
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 223, pp. 1–6.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D
NEWTON-BOUSSINESQ EQUATION

ZUJIN ZHANG, SADEK GALA

Abstract. In this article, we show an Osgood type regularity criterion for the
three-dimensional Newton-Boussinesq equations, which improves the recent

results in [4].

1. Introduction

In this article, we consider the three-dimensional Newton-Boussinesq equation

ωt + (u · ∇)ω −∆ω = ∇× (θe3),

θt + (u · ∇)θ −∆θ = 0,
∇ · u = 0,

u(0) = u0, θ(0) = θ0,

(1.1)

where ω = ∇×u, and u is the velocity field, θ is the scalar temperature, while u0,
θ0 are the prescribed initial data with ∇ · u0 = 0 in distributional sense.

System (1.1) arises from the study of Bénard flow [1]. Guo [2, 3] investigated
the two-dimensional (2D) periodic case by using spectral methods and nonlinear
Galerkin methods. Meanwhile, the existence and regularity of a global attractor
for the 2D Newton-Boussinesq equations were obtained in [5]. Consequently, it is
desirable to consider the regularity criteria for (1.1). Noticing that the convective
term (u · ∇)u, (u · ∇)θ are the same as that in the 3D Boussinesq equations

ut + (u · ∇)u−∆u +∇π = θe3,

θt + (u · ∇)θ −∆θ = 0,
∇ · u = 0,

u(0) = u0, θ(0) = θ0,

we could prove many regularity conditions as that for the Boussinesq equations.
For the 3D Boussinesq equations, Ishimura nad Morimoto [6] showed that if

∇u ∈ L1(0, T ;L∞(R3)), (1.2)
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then the solution is smooth on (0, T ). Fan and Zhou [7] established the regularity
of the solution provided that

ω = ∇× u ∈ L1
(
0, T ; Ḃ0

∞,∞(R3)
)
, (1.3)

where B0
∞,∞(R3) is the homogeneous Besov spaces which will be introduced in

Section 2. The interested readers can find more result in [8, 9] and references cited
therein.

For the 3D Newton-Boussinesq equations (1.1), Guo and Gala [4] obtained some
regularity criteria in terms of Morrey spaces and Besov spaces. One of them reads

ω = ∇× u ∈ L1(0, T ; Ḃ0
∞,∞(R3)). (1.4)

A blow-up criterion for the 2D Newton-Boussinesq equations was established in
[10].

As we know, Osgood type conditions play an important role in solving uniqueness
of solutions to the incompressible fluid equations. Motivated by the recent result
[12] for the 3D MHD equations

ut −∆u + (u · ∇)u− ( · ∇) +∇π = 0,

t −∆ + (u · ∇)− ( · ∇)u = 0,
∇ · u = ∇ · = 0,

u(0) = u0, (0) = 0,

we would like to improve (1.4). Precisely, we will prove the following theorem.

Theorem 1.1. Let (u0, θ0) ∈ H1(R3) with ∇ · u0 = 0 in distributional sense.
Assume that

sup
q≥2

∫ T

0

‖S̄q∇u‖L∞
q ln q

dτ <∞, (1.5)

with S̄q =
∑q
l=−q ∆̇l, ∆̇l being the Fourier localization operator. Then the solution

pair (u, θ) to (1.1) with initial data (u0, θ0) is smooth on [0, T ].

Remark 1.2. Since

‖S̄q∇u‖L∞
q ln q

≤ 1
q ln q

q∑
l=−q

‖∆̇l∇u‖L∞ ≤ C‖∇ × u‖Ḃ0
∞,∞

,

we indeed improve the regularity condition (1.4) established in [4].

Remark 1.3. When θ = 0, (1.1) reduces to the Navier-Stokes equations, thus our
result covers the case for the Navier-Stokes equations.

The rest of this article is organized as follows. In Section 2, we recall the defini-
tion of Besov spaces, and some interpolation inequalities. Section 3 is devoted to
proving Theorem 1.1.

