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GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR
PARABOLIC SYSTEMS WITH NONLINEAR NONLOCAL

BOUNDARY CONDITIONS

ZHOU SEN, ZUODONG YANG

Abstract. In this article we study a nonlinear parabolic system with nonlin-

ear nonlocal boundary conditions. We prove the uniqueness of the solutions
and establish the conditions for global solutions and non-global solutions. It

is interesting to observe that the weight function for the nonlocal Dirichlet

boundary conditions plays a crucial role in determining whether the solutions
are global or blow up in finite time.

1. Introduction

In this article, we consider the parabolic system with nonlinear nonlocal bound-
ary conditions

ut = ∆u+ vp, x ∈ Ω, t > 0,

vt = ∆v + uq, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

f(x, y)ur(y, t) dy, x ∈ ∂Ω, t > 0,

v(x, t) =
∫

Ω

g(x, y)vr(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, and
p, q, r > 0. The functions f and g are nonnegative, continuous, defined for x ∈ ∂Ω,
y ∈ Ω and t ≥ 0. The initial data u0(x) and v0(x) are nonnegative continuous
functions satisfying the boundary conditions at t = 0.

Over the previous twenty years, many physical phenomena were formulated into
nonlocal mathematical models (see [1, 2, 3, 7, 13]). There has been a considerable
amount of literature dealing with the properties of solutions to local semilinear
parabolic equation or systems of heat equations with homogeneous Diriclet bound-
ary conditions or with nonlinear boundary conditions (see [5, 9, 10, 11, 16, 17,
18, 19, 20, 21, 22, 24, 26] and references therein). However, there are some impor-
tant phenomena formulated as parabolic equations which are coupled with nonlocal
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boundary conditions in mathematical modeling such as thermoelasticity theory (see
[4, 6, 25]).

The problem of nonlocal boundary value for linear parabolic equations is of the
type

ut −Au = c(x)u, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

K(x, y)u(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

(1.2)

with uniformly elliptic operator

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
−

n∑
i=1

bi(x)
∂

∂xi

and c(x) ≤ 0 was studied by Friedman [12]. The global existence and mono-
tonic decay of the solution of problem (1.2) was obtained under the condition∫

Ω
|K(x, y)| dy < 1 for all x ∈ ∂Ω. And later the problem (1.2) with Au re-

placed by ∆u and the linear term c(x)u replaced by the nonlinear term g(x, u)
was discussed by Deng [8]. The comparison principle and the local existence were
established. On the basis of Deng’s work, Seo [23] investigated the above problem
with g(x, u) = g(u), by using the upper and lower solution’s technique, he gained
the blow-up condition of positive solution, and in the special case g(u) = up or
g(u) = eu he also derived the blow-up rate estimates.

For more general discussions on the dynamics of parabolic problems with non-
local boundary conditions, Pao [20] consider the problem

ut − Lu = f(x, u), x ∈ Ω, t > 0,

Bu =
∫

Ω

K(x, y)u(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

(1.3)

where

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
−

n∑
i=1

bi(x)
∂u

xi
, Bu = α0

∂u

∂ν
+ u.

The scalar problems with both nonlocal sources and nonlocal boundary conditions
have been studied as well. For example, the problem

ut −∆u =
∫

Ω

g(u) dy, x ∈ Ω, t > 0,

Bu =
∫

Ω

K(x, y)u(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

(1.4)

was studied by Lin and Liu [16], where
∫

Ω
g(u) dy ≡

∫
Ω
g(u(y, t)) dy, and Zheng and

Kong [26] established global existence condition for solution to a nonlocal parabolic
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system subject to nonlocal Dirichlet boundary conditions

ut = ∆u− um(x, t)
∫

Ω

vn(y, t) dy, x ∈ Ω, t > 0,

vt = ∆v − vq(x, t)
∫

Ω

up(y, t) dy, x ∈ Ω, t > 0,

u =
∫

Ω

ϕ(x, y)u(y, t) dy, v =
∫

Ω

ψ(x, y)v(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.5)

Recently, Gladkov and Kim [14] studied the heat equation with nonlinear non-
local boundary condition,

ut = ∆u+ c(x, t)up, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

k(x, y, t)ul(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω .

