Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 228, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO PARABOLIC PROBLEMS WITH NONLINEAR NONLOCAL TERMS

MIGUEL LOAYZA

ABSTRACT. We study the existence and asymptotic behavior of self-similar solutions to the parabolic problem

$$u_t - \Delta u = \int_0^t k(t,s) |u|^{p-1} u(s) ds \quad \text{on } (0,\infty) \times \mathbb{R}^N,$$

with p > 1 and $u(0, \cdot) \in C_0(\mathbb{R}^N)$.

1. INTRODUCTION

In this work we study the existence and asymptotic behavior of global solutions of the semilinear parabolic problem

$$u_t - \Delta u = \int_0^t k(t,s) |u|^{p-1} u(s) ds \quad \text{in } (0,\infty) \times \mathbb{R}^N,$$

$$u(0,x) = \psi(x) \quad \text{in } \mathbb{R}^N,$$

(1.1)

where p > 1 and $k : \mathcal{R} \to \mathbb{R}$ satisfies

- (K1) k is a continuous function on the region $\mathcal{R} = \{(t, s) \in \mathbb{R}^2 : 0 < s < t\},\$
- (K2) $k(\lambda t, \lambda s) = \lambda^{-\gamma} k(t, s)$ for all $(t, s) \in \mathcal{R}, \lambda > 0$ and some $\gamma \in \mathbb{R}$,
- (K3) $k(1, \cdot) \in L^1(0, 1),$
- (K4) $\limsup_{n\to 0^+} \eta^l |k(1,\eta)| < \infty$ for some $l \in \mathbb{R}$.

Problem (1.1) models diffusion phenomena with memory effects and has been considered by several authors for some values of the function k (see [1, 4, 6, 7, 10, 12] and the references therein). When $k(t,s) = (t-s)^{-\gamma}$, $\gamma \in [0,1)$ and $\psi \in C_0(\mathbb{R}^N)$, it was shown in [4] that if

$$p > p_* = \max\{1/\gamma, 1 + (4 - 2\gamma)/[(N - 2 + 2\gamma)^+]\} \in (0, \infty],$$

then the solution of (1.1) is global, for $\|\psi\|_{r^*}$ small enough, where $r^* = N(p-1)/[2(2-\gamma)]$. The value p_* is the Fujita critical exponent and is not given by a scaling argument. Similar results were obtained in [6] replacing the operator $-\Delta$ by the operator $(-\Delta)^{\beta/2}$ with $0 < \beta \leq 2$. When the function k is nonnegative and satisfies conditions (K1)–(K4), with $\gamma < 2$ and l < 1, it was shown in [10] that if

$$p(2-\gamma)/(p-1) < N/2 + a \text{ and } p(1-\gamma) < (p-1)a,$$

²⁰⁰⁰ Mathematics Subject Classification. 35K15, 35B40, 35E15.

Key words and phrases. Nonlocal parabolic equation; global solution; self-similar solution. ©2013 Texas State University - San Marcos.

Submitted August 9, 2012. Published October 16, 2013.

where $a = \min\{1 - l, 2 - \gamma\}$, then (1.1) has a global solution if $\|\psi\|_{r^*}$ is sufficiently small.

It is clear that if u is a global solution of problem (1.1) then for every $\lambda > 0$, the function $u_{\lambda}(t, x) = \lambda^{\alpha} u(\lambda^2 t, \lambda x)$ satisfies

$$u_t - \Delta u = \lambda^{2[\alpha(1-p)+2-\gamma]} \int_0^t k(t,s) |u|^{p-1} u(s) ds \quad \text{in } (0,\infty) \times \mathbb{R}^N,$$

$$u(0,x) = \lambda^{2\alpha} \psi(\lambda x) \quad \text{in } \mathbb{R}^N.$$
 (1.2)

In particular, if $\alpha = (2 - \gamma)/(p - 1)$, then u_{λ} is also a solution of problem (1.1). A solution satisfying $u = u_{\lambda}$ for all $\lambda > 0$ is called a self-similar solution of problem (1.1). Note that, in this case, $\psi(x) = \lambda^{2\alpha} \psi(\lambda x)$; that is, the function ψ is a homogeneous function of degree -2α .

