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EXISTENCE OF SOLUTIONS FOR (k, n− k − 2) CONJUGATE
BOUNDARY-VALUE PROBLEMS AT RESONANCE WITH

dim kerL = 2

WEIHUA JIANG

Abstract. By constructing suitable project operators and using the coinci-

dence degree theory due to Mawhin, the existence of solutions for (k, n−k−2)
conjugate boundary-value problems at resonance with dimkerL = 2 is ob-

tained.

1. Introduction

The existence of solutions for (k, n − k) conjugate boundary-value problems at
nonresonance has been studied in many papers (see [1, 2, 3, 6, 7, 9, 10, 11, 16, 14,
21, 25, 27, 29, 30, 31, 32]). The solvability of boundary-value problems at resonance
has been investigated by many authors (see [4, 5, 8, 12, 13, 15, 17, 18, 19, 20, 26, 22,
24, 28, 33]). In [12], the existence of solutions for (k, n − k) conjugate boundary-
value problems at resonance with dim kerL = 1 has been studied. To the best
of our knowledge, no paper discusses the existence of solutions for (k, n − k − 2)
conjugate boundary-value problems at resonance with dim kerL = 2. We will fill
this gap in the literature.

In this article, we investigate the existence of solutions for the (k, n − k − 2)
conjugate boundary-value problem at resonance

(−1)n−ky(n)(t) = f
(
t, y(t), y′(t), . . . , y(n−1)(t)

)
+ ε(t), a.e. t ∈ [0, 1], (1.1)

y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− k − 3,

y(n−2)(1) =
l∑

j=1

βjy
(n−2)(ηj), y(n−1)(1) =

m∑
i=1

αiy
(n−1)(ξi),

(1.2)

where 1 ≤ k ≤ n− 3, 0 < η1 < η2 < · · · < ηl < 1, 0 < ξ1 < ξ2 < · · · < ξm < 1.
In this article, we assume that the following conditions hold.

(H1)
∑m
i=1 αi = 1,

∑l
j=1 βj = 1,

∑l
j=1 βjηj = 1.
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(H2) e =
∣∣∣∣e1 e2
e3 e4

∣∣∣∣ 6= 0, where

e1 = 1−
m∑
i=1

aiξi, e2 =
1
2

(
1−

l∑
j=1

βjη
2
j

)
,

e3 =
1
2

(
1−

m∑
i=1

aiξ
2
i

)
, e4 =

1
6

(
1−

l∑
j=1

βjη
3
j

)
.

(H3) ε(t) ∈ L∞[0, 1], f : [0, 1] × Rn → R satisfies Carathéodory conditions;
i.e., f(·, x) is measurable for each fixed x ∈ Rn, f(t, ·) is continuous for
a.e. t ∈ [0, 1], and for each r > 0, there exists Φr ∈ L∞[0, 1] such that
|f(t, x1, x2, . . . , xn)| ≤ Φr(t) for all |xi| ≤ r, i = 1, 2, . . . , n, a.e. t ∈ [0, 1].

2. Preliminaries

For convenience, we introduce some notation and a theorem. For more details
see [23]. Let X and Y be real Banach spaces and L : domL ⊂ X → Y be a
Fredholm operator with index zero, P : X → X, Q : Y → Y be projectors such
that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

It follows that
L
∣∣
domL∩kerP

: domL ∩ kerP → ImL

is invertible. We denote its inverse by KP .
Let Ω be an open bounded subset of X,domL ∩ Ω 6= ∅, the map N : X → Y

will be called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω→ X is
compact.