(1.6)

The comparison principle, the uniqueness of solution with any initial data for
min(p, l) ≥ 1 and with nontrivial initial data otherwise, non-uniqueness of solu-
tion with trivial initial data for p < 1 or l < 1, and local existence theorem had
been proved. And in [15] they presented some criteria for the existence of global
behavior of the coefficients c(x, t) and k(x, y, t) as t tends to infinity.

Motivated by the above works, we are interested in the blow-up properties of
problem (1.1). The aim of this paper is to establish the global existence and finite
time blow-up conditions for the solution of problem (1.1).

Before stating our main results, we state the following assumptions on the kernels
f(x, y), g(x, y) and the initial data u0(x), v0(x):

(H1) f(x, y) and g(x, y) are continuous and nonnegative functions on ∂Ω×Ω̄ and
satisfy∫

Ω

f(x, y) dy > 0,
∫

Ω

g(x, y) dy > 0 for all x ∈ ∂Ω.

(H2) u0(x), v0(x) ∈ C2+α(Ω) for some α ∈ (0, 1), u0(x) > 0 and v0(x) > 0 in Ω
satisfy

u0(x) =
∫

Ω

f(x, y)ur0(y) dy, v0(x) =
∫

Ω

g(x, y)vr0(y) dy on ∂Ω.

This article is organized as follows. Section 2 is devoted to dealing with the
comparison principle and the local existence in time for problem (1.1). In Section
3 we give the global existence for p, q ≤ 1. The blow-up conditions for p, q > 1
with large initial data will be established in Section 4. In Section 5, we discuss the
blow-up solutions and the existence of global solutions for p > 1 > q or q > 1 > p.

2. The comparison principle and existence of local solutions

In this section we start with the definition of supersolution and subsolution of
problem (1.1). Then we present some material needed in the proof of our main
results. For convenience, We set QT = Ω× (0, T ], ST = ∂Ω× (0, T ], Qt = Ω× (0, t],
0 < t ≤ T <∞, where QT and Qt are their respective closures.
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Definition 2.1. A pair of nonnegative functions ũ, ṽ ∈ C2,1(QT )∩C(QT ) is called
a subsolution of (1.1) if

ũt ≤ ∆ũ+ ṽp, (x, t) ∈ QT ,
ṽt ≤ ∆ṽ + ũq, (x, t) ∈ QT ,

ũ(x, t) ≤
∫

Ω

f(x, y)ũr(y, t) dy, (x, t) ∈ ST ,

ṽ(x, t) ≤
∫

Ω

g(x, y)ṽr(y, t) dy, (x, t) ∈ ST ,

ũ(x, 0) ≤ u0(x), ṽ ≤ v0(x), x ∈ Ω.

(2.1)

and a pair of functions û, v̂ ∈ C2,1(QT )∩C(Q̄T ) is a supersolution of problem (1.1)
if û, v̂ ≥ 0 and it satisfies inequalities in (2.1) in the reverse order. Furthermore, we
say that u and v are solutions of problem (1.1) in Q̄T if they are both subsolutions
and supersolutions of (1.1) in Q̄T .

Definition 2.2. We say a pair of nonnegative functions ũ, ṽ is a strict subsolution
of (1.1) in QT if it is a subsolution and the equalities in boundary conditions in (2.1)
is strict. Similarly, a strict supersolution is defined by the opposite inequalities.

The following lemma and comparison principle play a crucial role in our discus-
sions.

Lemma 2.3. Let u0, v0 be nontrivial functions in Ω and assume that the assump-
tions (H1)–(H2) hold. Suppose that (û, v̂) is a supersolution of (1.1) in QT , then
û > 0, v̂ > 0 in QT for all t > 0.

Proof. Since u0 is a nontrivial nonnegative function and ût − ∆û ≥ v̂p ≥ 0, a
minimum of u over Q̄T should be attained only at a parabolic boundary point by
the strong maximum principle. Thus, û(x, t) > 0 in Ω× (0, T ]. By (1.1) and (H1),
we have û(x, t) > 0 for x ∈ ∂Ω, 0 < t ≤ T . Similarly, v̂(x, t) > 0 in QT for all t > 0
can be proved. �

Lemma 2.4. Let (û, v̂) and (ũ, ṽ) be a nonnegative supersolution and a nonnegative
subsolution of (1.1) in QT , respectively, and û(x, 0) > ũ(x, 0), v̂(x, 0) > ṽ(x, 0) in
Ω. Suppose (H1) holds or (û, v̂) is a strict supersolution. Then û > ũ and v̂ > ṽ
hold in QT .

