obtained in [5]. Consequently, it is

desirable to consider the regularity criteria for (|1.1)). Noticing that the convective
term (u- V)u, (u- V)@ are the same as that in the 3D Boussinesq equations

u; + (u-V)u— Au+ Vr = fes,
O: + (u-V)0 — A =0,
V-u=0,

u(0) =uo, 6(0) = bo,

we could prove many regularity conditions as that for the Boussinesq equations.
For the 3D Boussinesq equations, Ishimura nad Morimoto [6] showed that if

Vu € L' (0, T; L™ (R?)), (1.2)
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then the solution is smooth on (0,7). Fan and Zhou [7] established the regularity
of the solution provided that

w=Vxue L'(0,T; B, . (R?)), (1.3)

where Bgoyoo(R?’) is the homogeneous Besov spaces which will be introduced in
Section [2| The interested readers can find more result in [8, 9] and references cited
therein.
For the 3D Newton-Boussinesq equations (1.1)), Guo and Gala [4] obtained some
regularity criteria in terms of Morrey spaces and Besov spaces. One of them reads
w=Vxue L'(0,T; By, (R?)). (1.4)
A blow-up criterion for the 2D Newton-Boussinesq equations was established in
[10].
As we know, Osgood type conditions play an important role in solving uniqueness

of solutions to the incompressible fluid equations. Motivated by the recent result
[12] for the 3D MHD equations

u —Au+ (u-Viju—(-V)+Vr=F,
(A (V) - (- Vu=¥,
V-u=V-. =0,
u(0) =uo, (0)=o,
we would like to improve . Precisely, we will prove the following theorem.

Theorem 1.1. Let (ug,6p) € HY(R3) with V -ug = 0 in distributional sense.

Assume that

-

S,V o

sup/ IS¢ Vulle- dr < o0, (1.5)
q9>2J0 qlng

with Sy = Y1 Ay, A being the Fourier localization operator. Then the solution
pair (u,0) to (L.1) with initial data (v, 8o) is smooth on [0,T].

Remark 1.2. Since

1Sg V| IR
< A ~<C :
g = ging l;q [AVual[re < ClIV xull g

we indeed improve the regularity condition (1.4)) established in [4].

Remark 1.3. When 6 = 0, (1.1)) reduces to the Navier-Stokes equations, thus our
result covers the case for the Navier-Stokes equations.

The rest of this article is organized as follows. In Section [2, we recall the defini-
tion of Besov spaces, and some interpolation inequalities. Section [3]is devoted to
proving Theorem [T.1]

2. PRELIMINARIES

Let .#(R?) be the Schwartz class of rapidly decreasing functions. For f € .7 (R?),
its Fourier transform % f = f is defined by

O = flae ™ da.
R3
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Let us choose a nonnegative radial function ¢ € .(R?) such that

Lot gl <1,

0< PO <1, ¢<s>={0 el 2

and let
() = p(x) = 27%p(2/2), @j(z) =2Y0(2x), o;(x) =29(2z), jeZ

For j € Z, the Littlewood-Paley projection operators S; and Aj are, respectively,
defined by

Sif =¢ixfi Ajf = f.
Observe that A; = S; — S;_;. Also, it is easy to check that if f € L?(R?), then
S;f—0,asj— —oo; S;f—f, asj— 400,

in the L? sense. By telescoping the series, we thus have the following Littlewood-
Paley decomposition

+o0
f= Z Ajfa (21)

j=—o0

for all f € L?(R?), where the summation is the L? sense. Note that

_ i+2 i+2
Aif =3 AAF =D duxip=f,
I=j—2 I=j—2

then from Young’s inequality, it readily follows that
1A fllza < C29A/P=VDNA; |l 1o, (2.2)

where 1 <p < g < oo, and C' is an absolute constant independent of f and j.
Let —0o < s <00, 1 <p,q < oo, the homogeneous Besov space B , is defined
by the full-dyadic decomposition such as