2. Preliminaries

Let S (R3) be the Schwartz class of rapidly decreasing functions. For f ∈ S (R3),
its Fourier transform Ff = f̂ is defined by

f̂(ξ) =
∫

R3
f(x)e−ix·ξ dx.
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Let us choose a nonnegative radial function ϕ ∈ S (R3) such that

0 ≤ ϕ̂(ξ) ≤ 1, ϕ̂(ξ) =

{
1, if |ξ| ≤ 1,
0, if |ξ| ≥ 2,

and let

ψ(x) = ϕ(x)− 2−3ϕ(x/2), ϕj(x) = 23jϕ(2jx), ψj(x) = 23jψ(2jx), j ∈ Z.

For j ∈ Z, the Littlewood-Paley projection operators Sj and ∆̇j are, respectively,
defined by

Sjf = ϕj ∗ f, ∆̇jf = ψj ∗ f.

Observe that ∆̇j = Sj − Sj−1. Also, it is easy to check that if f ∈ L2(R3), then

Sjf → 0, as j → −∞; Sjf → f, as j → +∞,

in the L2 sense. By telescoping the series, we thus have the following Littlewood-
Paley decomposition

f =
+∞∑
j=−∞

∆̇jf, (2.1)

for all f ∈ L2(R3), where the summation is the L2 sense. Note that

∆̇jf =
j+2∑
l=j−2

∆̇l∆̇jf =
j+2∑
l=j−2

ψl ∗ ψj ∗ f,

then from Young’s inequality, it readily follows that

‖∆̇jf‖Lq ≤ C23j(1/p−1/q)‖∆̇jf‖Lp , (2.2)

where 1 ≤ p ≤ q ≤ ∞, and C is an absolute constant independent of f and j.
Let −∞ < s < ∞, 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃsp,q is defined

by the full-dyadic decomposition such as

Ḃsp,q = {f ∈ Z ′(R3); ‖f‖Ḃs
p,q

<∞},

where

‖f‖Ḃs
p,q

= ‖
{

2js‖∆̇jf‖Lp

}+∞
j=−∞‖`q ,

and Z ′(R3) is the dual space of

Z (R3) = {f ∈ S (R3);Dαf̂(0) = 0, ∀ α ∈ N3}.

Also, it is well-known that

Ḣs(R3) = Ḃs2,2(R3), ∀s ∈ R. (2.3)

We refer the reader to [11] for more detailed properties.
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3. Proof of Theorem 1.1

This section is devoted to proving Theorem (1.1). Taking the inner products of
(1.1)1, (1.1)2 with ω, −∆θ in L2(R3) respectively, we have

1
2

d
dt
‖ω‖2L2 + ‖∇ω‖2L2 =

∫
R3
∇× (θe3) · ω dx,

1
2

d
dt
‖∇θ‖2L2 + ‖∆θ‖2L2 =

∫
R3

[(u · ∇)θ] ·∆θ dx.

Adding together yields

1
2

d
dt

[‖ω‖2L2 + ‖∇θ‖2L2 ] + [‖∇ω‖2L2 + ‖∆θ‖2L2 ]

=
∫

R3
∇× (θe3) · ω dx+

∫
R3

[(u · ∇)θ] ·∆θ dx

≤ ‖∇θ‖L2‖∇ω‖L2 −
∫

R3
[(∇u · ∇)θ] · ∇θ dx

≤ 1
2
‖∇θ‖2L2 +

1
2
‖∇ω‖2L2 −

∫
R3

[(∇u · ∇)θ] · ∇θ dx.