Proof. Set ϕ(x, t) = û− ũ, ψ = v̂ − ṽ, then ϕ,ψ satisfy
ϕt −∆ϕ ≥ v̂p − ṽq ≥ ρ1(θv)ψ, (x, t) ∈ QT ,
ψt −∆ψ ≥ ûp − ũq ≥ ρ2(θu)ϕ, (x, t) ∈ QT ,

(2.2)

with the following boundary and initial conditions

ϕ(x, t) ≥
∫

Ω

f(x, y)h1(θu)ϕ(y, t) dy, (x, t) ∈ ST ,

ψ(x, t) ≥
∫

Ω

g(x, y)h2(θv)ψ(y, t) dy, (x, t) ∈ ST ,
(2.3)

ϕ(x, 0) > 0, ψ(x, 0) > 0, x ∈ Ω̄, (2.4)

where θu is between û and ũ, and θv is between v̂ and ṽ.
Since ϕ(x, 0), ψ(x, 0) > 0, by continuity, there exists δ > 0 such that ϕ,ψ > 0

for (x, t) ∈ Ω̄× (0, δ). Suppose for a contradiction that t0 = sup{t ∈ (0, T ), ϕ, ψ >
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0on Ω̄ × (0, t)} < T . Then ϕ,ψ ≥ 0 on Q̄t̄0 , and at least one of ϕ,ψ vanishes at
(x0, t0) for some x0 ∈ Ω̄. Without loss of generality, we suppose ϕ(x0, t0) = 0. Let
G(x, y; t) denote the Green’s function for

Lu = ut −∆u, x ∈ Ω, t > 0

with boundary conditions

u = 0, x ∈ ∂Ω, t > 0.

Then for y ∈ ∂Ω, G(x, y; t) = 0 and ∂G(x,y;t)
∂n < 0. Applying G(x, y; t) to (2.2), we

have

ϕ(x, t) ≥
∫

Ω

G(x, y; t)ϕ(y, 0) dy

+
∫ t

0

∫
Ω

G(x, y; t− η)ρ1(θv)ψ(y, η) dy dη

−
∫ t

0

∫
∂Ω

∂G(x, ξ; t− η)
∂n

∫
Ω

f(ξ, y)h1(θu)ϕ(y, η) dy dξ dη.

Since ϕ,ψ > 0 for all x ∈ Ω̄, 0 < t < t0, and f(x, y) > 0, we find that

ϕ(x, t0) ≥
∫

Ω

G(x, y; t)ϕ(y, 0) dy > 0.

In particular, ϕ(x0, t0) > 0, which contradicts our previous assumption. �

Remark 2.5. If
∫

Ω
f(x, y) dy ≤ 1,

∫
Ω
g(x, y) dy ≤ 1, we need only û(x, 0) ≥ ũ(x, 0),

v̂(x, 0) ≥ ṽ(x, 0) in Ω̄, since for any ε > 0, ϕ(x, t) = û+ ε− ũ, ψ = v̂+ ε− ṽ satisfy
all inequalities in (2.2)-(2.4), then we have û+ ε > ũ, v̂+ ε > ṽ, and it follows that
û ≥ ũ, v̂ ≥ ṽ.

Let εm be decreasing to 0 such that 0 < εm < 1. For ε = εm, let u0ε, v0ε

be the functions with the following properties: u0ε, v0ε ∈ C(Ω̄), u0ε > ε, v0ε > ε,
u0εi > u0εj , v0εi > v0εj for εi > εj , u0ε → u0(x), v0ε → v0(x) as ε → 0, and
u0ε(x) =

∫
Ω
f(x, y)ur0ε(y) dy, v0ε(x) =

∫
Ω
g(x, y)vr0ε(y) dy. Since the nonlinearities

in (1.1) do not satisfy the Lipschitz condition, we need to consider the following
auxiliary problem:

ut = ∆u+ vp, x ∈ Ω, t > 0,

vt = ∆v + uq, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

f(x, y)ur(y, t) dy + ε, x ∈ ∂Ω, t > 0,

v(x, t) =
∫

Ω

g(x, y)vr(y, t) dy + ε, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(2.5)

where ε = εm. The notion of a solution uε for problem (2.5) can be defined in a
similar way as in Definition 2.1.