B, ={feZ'R%; |fl

he < OO
prq }’
where

[1f]
and 2'(R3) is the dual space of

o too
By, = {2204 fllee 127 e
Z(R%) = {f € S (R®); D*f(0) =0, V o € N*}.
Also, it is well-known that
H*(R®) = B3 ,(R®), VseR. (2.3)

We refer the reader to [11] for more detailed properties.
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3. PROOF OF THEOREM [I.1]

This section is devoted to proving Theorem (|1.1). Taking the inner products of
(T.1)1, (1.1)2 with w, —Af in L?(R3) respectively, we have
1d
2 dt
1d
2 dt
Adding together yields
Ld,
2 dt
= / V x (fes) ~wdx+/ [(u-V)0] - Abdx
R3

R3

ol + [Velis = [ 9 () -

V0|72 + [|AG]3. = /RS[(u V)] - Afdz.

lwllZz + [IVOI[72] + [IVewl72 + A0 7]

< ||V9||LzHVw||L2—/ (Vu- V)] - VOdz
R

3
1 2 1 2
< VO||72 + Z|IVwll72 — [(Vu-V)0]-Vodz.
2 2 R3
We are now in a position to estimate
I = 7/ [(Vu-V)0]-Véda. (3.2)
R3

Applying the Littlewood-Paley decomposition as in (2.1)),
q
Vu= Y AVu+ > AVu+> Avy, (3.3)
I<—q l=—q 1>q

where ¢ is a positive integer to be determined later on. Substituting (3.3) in I, we
see that

q
r< 3 [ 1Al vopas+ [ 30 Al voPa

I<—q l=—q
. 3.4
S RS RITRE .
R3
I>q
=L+ 1+ Is.
For I, we have
L< S AT~ Vo3
I<—q
<CY P A VUl Vo2, (by @)
I<—q
31 o\ 1/2 . 1/2 (3.5)
<c( D 2% 7 (X 1Avult:) TIve)3
I<—q I<—q

< 02732V 2| VO||7. (by [23))
= [C2792|| V)| .2)°.
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For I, we have
b= / 1SVl - [VO|* dx < |[S,Vul| = [ VO]|7=. (3.6)
R3

Finally, for I3, we have

I <> AVl V)7

I>q

<O 2YAVul 2| V6| z | A0 2
I>q

by (2.2) and Gagliardo-Nireberg inequality (3.7)
1/2 . 1/2
<o(3252) T (2 AVal3) T IVE) a6
I>q I>q

< [C2792||V0|| 2][||Vewl|F2 + [ AG]1Z2]  (by @:3))-
Gathering (3.5)), (3.6) and (3.7) together, and plugging them into (3.8)), we deduce
I <[C2772|[V0] 1= + |5, Vul 1< | V0|72 + [C27 V2| V)| 2] - [ Vew| |72 + | A0 72].

L2

(3.8)
Substituting (3.8)) into (3.1)), we find
d
S loll3a + V0131 + [19]32 + 1263
< [[VOIIZ: + [C27 72| V0]| 2)° (3.9)
S Vu Lo _
BB gl D012 + [C2- 2| 90] | Vol -+ 120]]

Taking

2y
q= [m In™ (C|| VO L2)] + 3,

where [t] is the largest integer smaller that ¢ € R, and InT ¢ = In(e + t), then (3.9)
implies that
d 2 2 1 2 2
lwllze +IVOIZ] + SlIVwllze + [|A0]Z]
||5’qquLoc 1n+
qlng
Applying Gronwall inequality three times, we deduce

<|IVOlZ: +C + (IVOl =) In™ In* (| V]| 12) [ VO |2

t
[llwlZ2 + IVOII72] +/0 (IVwl|[72 + | A0]|72] dr

L
< C exp exp exp (/ W dT).
0 qlng

By ((1.5)), the solutions (u, #) are uniformly bounded in L>°(0,T; H'(R?)), and thus
smooth. This completes the proof of Theorem [1.1
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