Theorem 2.1 ([23]). Let L : domL ⊂ X → Y be a Fredholm operator of index
zero and N : X → Y L-compact on Ω. Assume that the following conditions are
satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ kerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω;
(3) deg(QN |kerL,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

Take X = Cn−1[0, 1] with norm ‖u‖ = max{‖u‖∞, ‖u′‖∞, . . . , ‖u(n−1)‖∞},
where ‖u‖∞ = maxt∈[0,1] |u(t)|, Y = L1[0, 1] with norm ‖x‖1 =

∫ 1

0
|x(t)|dt. De-

fine operator Ly(t) = (−1)n−ky(n)(t) with

domL =
{
y ∈ X : y(n) ∈ Y, y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1,

0 ≤ j ≤ n− k − 3, y(n−2)(1) =
l∑

j=1

βjy
(n−2)(ηj),

y(n−1)(1) =
m∑
i=1

αiy
(n−1)(ξi)

}
.
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Let N : X → Y be defined as

Ny(t) = f
(
t, y(t), y′(t), . . . , y(n−1)(t)

)
+ ε(t), t ∈ [0, 1].

Then problem (1.1), (1.2) becomes Ly = Ny.
We use convention that 1/k! = 0, for k = −1,−2, . . . . By simple calculation, we

can get the following results.∣∣∣∣∣∣∣∣
1
k!

1
(k+1)! . . . 1

(n−3)!
1

(k−1)!
1
k! . . . 1

(n−4)!

. . . . . .
1

[k−(n−k−3)]!
1

[k+1−(n−k−3)]! . . . 1
[n−3−(n−k−3)]!

∣∣∣∣∣∣∣∣
=

(n− k − 3)!
k!

· (n− k − 4)!
(k + 1)!

. . .
1

(n− 3)!
6= 0.

So, the following lemmas hold.

Lemma 2.2. The system of linear equations
xk
k!

+
xk+1

(k + 1)!
+ · · ·+ xn−3

(n− 3)!
+

1
(n− 2)!

= 0,

xk
(k − 1)!

+
xk+1

k!
+ · · ·+ xn−3

(n− 4)!
+

1
(n− 3)!

= 0,

. . .
xk

[k − (n− k − 3)]!
+

xk+1

[k + 1− (n− k − 3)]!
+ . . .

+
xn−3

[n− 3− (n− k − 3)]!
+

1
[n− 2− (n− k − 3)]!

= 0

has only one solution, its denoted by (ak, ak+1, . . . , an−3).

Lemma 2.3. The system of linear equations
xk
k!

+
xk+1

(k + 1)!
+ · · ·+ xn−3

(n− 3)!
+

1
(n− 1)!

= 0,

xk
(k − 1)!

+
xk+1

k!
+ · · ·+ xn−3

(n− 4)!
+

1
(n− 2)!

= 0,

. . .
xk

[k − (n− k − 3)]!
+

xk+1

[k + 1− (n− k − 3)]!
+ . . .

+
xn−3

[n− 3− (n− k − 3)]!
+

1
[n− 1− (n− k − 3)]!

= 0

has only one solution, it is denoted by (bk, bk+1, . . . , bn−3).

Lemma 2.4. For given u ∈ Y , the system of linear equations

xk
k!

+
xk+1

(k + 1)!
+ · · ·+ xn−3

(n− 3)!
+

(−1)n−k

(n− 1)!

∫ 1

0

(1− s)n−1u(s)ds = 0,

xk
(k − 1)!

+
xk+1

k!
+ · · ·+ xn−3

(n− 4)!
+

(−1)n−k

(n− 2)!

∫ 1

0

(1− s)n−2u(s)ds = 0,

. . .
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xk
[k − (n− k − 3)]!

+
xk+1

[k + 1− (n− k − 3)]!
+ · · ·+ xn−3

[n− 3− (n− k − 3)]!

+
(−1)n−k

[n− 1− (n− k − 3)]!

∫ 1

0

(1− s)n−1−(n−k−3)u(s)ds = 0

has only one solution, its denoted by (Bk(u), Bk+1(u), . . . , Bn−3(u)).

Define the operators T1, T2, Q1, Q2 : Y → R as follows:

T1u(t) =
m∑
i=1

αi

∫ 1

ξi

u(s)ds,

T2u(t) =
l∑

j=1

βj

[ ∫ 1

ηj

(1− s)u(s)ds+ (1− ηj)
∫ ηj

0

u(s)ds
]
,

Q1u =
1
e

(e4T1u− e3T2u), Q2u =
1
e

(−e2T1u+ e1T2u).

Obviously, e1 = T1(1), e2 = T2(1), e3 = T1(t), e4 = T2(t).