Theorem 2.6. There exists T ∗ (0 < T ∗ ≤ ∞) such that (2.5) has a unique solution
(u(x, t), v(x, t)) ∈ C(Ω̄× [0, T ∗)) ∩ C2,1(Ω× (0, T ∗)).
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Let ε2 > ε1. Obviously, uε2(x,t), vε2(x, t) is a pair of strict supersolution of (2.5)
with ε = ε1. By the comparison principle for problem (2.5) we have that uε1 < uε2 ,
vε1 < vε2 . Taking ε→ 0, we get

uM (x, t) = lim
ε→0

uε(x, t), vM (x, t) = lim
ε→0

vε(x, t)

with uM (x, t) ≥ 0, vM (x, t) ≥ 0. It is easy to check that (uM (x, t), vM (x, t)) are
solutions of (1.1). Let ū, v̄ be any solution of (1.1), then by comparison principle
uε ≥ ū, vε ≥ v̄. Taking ε→ 0, we conclude that uM ≥ ū, vM ≥ v̄. So we have the
existence of a local solution.

Theorem 2.7. There exists T (0 < T ≤ ∞) such that (1.1) has a maximal solution
(u(x, t), v(x, t)) ∈ C(Ω̄× [0, T )) ∩ C2,1(Ω× (0, T )).

We now give the uniqueness for solutions to (1.1).

Theorem 2.8. Assume that (H1), (H2) hold. If p, q, r ≥ 1, or if p, q < 1 or r < 1,
then (1.1) has a unique solution (u(x, t), v(x, t)) ∈ C(Ω̄× [0, T ))∩C2,1(Ω× (0, T )).

Lemma 2.9. Assume (H1) holds, min{max{p, q}, r} ≤ 1, and u0(x) ≡ 0, v0(x) ≡
0. Then maximal solution uM , vM of (1.1) is strictly positive for x ∈ Ω̄ and all
positive time, as long as it exists.

Proof of Theorem 2.8. Case 1: p, q, r ≥ 1. Assume that (1.1) has the maximal so-
lution (uM (x, t), vM (x, t)) and another solution (u(x, t), v(x, t)). Then there exists
t0 ≥ 0, such that (uM (x, t), vM (x, t)) ≡ (u(x, t), v(x, t)) for x ∈ Ω̄, 0 ≤ t ≤ t0 and
(uM (x, t), vM (x, t)) 6≡ (u(x, t), v(x, t)) for x ∈ Ω̄, t0 ≤ t ≤ t0 +γ with γ ∈ (0, T−t0).
We can assume that t0 = 0. Let G(x, y; t) denote the Green’s function for the heat
equation

ut −∆u = 0, x ∈ Ω, t > 0
with a boundary condition u = 0 for x ∈ ∂Ω, t > 0. Then from (1.1) we obtain

um(x, t)− u(x, t) =
∫ t

0

∫
Ω

G(x, y; t− η)ρ1(θv)(vm − v) dy dη

−
∫ t

0

∫
∂Ω

∂G(x, ξ; t− η)
∂n

∫
Ω

f(ξ, y)h1(θu)(um − u) dy dξ dη,

where ρ1(θv) and h1(θu) are continuous functions in Q̄T . Due to the assumptions
of in this theorem and Lemma 2.3, we have

um(x, t)− u(x, t) ≤ σ1(T ){sup
QT

(vm(x, t)− v(x, t)) + sup
QT

(um(x, t)− u(x, t))},

where

σ1(T ) = sup
QT

∫ t

0

∫
Ω

G(x, y; t− η)ρ1(θv) dy dη

+ sup
QT

∫ t

0

∫
∂Ω

−∂G(x, ξ; t− η)
∂n

∫
Ω

f(ξ, y)h1(θu) dy dξ dη.

Similarly we can prove that

vm(x, t)− v(x, t) ≤ σ2(T ){sup
QT

(um(x, t)− u(x, t)) + sup
QT

(vm(x, t)− v(x, t))}.

Choosing T so small that σ1(T ) + σ2(T ) < 1, we prove the uniqueness of solution
for (1.1) in QT .
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Case 2: p, q < 1 or r < 1. We distinguish three cases: r < 1 and p, q ≤ 1; r < 1
and p, q > 1; or r ≥ 1 and p, q < 1.