(3.1)

We are now in a position to estimate

I = −
∫

R3
[(∇u · ∇)θ] · ∇θ dx. (3.2)

Applying the Littlewood-Paley decomposition as in (2.1),

∇u =
∑
l<−q

∆̇∇u +
q∑

l=−q

∆̇∇u +
∑
l>q

∆̇∇u, (3.3)

where q is a positive integer to be determined later on. Substituting (3.3) in I, we
see that

I ≤
∑
l<−q

∫
R3
‖∆̇l∇u‖ · ‖∇θ‖2 dx+

∫
R3

∣∣ q∑
l=−q

∆̇l∇u
∣∣ · ‖∇θ‖2 dx

+
∑
l>q

∫
R3
‖∆̇l∇u‖ · ‖∇θ‖2 dx

≡ I1 + I2 + I3.

(3.4)

For I1, we have

I1 ≤
∑
l<−q

‖∆̇l∇u‖L∞‖∇θ‖2L2

≤ C
∑
l<−q

23l/2‖∆̇l∇u‖L2‖∇θ‖2L2 (by (2.2))

≤ C
( ∑
l<−q

2
3l
2 ·2
)1/2

·
( ∑
l<−q

‖∆̇l∇u‖2L2

)1/2

‖∇θ‖2L2

≤ C2−3q/2|∇u|L2‖∇θ‖2L2 (by (2.3))

= [C2−q/2‖∇θ‖L2 ]3.

(3.5)
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For I2, we have

I2 =
∫

R3
|S̄q∇u| · |∇θ|2 dx ≤ ‖S̄q∇u‖L∞‖∇θ‖2L2 . (3.6)

Finally, for I3, we have

I3 ≤
∑
l>q

‖∆l∇u‖L3‖∇θ‖2L3

≤ C
∑
l>q

21/2‖∆l∇u‖L2‖∇θ‖L2‖∆θ‖L2

by (2.2) and Gagliardo-Nireberg inequality

≤ C
(∑
l>q

2−
l
2 ·2
)1/2

·
(∑
l>q

2l·2‖∆̇l∇u‖2L2

)1/2

‖∇θ‖L2‖∆θ
L2‖

≤ [C2−q/2‖∇θ‖L2 ][‖∇ω‖2L2 + ‖∆θ‖2L2 ] (by (2.3)).

(3.7)

Gathering (3.5), (3.6) and (3.7) together, and plugging them into (3.8), we deduce

I ≤ [C2−q/2‖∇θ‖L2 ]3 +‖S̄q∇u‖L∞‖∇θ‖2L2 + [C2−q/2‖∇θ‖L2 ] · [‖∇ω‖2L2 +‖∆θ‖2L2 ].
(3.8)

Substituting (3.8) into (3.1), we find

d
dt

[‖ω‖2L2 + ‖∇θ‖2L2 ] + [‖∇ω‖2L2 + ‖∆θ‖2L2 ]

≤ ‖∇θ‖2L2 + [C2−q/2‖∇θ‖L2 ]3

+
‖S̄q∇u‖L∞

q ln q
· q ln q‖∇θ‖2L2 + [C2−q/2‖∇θ‖L2 ][‖∇ω‖2L2 + ‖∆θ‖2L2 ].

(3.9)

Taking

q = [
2

ln 2
ln+(C‖∇θ‖L2)] + 3,

where [t] is the largest integer smaller that t ∈ R, and ln+ t = ln(e+ t), then (3.9)
implies that

d
dt

[‖ω‖2L2 + ‖∇θ‖2L2 ] +
1
2

[‖∇ω‖2L2 + ‖∆θ‖2L2 ]

≤ ‖∇θ‖2L2 + C +
‖S̄q∇u‖L∞

q ln q
ln+(‖∇θ‖L2) ln+ ln+(‖∇θ‖L2)‖∇θ‖2L2 .

Applying Gronwall inequality three times, we deduce

[‖ω‖2L2 + ‖∇θ‖2L2 ] +
∫ t

0

[‖∇ω‖2L2 + ‖∆θ‖2L2 ] dτ

≤ C exp exp exp
(∫ t

0

‖S̄q∇u‖L∞
q ln q

dτ
)
.

By (1.5), the solutions (u, θ) are uniformly bounded in L∞(0, T ;H1(R3)), and thus
smooth. This completes the proof of Theorem 1.1.
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