Lemma 2.5. Assume that (H1) holds, then L : domL ⊂ X → Y is a Fredholm
operator of index zero and the linear continuous projector Q : Y → Y can be defined
as

Qu = Q1u+ t ·Q2u,

and the linear operator KP : ImL→ domL ∩ kerP can be written as

KPu =
n−3∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Proof. Take y ∈ kerL. We obtain y =
∑n−1
i=k

xi

i! t
i satisfying

xk
k!

+
xk+1

(k + 1)!
+ · · ·+ xn−2

(n− 2)!
+

xn−1

(n− 1)!
= 0,

xk
(k − 1)!

+
xk+1

k!
+ · · ·+ xn−2

(n− 3)!
+

xn−1

(n− 2)!
= 0,

. . .
xk

[k − (n− k − 3)]!
+

xk+1

[k + 1− (n− k − 3)]!
+ . . .

+
xn−2

[n− 2− (n− k − 3)]!
+

xn−1

[n− 1− (n− k − 3)]!
= 0.

Setting xn−2 = 1, xn−1 = 0, and xn−2 = 0, xn−1 = 1, respectively, by Lemmas
2.2, 2.3, we have

y =
n−3∑
i=k

cai + dbi
i!

ti +
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1, c, d ∈ R.

Therefore,

kerL =
{
y : y =

n−3∑
i=k

cai + dbi
i!

ti +
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1, c, d ∈ R

}
.

Define the linear operator P : X → X as follows

Py(t) =
n−3∑
i=k

y(n−2)(0)ai + y(n−1)(0)bi
i!

ti +
y(n−2)(0)
(n− 2)!

tn−2 +
y(n−1)(0)
(n− 1)!

tn−1.



EJDE-2013/226 EXISTENCE OF SOLUTIONS 5

Obviously, ImP = kerL and P 2y = Py. For any y ∈ X, it follows from y =
(y − Py) + Py that X = kerP + kerL. By simple calculation, we can get that
kerL ∩ kerP = {0}. So, we have

X = kerL⊕ kerP. (2.1)

We will show that

ImL =
{
u ∈ Y :

m∑
i=1

αi

∫ 1

ξi

u(s)ds = 0,

l∑
j=1

βj

[ ∫ 1

ηj

(1− s)u(s)ds+ (1− ηj)
∫ ηj

0

u(s)ds
]

= 0
}
.

In fact, if u ∈ ImL, there exists y ∈ domL such that u = Ly ∈ Y . This, together
with yi(0) = 0, 0 ≤ i ≤ k − 1, implies that

y(t) =
n−1∑
i=k

ci
i!
ti +

(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Since
∑m
i=1 αi = 1 and y(n−1)(1) =

∑m
i=1 αiy

(n−1)(ξi), we obtain
m∑
i=1

αi

∫ 1

ξi

u(s)ds = 0. (2.2)

Since
∑l
j=1 βj = 1,

∑l
j=1 βjηj = 1 and y(n−2)(1) =

∑l
j=1 βjy

(n−2)(ηj), we obtain

l∑
j=1

βj

[ ∫ 1

ηj

(1− s)u(s)ds+ (1− ηj)
∫ ηj

0

u(s)ds
]

= 0. (2.3)

On the other hand, if u ∈ Y satisfies (2.2) and (2.3), take

y =
n−3∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

It follows from (2.2), (2.3) and Lemma 2.4 that y ∈ domL. Obviously, Ly = u. So,
we get u ∈ ImL.

Now we will prove that Q : Y → Y is a projector such that kerQ = ImL,
Y = ImL⊕ ImQ. For u ∈ Y , since

Q1(1) =
1
e

[e4T1(1)− e3T2(1)] = 1, Q1(t) =
1
e

[e4T1(t)− e3T2(t)] = 0,

Q2(1) =
1
e

[−e2T1(1) + e1T2(1)] = 0, Q2(t) =
1
e

[−e2T1(t) + e1T2(t)] = 1,

we have

Q1(Qu) = Q1(Q1u+ t ·Q2u) = Q1u ·Q1(1) +Q2u ·Q1(t) = Q1u,

Q2(Qu) = Q2(Q1u+ t ·Q2u) = Q1u ·Q2(1) +Q2u ·Q2(t) = Q2u.