To prove the uniqueness it suffices to show that if (u, v) is any solution of (1.1),
then

u(x, t) ≥ uM (x, t), v(x, t) ≥ vM (x, t). (2.6)
Let r < 1 and p, q ≤ 1. Set w = uM − u, z = vM − v. Since r < 1 and p, q ≤ 1, it is
easy to verify that

wt ≤ ∆w + zp, (x, t) ∈ QT1 ,

zt ≤ ∆z + wq, (x, t) ∈ QT1 ,

w(x, t) ≤
∫

Ω

f(x, y)wr(y, t) dy, (x, t) ∈ ST1 ,

z(x, t) ≤
∫

Ω

g(x, y)zr(y, t) dy, (x, t) ∈ ST1 ,

w(x, 0) ≡ 0, z(x, 0) ≡ 0, x ∈ Ω.

By Lemma 2.9 there exists a unique solution w0(x, t) > 0, z0(x, t) for x ∈ Ω̄,
0 < t < T2 satisfying the equations in (1.1) and the boundary conditions

w0(x, 0) = 0, z0(x, 0) = 0.

In a similar way as that used in Lemma 2.4, we can prove that w0(x, t) ≥ w(x, t),
z0(x, t) ≥ z(x, t) and uM (x, t) ≥ w0(x, t), vM (x, t) ≥ z0(x, t). We put a(x, t) =
w0(x, t)− w(x, t), b(x, t) = z0(x, t)− z(x, t) and obtain

at ≥ ∆a+ bp, (x, t) ∈ QT3 ,

bt ≥ ∆b+ aq, (x, t) ∈ QT3 ,

a(x, t) ≥
∫

Ω

f(x, y)ar(y, t) dy, (x, t) ∈ ST3 ,

b(x, t) ≥
∫

Ω

g(x, y)br(y, t) dy, (x, t) ∈ ST3 ,

a(x, 0) ≡ 0, b(x, 0) ≡ 0, x ∈ Ω.

It is not difficult to prove that a(x, t) > 0, b(x, t) > 0 in QT . Thus by the comparison
principle we conclude that a(x, t) ≥ w0(x, t), b(x, t) ≥ z0(x, t). This implies (2.6)
and the theorem holds under the assumptions r < 1 and p, q ≤ 1. For the other
cases we can discuss in a similar way. �

3. Existence of global solutions for p, q ≤ 1

Theorem 3.1. Let p, q ≤ 1. Then for all r ≤ 1, the solution (u, v) of (1.1) exists
globally for any nonnegative initial data.

Proof. We first suppose 0 < r < 1. By the conditions for f(x, y), g(x, y), there exists
a constant M > 1 such that f(x, y) ≤M and g(x, y) ≤M for all (x, y) ∈ ∂Ω×Ω̄. It
is easy to see that the pair of functions (û, v̂) = (Ceβt, Ceβt) is a strict supersolution
of (1.1) if β ≥M and C ≥ max{supΩ u0(x), supΩ v0(x), (M |Ω|)

1
1−r }.

In the case r = 1, the pair of function (û, v̂) = (Ceβt, Ceβt) is a strict superso-
lution of (1.1) if and only if∫

Ω

f(x, y) dy < 1,
∫

Ω

g(x, y) dy < 1 for all x ∈ ∂Ω. (3.1)
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Therefore, when (3.1) is not valid, we need to construct another supersolution.
Denote by ϕ(x) the eigenfunction corresponding to the first eigenvalue λΩ

1 of the
elliptic problem

−∆ϕ = λϕ, x ∈ Ω; ϕ = 0, x ∈ ∂Ω. (3.2)
and that for 0 < ε < 1 satisfies

M

∫
Ω

1
ϕ(y) + ε

dy ≤ 1.