Our objective is to determine the asymptotic behavior of global solutions of (1.1) in terms of the self-similar solution w corresponding to the cases (see Theorem 1.5 for details):

(i)
$$\alpha(p-1) = 2 - \gamma$$
.
 $w_t - \Delta w = \int_0^t k(t,s) |w|^{p-1} w(s) ds \quad \text{in } (0,\infty) \times \mathbb{R}^N,$
 $w(0,x) = |x|^{-2\alpha} \quad \text{in } \mathbb{R}^N,$

(ii) $\alpha(p-1) > 2 - \gamma$.

$$w_t - \Delta w = 0 \quad \text{in } (0, \infty) \times \mathbb{R}^N,$$
$$w(0, x) = |x|^{-2\alpha} \quad \text{in } \mathbb{R}^N.$$

For $\alpha(p-1) < 2 - \gamma$, we show that there is no nonnegative global solution of (1.1), if $w(0, x) \sim |x|^{-2\alpha}$ for |x| large enough (see Theorem 1.7 for details).

To show the existence of global solutions to (1.1) we use a contraction mapping argument on the associated integral equation

$$u(t) = e^{t\Delta}\psi + \int_0^t e^{(t-s)\Delta} \int_0^s k(s,\sigma) |u|^{p-1} u(\sigma) d\sigma ds,$$
(1.3)

where $(e^{t\Delta})_{t\geq 0}$ is the heat semigroup. Precisely, this contraction mapping argument is done on a given Banach space equipped with a norm chosen so that we obtain directly the global character of the solution. Our approach works for unbounded and sign changing initial data. On the other hand, the self-similar solutions constructed in this work may be not radially symmetric. In fact, we adapt a method introduced by Fujita and Kato [8, 9] and used later in [2, 3, 5, 13, 14].

Since the homogeneous function $\psi = |\cdot|^{-2\alpha}$, does not belong to any $L^p(\mathbb{R}^N)$ space, we consider initial data so that $\sup_{t>0} t^{\alpha-N/(2r_1)} \|e^{t\Delta}\psi\|_{r_1} < \infty$, for some $r_1 \geq 1$. Hence, it is necessary to consider that $\alpha < N/2$ since this condition ensures that ψ belongs to $L^1_{\text{loc}}(\mathbb{R}^N)$.

The following result determines the asymptotic behavior for the heat semigroup on homogeneous functions, see [5, page 118] and [13, Proposition 2.3].

Proposition 1.1. Let $r_1 > N/(2\alpha) > 1$, $\beta_1 = \alpha - N/(2r_1)$ and let φ_h be a tempered distribution homogeneous of degree -2α such that $\varphi_h(x) = \mu(x)|x|^{-2\alpha}$, where $\mu \in L^{r_1}(S^{N-1})$ is a function homogeneous of degree 0. Assume that η is a cut-off function, that is, identically 1 near the origin and of compact support. Then

- $\begin{array}{ll} (\mathrm{i}) \; \sup_{t>0} t^{\beta_1} \| e^{t\Delta} \varphi_h \|_{r_1} < \infty; \\ (\mathrm{ii}) \; \sup_{t>0} t^{\beta_1 + \delta} \| e^{t\Delta} (\eta \varphi_h) \|_{r_1} < \infty \; \textit{for} \; 0 < \delta < N/2 \alpha; \\ (\mathrm{iii}) \; \sup_{t>0} t^{\beta_1} \| e^{t\Delta} (1 \eta) \varphi_h \|_{r_1} < \infty. \end{array}$

Our first result is technical. It will be used to formulate the global existence and asymptotic behavior results.