Thus,
Q2u = Q1(Qu) + t ·Q2(Qu) = Q1u+ t ·Q2u = Qu.

Since u ∈ kerQ, we have

e4T1u− e3T2u = 0,
−e2T1u+ e1T2u = 0.
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It follows from (H2) that T1u = T2u = 0. So, u ∈ ImL; i.e., kerQ ⊂ ImL. Clearly,
ImL ⊂ kerQ. So, ImL = kerQ. This, together with Q2y = Qy, means that
ImL ∩ ImQ = {0}. Thus, we have Y = ImL⊕ ImQ. Considering (2.1), we know
that L is a Frdholm operator of index zero.

Define the operator KP : Y → X as follows

KPu =
n−3∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

For u ∈ ImL, by Lemma 2.4, we have KPu ∈ domL. Clearly, KPu ∈ kerP . So,
we get that KP (ImL) ⊂ domL ∩ kerP . Now we will prove that KP is the inverse
of L|domL∩kerP .

Obviously, LKPu = u, for u ∈ ImL. On the other hand, for y ∈ domL ∩ kerP ,
we have

KPLy(t) =
n−3∑
i=k

Bi(Ly)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1(−1)n−ky(n)(s)ds

=
n−3∑
i=k

(Bi(Ly)− y(i)(0)
i!

)
ti + y(t).

Since KP (Ly) ∈ domL and y ∈ domL, we obtain (KPLy)(j)(1) = y(j)(1) = 0,
0 ≤ j ≤ n− k − 3. Thus (Bk(Ly)− y(k)(0), Bk+1(Ly)− y(k+1)(0), . . . , Bn−3(Ly)−
y(n−3)(0)) is the only zero solution of the system of linear equations

xk
k!

+
xk+1

(k + 1)!
+ · · ·+ xn−3

(n− 3)!
= 0,

xk
(k − 1)!

+
xk+1

k!
+ · · ·+ xn−3

(n− 4)!
= 0,

. . .
xk

[k − (n− k − 2)]!
+

xk+1

[k + 1− (n− k − 2)]!
+ . . .

+
xn−3

[n− 3− (n− k − 3)]!
= 0.

So, we have KPLy = y, for y ∈ domL∩ kerP . Thus, KP = (L|domL∩kerP )−1. The
proof is complete. �

3. Main results

Lemma 3.1. Assume Ω ⊂ X is an open bounded subset and domL ∩ Ω 6= ∅, then
N is L-compact on Ω.

Proof. By (H3), we have that QN(Ω) is bounded. Now we will show that KP (I −
Q)N : Ω→ X is compact.

It follows from (H3) that there exists constant M0 > 0 such that |(I −Q)Ny| ≤
M0, a.e. t ∈ [0, 1], y ∈ Ω. Thus, KP (I−Q)N(Ω) is bounded. By (H3) and Lebesgue
Dominated Convergence theorem, we get that KP (I−Q)N : Ω→ X is continuous.
Since {

∫ t
0
(t−s)j(I−Q)Ny(s)ds, y ∈ Ω}, j = 0, 1 . . . , n−1 are equi-continuous, and

tj , j = 0, 1 . . . , n−1 are uniformly continuous on [0,1], using Ascoli-Arzela theorem,
we obtain that KP (I −Q)N : Ω→ X is compact. The proof is complete. �

To obtain our main results, we need the following assumptions.
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(H4) There exist constants M1 > 0,M2 > 0 such that if |y(n−1)(t)| > M1,
t ∈ [ξm, 1] then

m∑
i=1

αi

∫ 1

ξi

Ny(s)ds 6= 0,

and if |y(n−2)(t)| > M2, t ∈ [0, η1] then

l∑
j=1

βj

[ ∫ 1

ηj

(1− s)Ny(s)ds+ (1− ηj)
∫ ηj

0

Ny(s)ds
]
6= 0.