Now we set û = Ceγt

ϕ(x)+ε , v̂ = Ceγt

ϕ(x)+ε . A simple computation shows

ût −∆û− v̂p ≥ γû− û
( λΩ

1 ϕ

ϕ(x) + ε
+

2|∇ϕ|2

(ϕ(x) + ε)2

)
− v̂ ≥ 0,

v̂t −∆v̂ − ûq ≥ γv̂ − v̂
( λΩ

1 ϕ

ϕ(x) + ε
+

2|∇ϕ|2

(ϕ(x) + ε)2

)
− û ≥ 0,

(3.3)

if we choose

C ≥ max{sup
Ω

(ϕ(x) + ε), sup
Ω

u0(x) sup
Ω

(ϕ(x) + ε), sup
Ω

v0(x) sup
Ω

(ϕ(x) + ε)},

and

γ ≥ λΩ
1 + sup

Ω

2|∇ϕ|2

(ϕ+ ε)2
+ 1.

It is clear from (3.3) and the choice of C, γ that (û, v̂) is a strict supersolution of
(1.1). Thus the solution of problem (1.1) exists globally. �

4. Blow-up in finite time for p, q > 1

In this section we will get some blow-up results for (1.1). First, we give the
following lemma which is crucial in proving the blow-up results.

Lemma 4.1. There exists a positive solution φ for the elliptic eigenvalue problem

−∆φ = λφ, x ∈ Ω, min
x∈Ω

φ = 1. (4.1)

Proof. Since Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, we
can choose another bounded domain Ω1 such that Ω ⊂⊂ Ω1. Let λΩ1

1 be the first
eigenvalue of following elliptic eigenvalue problem

−∆φ = λφ, x ∈ Ω1, φ = 0, x ∈ ∂Ω1

and φ1 is the corresponding eigenfunction with φ1 > 0. Then φ1 ≥ δ > 0 in Ω. Set
φ = 1

δφ1, then φ is the function satisfying (4.1). �

Remark 4.2. From the continuity of eigenvalue to the domain Ω, we can choose
Ω1 such that λΩ

1 > λΩ1
1 > λΩ

1 − ε for some constant ε, sufficiently small.

Now we turn to the blow-up conclusions. We denote

K = max
x∈Ω

φ(x), h0 = min{min
x∈∂Ω

∫
Ω

f(x, y) dy, min
x∈∂Ω

∫
Ω

g(x, y) dy}.

From Lemma 4.1 and the assumption (H1) we can see K > 1 and h0 > 0.

Theorem 4.3. Let p, q > 1. Then if r > 1 and h0|Ω| > Kmin{p,q}, the solution
(u, v) of (1.1) blows up in finite time for the large initial data.
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Proof. Without lose of generality, we can assume that p ≥ q. Set ũ = sl(t)φq(x), ṽ =
sl(t)φq(x), where l is a constant and satisfies p ≥ q > l, r > l. The function φ is
defined as in Lemma 4.1. Let s(t) be the solution to the problem

s′(t) = −λΩ1
1 qs(t) + sl(t), t > 0, s(0) = s0. (4.2)

with initial data s0 ≥ max{(λΩ1
1 q)

1
l−1 , 1}. It is easy to see that s(t) ≥ 1 and blows

up in finite time Ts0 . A direct computation yields

ũt −∆ũ− ṽp = lsl−1(t)s′(t)φq − sl(t)[−λ1qφ
q + q(q − 1)φq−2|∇φ|2]− slp(t)φpq

≤ lsl−1s′(t)φq + sl(t)λ1qφ
q − sl(t)φq

= lsl−1(t)(s′(t) + λ1qs(t)− sl(t))φq = 0,
(4.3)

ṽt −∆ṽ − ũq = lsα−1s′(t)φq − sl(t)[−λ1qφ
q + q(q − 1)φq−2|∇φ|2]− slq(t)φq

2

≤ lsl−1s′(t)φq + sl(t)λ1qφ
q − slφq

= lsl−1(t)(s′(t) + λ1qs(t)− sl(t))φq = 0,
(4.4)

in Ω× (0, Ts0), and for x ∈ ∂Ω× (0, Ts0). So we have

ũ(x, t) ≤ sl(t)Kq ≤ h0s
l(t)|Ω|

≤
∫

Ω

f(x, y)slr(t)φqr(y) dy

=
∫

Ω

f(x, y)ũr(y, t) dy,

ṽ(x, t) ≤ sl(t)Kq ≤ h0s
l(t)|Ω|

≤
∫

Ω

g(x, y)slr(t)φqr(y) dy

=
∫

Ω

g(x, y)ṽr(y, t) dy.