Proposition 1.2. Let $l < 1, \gamma < 2$ and set $a = \min\{1 - l, 2 - \gamma\}$. Assume that $\alpha \in (0, N/2)$ satisfies

$$2 - \gamma + \alpha < \frac{N}{2} + a, \tag{1.4}$$

$$(2 - \gamma + \alpha)\frac{1 - \gamma}{2 - \gamma} < a. \tag{1.5}$$

Then, there exits $r_1 \geq 1$ satisfying

(i) $r_1 > \frac{N}{2\alpha}(2-\gamma), r_1 > \frac{2-\gamma}{\alpha} + 1 \text{ and } r_1 > \frac{N}{2\alpha}.$ (ii) $(2-\gamma+\alpha)(1-\frac{N}{2r_1\alpha}) < a.$

We now give the following existence result for problem (1.1) shows the existence of global solutions and its continuous dependence.

Theorem 1.3. Let p > 1 and k satisfying conditions K(1) - K(4) with $\gamma < 2$ and l < 1. Assume

$$p > 1 + 2(2 - \gamma)/N \tag{1.6}$$

and $\alpha \in (0, N/2)$ satisfying (1.4), (1.5) and

$$\frac{2-\gamma}{p-1} \le \alpha < \frac{N}{2}.\tag{1.7}$$

Fix $\tilde{\alpha} > 0$ such that

$$\tilde{\alpha} \le \frac{2-\gamma}{p-1}.\tag{1.8}$$

Let $r_1 > 1$ be given by Proposition 1.2, and let $r_2 > 1$ be defined by $r_2 = \alpha r_1 / \tilde{\alpha}$. For every $\varphi \in \mathcal{S}'(\mathbb{R}^N)$ define \mathcal{N} by

$$\mathcal{N}(\varphi) = \sup_{t>0} \{ t^{\beta_1} \| e^{t\Delta} \varphi \|_{r_1}, t^{\beta_2} \| e^{t\Delta} \varphi \|_{r_2} \},$$
(1.9)

where $\beta_1 = \alpha - N/(2r_1)$ and $\beta_2 = \tilde{\alpha} - N/(2r_2)$.

Let M > 0 be such that C = C(M) < 1, where C is a positive constant given by (2.10). Choose R > 0 such that $R + CM \leq M$. If φ is a tempered distribution such that

$$\mathcal{N}(\varphi) \le R,\tag{1.10}$$

then there exits a unique global solution u of (1.1) satisfying

$$\sup_{t>0} \{ t^{\beta_1} \| u(t) \|_{r_1}, t^{\beta_2} \| u(t) \|_{r_2} \} \le M.$$

In addition, if φ, ψ satisfy (1.10) and if u_{φ} and u_{ψ} respectively are the solutions of (1.3) with initial data φ, ψ , then

$$\sup_{t>0} [t^{\beta_1} \| u_{\varphi}(t) - u_{\psi}(t) \|_{r_1}, t^{\beta_2} \| u_{\varphi}(t) - u_{\psi}(t) \|_{r_2}] \le (1-C)^{-1} \mathcal{N}(\varphi - \psi).$$
(1.11)

Moreover, if φ, ψ are such that

$$\mathcal{N}_{\delta}(\varphi-\psi) = \sup_{t>0} \{ t^{\beta_1+\delta} \| e^{t\Delta}(\varphi-\psi) \|_{r_1}, t^{\beta_2+\delta} \| e^{t\Delta}(\varphi-\psi) \|_{r_2} \} < \infty, \qquad (1.12)$$

for some $\delta \in (0, \delta_0)$, where $\delta_0 = 1 - l - (2 - \gamma + \alpha)[1 - N/(2r_1\alpha)] > 0$. Then

$$\sup_{t>0} \{ t^{\beta_1+\delta} \| u_{\varphi} - u_{\psi} \|_{r_1}, t^{\beta_2+\delta} \| u_{\varphi} - u_{\psi} \|_{r_2} \} \le (1 - C_{\delta})^{-1} \mathcal{N}_{\delta}(\varphi - \psi), \qquad (1.13)$$

where C_{δ} is given by (2.16) below and the constant M > 0 is chosen small enough so that $C_{\delta} < 1$.