(H5) There exist functions g, h, ψi ∈ L1[0, 1], i = 1, 2, . . . , n, with ‖ψn‖1 := r1 <

1/2,
∑n−1
i=1 ‖ψi‖1 := r2 <

1−2r1
4 , θ ∈ [0, 1), and some 1 ≤ j ≤ n − 1 such

that

|f(t, x1, x2, . . . , xn)| ≤ g(t) +
n∑
i=1

ψi(t)|xi|+ h(t)|xj |θ.

(H6) There exist constants c0 > 0, d0 > 0 such that, for

y =
n−3∑
i=k

cai + dbi
i!

ti +
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1 ∈ kerL,

one of the following two conditions holds
(1) c · T1Ny < 0, if |c| > c0, d · T2Ny < 0, if |d| > d0,
(2) c · T1Ny > 0, if |c| > c0, d · T2Ny > 0, if |d| > d0,

Lemma 3.2. Suppose (H1)–(H5) hold, then the set

Ω1 = {y ∈ domL \ kerL : Ly = λNy, λ ∈ (0, 1)}

is bounded.

Proof. Take y ∈ Ω1. By Ny ∈ ImL, we have
m∑
i=1

αi

∫ 1

ξi

Ny(s)ds = 0, (3.1)

l∑
j=1

βj

[ ∫ 1

ηj

(1− s)Ny(s)ds+ (1− ηj)
∫ ηj

0

Ny(s)ds
]

= 0. (3.2)

Since Ly = λNy and y ∈ domL, we obtain

y(t) =
n−1∑
i=k

ci
i!
ti +

(−1)n−k

(n− 1)!
λ

∫ t

0

(t− s)n−1Ny(s)ds, (3.3)

where ck, ck+1, . . . , cn−1 satisfy
n−1∑
i=k

ci
i!

= − (−1)n−k

(n− 1)!
λ

∫ 1

0

(1− s)n−1Ny(s)ds,

n−1∑
i=k

ci
(i− 1)!

= − (−1)n−k

(n− 2)!
λ

∫ 1

0

(1− s)n−2Ny(s)ds,

. . .
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n−1∑
i=k

ci
[i− (n− k − 3)]!

= − (−1)n−k

[i− (n− k − 3)]!
λ

∫ 1

0

(1− s)i−(n−k−3)Ny(s)ds.

It follows from y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n − k − 3 that there
exist points δi ∈ [0, 1] such that y(i)(δi) = 0, i = 0, 1, . . . , n− 3. So, we have

y(i)(t) =
∫ t

δi

y(i+1)(s)ds, i = 0, 1, . . . , n− 3.

Therefore,
‖y(i)‖∞ ≤ ‖y(i+1)‖1 ≤ ‖y(i+1)‖∞, i = 0, 1, . . . , n− 3. (3.4)

By (3.1) and (H4), there exists t0 ∈ [ξm, 1] such that |y(n−1)(t0)| ≤ M1. This,
together with (3.3), implies that

|cn−1| ≤M1 +
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ ‖ε‖1.

By (3.2) and (H4), we get that there exists t1 ∈ [0, η1] such that |y(n−2)(t1)| ≤M2.
It follows from (3.3) that

|cn−2| ≤M2 + |cn−1|+
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ ‖ε‖1

≤M1 +M2 + 2
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ 2‖ε‖1.

Thus,

‖y(n−1)‖∞ ≤M1 + 2
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ 2‖ε‖1,

‖y(n−2)‖∞ ≤ 2M1 +M2 + 4
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ 4‖ε‖1.

By (H5) and (3.4) we have

‖y(n−1)‖∞ ≤ r3 + 2r2‖y(n−2)‖∞ + 2r1‖y(n−1)‖∞ + 2‖h‖1‖y(n−2)‖θ∞
and

‖y(n−2)‖∞ ≤ 2r3 +M2 + 4r2‖y(n−2)‖∞ + 4r1‖y(n−1)‖∞ + 4‖h‖1‖y(n−2)‖θ∞, (3.5)

where r3 = M1 + 2‖g‖1 + 2‖ε‖1. So, we obtain

‖y(n−1)‖∞ ≤
1

1− 2r1
[r3 + 2r2‖y(n−2)‖∞ + 2‖h‖1‖y(n−2)‖θ∞]. (3.6)

By (3.5) and (3.6), we have

‖y(n−2)‖∞ ≤
2r3

1− 2r1
+M2 +

4r2
1− 2r1

‖y(n−2)‖∞ +
4‖h‖1

1− 2r1
‖y(n−2)‖θ∞.