(4.5)

From (4.3)-(4.5) we can see that (ũ, ṽ) is a subsolution provided the initial data
so large that sl(0)φq(x) ≤ u0(x), sl(0)φq(x) ≤ v0(x) for x ∈ Ω. Thus by Lemma
2.4, the solution (u, v) of problem (1.1) blows up because (ũ, ṽ) blows up in finite
time. �

5. Blow-up and global solution for p > 1 > q or q > 1 > p

Theorem 5.1. Let p > 1 > q or q > 1 > p. If pq < 1, r ≤ 1, and∫
Ω

f(x, y) dy ≤ 1,
∫

Ω

g(x, y) dy ≤ 1

for all x ∈ ∂Ω, then the solution (u, v) of (1.1) exists globally for sufficiently small
initial data.

Proof. We assume p > 1 > q. Since pq < 1, there exists a constant l such that
0 < pq ≤ l < 1. Let s(t) be the unique solution to the problem

s′(t) = sl(t), t > 0, s(0) = s0
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with initial data s0 > 1. It is easy to see that s(t) > 1 and exists globally. Set
û = sp+1(t) and v̂ = sq+1(t). Then we have

ût −∆û− v̂p = (p+ 1)sp(t)s′(t)− s(q+1)p(t)

= (p+ 1)sp(t)sl(t)− s(q+1)p(t)

> sp+l(t)− s(q+1)p(t) ≥ 0,

(5.1)

v̂t −∆v̂ − ûq = (q + 1)sq(t)s′(t)− s(p+1)q(t)

= (q + 1)sq(t)sl(t)− s(p+1)q(t)

> sq+l(t)− s(p+1)q(t) ≥ 0,

(5.2)

in Ω× (0,∞), and for x ∈ ∂Ω× (0,∞). So we have

û = sp+1(t) ≥
∫

Ω

f(x, y)s(p+1)r(t) dy =
∫

Ω

f(x, y)ûr dy,

v̂ = sq+1(t) ≥
∫

Ω

g(x, y)s(q+1)r(t) dy =
∫

Ω

g(x, y)v̂r dy.
(5.3)

From (5.1)–(5.3) we see that (û, v̂) is a supersolution provided that sp+1
0 ≥ u0(x),

sq+1
0 ≥ v0(x) for x ∈ Ω. The case q > 1 > p can be treated by exchanging the roles

of u and v in the above case. �

Theorem 5.2. Let p > 1 > q or q > 1 > p. If pq > 1, r ≥ 1, and∫
Ω

f(x, y) dy ≥ 1,
∫

Ω

g(x, y) dy ≥ 1

for all x ∈ ∂Ω, then the solution (u, v) of (1.1) blows up in finite time for sufficiently
large initial data.

Proof. We assume p > 1 > q. Since pq > 1, there exists a constant l such that
1 < l ≤ pq. Let s(t) be the unique solution to the problem

s′(t) = sl(t), t > 0, s(0) = s0

with the initial data s0 > 1. It is easy to see that s(t) > 1 and blows up in finite
time. Set ũ = sp+1(t), ṽ = sq+1(t), then we have

ũt −∆ũ− ṽp = (p+ 1)sp(t)s′(t)− s(q+1)p(t)

= (p+ 1)sp(t)sl(t)− s(q+1)p(t)

< sp+l(t)− s(q+1)p(t) ≤ 0,

(5.4)

ṽt −∆ṽ − ũq = (q + 1)sq(t)s′(t)− s(p+1)q(t)

= (q + 1)sq(t)sl(t)− s(p+1)q(t)

< sq+l(t)− s(p+1)q(t) ≤ 0,

(5.5)

in Ω× (0,∞), and for x ∈ ∂Ω× (0,∞). So we have

ũ = sp+1(t) ≤
∫

Ω

f(x, y)s(p+1)r(t) dy =
∫

Ω

f(x, y)ũr dy,

ṽ = sq+1(t) ≤
∫

Ω

g(x, y)s(q+1)r(t) dy =
∫

Ω

g(x, y)ṽr dy.
(5.6)
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From (5.4)–(5.6) we can see that (ũ, ṽ) is a supersolution provided sp+1
0 ≤ u0(x),

sq+1
0 ≤ v0(x) for x ∈ Ω. Since (ũ, ṽ) blows up in finite time. The case q > 1 > p

can be treated by exchanging the roles of u and v in the above case. The proof is
complete. �
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