Remark 1.4. Suppose that $\alpha(p-1) = 2 - \gamma$ in Theorem 1.3.

(i) From (1.7) and (1.8), we see that it is possible to choose $\tilde{\alpha} = \alpha$. It follows that $r_1 = r_2, \beta_1 = \beta_2$. Therefore, Theorem 1.3 holds replacing the norm \mathcal{N} of (1.9) by $\mathcal{N}_s(\varphi) := \sup_{t>0} \{t^{\beta_1} \| e^{t\Delta} \varphi \|_{r_1}\}.$

(ii) Assume that $k(t,s) = (t-s)^{-\gamma}$ with $\gamma \in (0,1)$. Then k satisfies K1) - K4) with l = 0, and therefore $a = \min\{1 - l, 2 - \gamma\} = 1$. From conditions (1.4)-(1.7) we have that $p(N - 2 + 2\gamma) > N + 2$, $p\gamma > 1$ and $p > 1 + 2(2 - \gamma)/N$ respectively. Since $p > 1 + (4 - 2\gamma)/[(N - 2 + 2\gamma)^+] > 1 + 2(2 - \gamma)/N$, we conclude that $p > p^* = \max\{1/\gamma, 1 + (4 - 2\gamma)/[(N - 2 + 2\gamma)^+]\}$ which coincides with the condition encountered in [4].

(iii) Conditions (1.4)-(1.6) become $2(2-\gamma)p < (N+2a)(p-1)$, $p(1-\gamma) < a(p-1)$ and $p > 1 + 2(2-\gamma)/N$ respectively. The last inequality is obtained from the first one, since $2(2-\gamma)p < (N+2a)(p-1) \le [N+2(1-l)](p-1)$ and $\gamma < 2$. Indeed, $p > 1 + 2(2-\gamma)/[N-2+2(\gamma-l)^+] > 1 + 2(2-\gamma)/N$. These conditions were used in [10] to show global existence of (1.1).

We now state the following asymptotic behavior result for some global solution of problem (1.1) with small initial data with respect to the norm \mathcal{N} given by (1.9).

Theorem 1.5 (Asymptotically self-similar solutions). Let p > 1 satisfying (1.6) and k be a function satisfying conditions K1) - K4) with $\gamma < 2$ and l < 1. Let $\alpha \in (0, N/2)$ be satisfying (1.4), (1.5) and (1.7), $\tilde{\alpha} > 0$ satisfying (1.8), r_1 given by Proposition 2 and $r_2 = \alpha r_1/\tilde{\alpha}$. Set $\varphi_h(x) = \mu(x)|x|^{-2\alpha}$, where μ is homogeneous of degree 0 and $\mu \in L^{r_1}(S^{N-1})$.

Suppose that $\varphi \in \mathcal{S}'(\mathbb{R}^N)$ satisfies (1.10), u is the corresponding solution of (1.1) given by Theorem 1.3, and

$$\sup_{t>0} t^{\beta_1+\delta} \|e^{t\Delta}(\varphi - \varphi_h)\|_{r_1} < \infty$$
(1.14)

for some $\delta \in (0, \delta_0)$, where $\delta_0 = 1 - l - p(2 - \gamma)/(p - 1) + Np/(2r_1)$ when $\alpha(p - 1) = 2 - \gamma$ and given by Lemma 3.1 when $\alpha(p - 1) > 2 - \gamma$. We have the following:

- (i) If $\alpha(p-1) > 2 \gamma$, then $\sup_{t>0} t^{\beta_1+\delta} ||u(t) e^{t\Delta}\varphi_h||_{r_1} \leq C_{\delta}$, for some constant $C_{\delta} > 0$.
- (ii) If α(p-1) = 2 − γ and w is the solution of (1.1) given by Theorem 1.3 with initial data φ_h (we multiplied φ_h by a small constant so that (1.10) is satisfied), then w is self-similar and sup_{t>0} t^{β₁+δ} ||u(t) − w(t)||_{r1} ≤ C_δ for some constant C_δ > 0.