Therefore,

‖y(n−2)‖∞ ≤
1

1− 2r1 − 4r2
[2r3 + (1− 2r1)M2 + 4‖h‖1‖y(n−2)‖θ∞].

It follows from θ ∈ [0, 1) that {‖y(n−2)‖∞ : y ∈ Ω1} is bounded. By (3.4) and (3.6),
we get that Ω1 is bounded. �
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Lemma 3.3. Suppose (H1)–(H3), (H6) hold. Then the set

Ω2 = {y ∈ kerL : Ny ∈ ImL}

is bounded.

Proof. Take y ∈ Ω2, then

y(t) =
n−3∑
i=k

cai + dbi
i!

ti +
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1.

By Ny ∈ ImL, we have T1Ny = 0, T2Ny = 0. By (H6), we get that |c| ≤ c0, |d| ≤
d0. This means that Ω2 is bounded. �

Lemma 3.4. Suppose (H1)–(H3), (H6) hold. Then the set

Ω3 = {y ∈ kerL : λJy + (1− λ)ωQNy = 0, λ ∈ [0, 1]}

is bounded, where J : kerL→ ImQ is a linear isomorphism given by

J
( n−3∑
i=k

cai + dbi
i!

ti+
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1

)
=

1
e

(e4c−e3d)+
1
e

(−e2c+e1d)t,

where c, d ∈ R and

ω =

{
−1, if (H6)(1) holds,
1, if (H6)(2) holds.

Proof. Take y ∈ Ω3. y ∈ kerL implies that

y =
n−3∑
i=k

cai + dbi
i!

ti +
c

(n− 2)!
tn−2 +

d

(n− 1)!
tn−1, c, d ∈ R.

Since λJy + (1− λ)ωQNy = 0, we obtain

λc = −(1− λ)ωT1Ny, λd = −(1− λ)ωT2Ny.

If λ = 0, by (H6), we get |c| ≤ c0, |d| ≤ d0. If λ = 1, then c = d = 0. For λ ∈ (0, 1),
if |c| > c0 or |d| > d0, then

λc2 = −(1− λ)ωc · T1Ny < 0

or

λd2 = −(1− λ)ωd · T2Ny < 0.

A contradiction. So, Ω3 is bounded. �

Theorem 3.5. Suppose (H1)–(H6) hold. Then (1.1)–(1.2) has at least one solution
in X.

Proof. Let Ω ⊃ ∪3
i=1Ωi ∪ {0} be a bounded open subset of X. It follows from

Lemma 3.1 that N is L-compact on Ω. By Lemmas 3.2 and 3.3, we obtain

(1) Ly 6= λNy for every (y, λ) ∈ [(domL \ kerL) ∩ ∂Ω]× (0, 1);
(2) Ny /∈ ImL for every y ∈ kerL ∩ ∂Ω.
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We need to prove only that:

deg(QN |kerL,Ω ∩ kerL, 0) 6= 0.

Take
H(y, λ) = λJy + ω(1− λ)QNy.

According to Lemma 3.4, we know that H(y, λ) 6= 0 for y ∈ ∂Ω ∩ kerL, λ ∈ [0, 1].
By the homotopy of degree, we obtain

deg(QN |kerL,Ω ∩ kerL, 0) = deg(ωH(·, 0),Ω ∩ kerL, 0)

= deg(ωH(·, 1),Ω ∩ kerL, 0)

= deg(ωJ,Ω ∩ kerL, 0) 6= 0.

By Theorem 2.1, we can obtain that Ly = Ny has at least one solution in domL∩Ω;
i.e., (1.1)–(1.2) has at least one solution in X. The prove is complete. �
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