Remark 1.6. The class of functions φ satisfying the condition (1.14) is nonempty. Indeed, from Proposition 1.1(2), condition (1.14) is satisfied for $\varphi = (1 - \eta)\varphi_h$.

In the following result, we analyze the non existence of global solutions of problem (1.1), under the assumption

(K5) There exist T > 0 and a nonnegative, non-increasing continuous function $\phi \in C([0,\infty))$ with integrable derivative such that $\phi(0) = 1$ and $\phi(t) = 0$ for $t \geq T$ satisfying $k(\cdot,t)\phi(\cdot) \in L^1(t,T)$ for t > 0 and

$$\int_0^T \phi(t)^{p'} \left(\int_t^T k(s,t)\phi(s)ds\right)^{-p'/p} dt < \infty,$$
(1.15)

where p' is the conjugate of p.

Theorem 1.7. Let p > 1 and let k be a nonnegative function satisfying conditions (K1)–(K3), (K5). If $\psi \in C_0(\mathbb{R}^N)$, $\psi \ge 0$ satisfies $\liminf_{|x|\to\infty} |x|^{2(2-\gamma)/(p-1)}\psi(x) = \infty$ and u is a corresponding nonnegative solution of problem (1.1), then u is not a global solution.

Remark 1.8. Regarding Theorem 1.7 we have the following statements:

(i) Under conditions (K1)–(K3), existence of local solutions for (1.1) in the class $C([0,T), C_0(\mathbb{R}^N))$ and initial data $\psi \in C_0(\mathbb{R}^N)$, were studied in [10]. In particular, we know that if k and ψ are nonnegative, then the solution of (1.1) is nonnegative.

(ii) Let $k(t,s) = (t-s)^{-\gamma_1} s^{-\gamma_2}$ for 0 < s < t and $\gamma_i \in [0,1), i = 1, 2$. Clearly, k satisfies K1) - K3. We show that k satisfies (K5) with $\phi(t) = [(1-t)^+]^q, t \ge 0, T = 1$ and q > 1/(p-1). Indeed, since $\phi \le 1$, we have for t > 0

$$\int_{t}^{1} k(s,t)\phi(s)ds = t^{-\gamma_{2}} \int_{t}^{1} (s-t)^{-\gamma_{1}}\phi(s)ds \le \frac{t^{-\gamma_{2}}}{1-\gamma_{1}}(1-t)^{1-\gamma_{1}} < \infty.$$

On the other hand,

$$\int_{t}^{1} k(s,t)\phi(s)ds = t^{-\gamma_2} \int_{t}^{1} (s-t)^{-\gamma_1}\phi(s)ds \ge t^{-\gamma_2} \int_{t}^{1} \phi(s)ds = \frac{t^{-\gamma_2}}{1+q}(1-t)^{1+q}.$$

Therefore,

$$\int_0^1 \phi(t)^{p'} \left(\int_t^1 k(s,t)\phi(s)ds\right)^{-p'/p} dt = (1+q)^{p'/p} \int_0^1 (1-t)^{p'(q-\frac{1+q}{p})} t^{\frac{\gamma_2 p'}{p}} dt,$$

which is finite, since

$$1 + p'(q - \frac{1+q}{p}) = \frac{p'}{p}[p - 2 + q(p-1)] > \frac{p'}{p}(p-1) > 0.$$

2. EXISTENCE OF GLOBAL SOLUTIONS

Proof of Proposition 1.2. Let $A = \frac{2\alpha}{N}(1 - \frac{a}{2-\gamma+\alpha})$. Since a > 0 we conclude that $A < 2\alpha/N < 1$. From (1.5) and (1.4) we have $A < 2\alpha/[N(2-\gamma)]$ and $A < \alpha/(2-\gamma+\alpha)$, respectively. Now, it is sufficient to choose $r_1 > 1$ satisfying $A < \frac{1}{r_1} < \min\{\frac{2\alpha}{N(2-\gamma)}, \frac{\alpha}{2-\gamma+\alpha}, \frac{2\alpha}{N}\}$.

Lemma 2.1. Assume the conditions (1.4)-(1.8). Let $r_2 = \frac{\alpha r_1}{\tilde{\alpha}}$, $\beta_1 = \alpha - \frac{N}{2r_1}$, $\beta_2 = \tilde{\alpha} - \frac{N}{2r_2}$, $\frac{1}{\eta_1} = \frac{1}{pr_1}(\frac{2-\gamma}{\alpha} + 1)$, $\frac{1}{\eta_2} = \frac{1}{pr_1}(\frac{2-\gamma}{\alpha} + \frac{\tilde{\alpha}}{\alpha})$, $\theta_1 = \frac{2-\gamma+\alpha-p\tilde{\alpha}}{p(\alpha-\tilde{\alpha})}$, and $\theta_2 = \frac{2-\gamma+(1-p)\tilde{\alpha}}{p(\alpha-\tilde{\alpha})}$. For i = 1, 2 we have (i) $\eta_i \in [r_1, r_2]$ and $\eta_i \in (p, r_i p)$. (ii) $\frac{p}{\eta_1} - \frac{1}{r_1} = \frac{p}{\eta_2} - \frac{1}{r_2} = \frac{2-\gamma}{r_1\alpha} < \frac{2}{N}$. (iii) $\theta_i \in [0, 1]$, $\frac{1}{\eta_i} = \frac{\theta_i}{r_1} + \frac{(1-\theta_i)}{r_2}$.

(iv) $\frac{1}{n}a > \theta_i\beta_1 + (1-\theta_i)\beta_2$, with

$$\theta_1 \beta_1 + (1 - \theta_1) \beta_2 = \frac{1}{p} (2 - \gamma + \alpha) (1 - \frac{N}{2r_1 \alpha}),$$

$$\theta_2 \beta_1 + (1 - \theta_2) \beta_2 = \frac{1}{p} (2 - \gamma + \tilde{\alpha}) (1 - \frac{N}{2r_1 \alpha}).$$

(v) $2 - \gamma + \beta_i - \frac{N}{2} (\frac{p}{\eta_i} - \frac{1}{r_i}) - p[\beta_1 \theta_i + \beta_2 (1 - \theta_i)] = 0.$

Proof. (i) From (1.7), we see that $\eta_1 \ge r_1$ and $\eta_2 \le r_2$. Since $\tilde{\alpha} \le \alpha$, it follows from (1.7) and (1.8) that

$$2 - \gamma + \tilde{\alpha} \le p\alpha, \ p\tilde{\alpha} \le 2 - \gamma + \alpha \tag{2.1}$$

respectively. From here, $\eta_2 \geq r_1$ and $\eta_1 \leq r_2$. The condition $r_1 > (2 - \gamma)/\alpha + 1$ of Proposition 1.2(i) and $\gamma < 2$ ensure that $\eta_1 \in (p, r_1 p)$. Moreover, since $r_1 > (2 - \gamma)/\alpha + 1 \geq (2 - \gamma + \tilde{\alpha})/\alpha$ and $\gamma < 2$, we conclude that $\eta_2 \in (p, r_2 p)$.

Item (ii) follows from Proposition 1.2(i).

(iii) From (1.7) and (1.8) we get $\theta_1 \leq 1$ and $\theta_2 \geq 0$ respectively, and from (2.1) we see that $\theta_2 \leq 1$ and $\theta_1 \geq 0$ respectively.

We obtain (iv) from Proposition 1.2(ii).

Proof of Theorem 1.3. The proof is based on a contraction mapping argument. Let E be the set of Bochner measurable functions $u: (0, \infty) \to L^{r_1}(\mathbb{R}^N) \cap L^{r_2}(\mathbb{R}^N)$, such that $\|u\|_E = \sup_{t>0} \{t^{\beta_1} \|u(t)\|_{r_1}, t^{\beta_2} \|u(t)\|_{r_2}\} < \infty$, where $\beta_1 = \alpha - N/(2r_1), \beta_2 = \tilde{\alpha} - N/(2r_2)$. The space E is a Banach space. Let M > 0 and K be the closed ball of radius M in E.

Let $\Phi_{\varphi}: K \to E$ be the mapping defined by

$$\Phi_{\varphi}(u)(t) = e^{t\Delta}\varphi + \int_0^t e^{(t-s)\Delta} \int_0^s k(s,\sigma) |u|^{p-1} u(\sigma) d\sigma ds.$$
(2.2)

We will prove that Φ_{φ} is a strict contraction mapping on K. Let φ, ψ satisfying (1.10) and $u, v \in K$. We will use several times the smoothing effect for the heat semigroup: if $1 \leq s \leq r \leq \infty$ and $\varphi \in L^r$, then

$$\|e^{t\Delta}\varphi\|_r \le t^{-\frac{N}{2}(\frac{1}{s} - \frac{1}{r})}\|\varphi\|_s$$

for all t > 0. From (2.2), we deduce

$$t^{\beta_{1}} \| \Phi_{\varphi}(u)(t) - \Phi_{\psi}(v)(t) \|_{r_{1}} \leq t^{\beta_{1}} \| e^{t\Delta}(\varphi - \psi) \|_{r_{1}} + pt^{\beta_{1}} \int_{0}^{t} \| e^{(t-s)\Delta} \int_{0}^{s} |k(s,\sigma)| (|u|^{p-1} + |v|^{p-1}) |u(\sigma) - v(\sigma)| \|_{r_{1}} d\sigma \leq t^{\beta_{1}} \| e^{t\Delta}(\varphi - \psi) \|_{r_{1}} + pt^{\beta_{1}} \int_{0}^{t} (t-s)^{-\frac{N}{2}(\frac{p}{\eta_{1}} - \frac{1}{r_{1}})} \times \int_{0}^{s} |k(s,\sigma)| (\|u\|_{\eta_{1}}^{p-1} + \|v\|_{\eta_{1}}^{p-1}) \| u(\sigma) - v(\sigma) \|_{\eta_{1}} d\sigma ds.$$

$$(2.3)$$

From Lemma 2.1,(i) and (iii), and an interpolation inequality

$$\|u\|_{\eta_1} \le \|u\|_{r_1}^{\theta_1} \|u\|_{r_2}^{1-\theta_1}$$

where $\frac{1}{\eta_1} = \frac{\theta_1}{r_1} + \frac{1-\theta_1}{r_2}$. Replacing this inequality into (2.3) we obtain $t^{\beta_1} \| \Phi_{\varphi}(u)(t) - \Phi_{\psi}(v)(t) \|_{r_1}$ $< t^{\beta_1} \| e^{t\Delta}(\varphi - \psi) \|_{r_1} + 2M^{p-1} p \| u - v \|_E t^{\beta_1}$

$$\leq t \quad \|e^{-(\varphi - \varphi)}\|_{r_1} + 2M \quad p\|u - v\|_E t$$

$$\times \int_0^t (t - s)^{-\frac{N}{2}(\frac{p}{\eta_1} - \frac{1}{r_1})} \int_0^s |k(s, \sigma)| \sigma^{-p[\theta_1 \beta_1 + (1 - \theta_1) \beta_2]} d\sigma ds.$$

$$(2.4)$$

From (K4), there exist $\eta_0, \nu > 0$ such that $\eta^l |k(1,\eta)| < \nu$ for $\eta \in (0,\eta_0)$. Thus, if $\theta_1 \beta_1 + \beta_2 (1 - \theta_1) = \Theta_1$, we have

$$\int_{0}^{s} |k(s,\sigma)| \sigma^{-p\Theta_{1}} d\sigma = s^{1-\gamma-p\Theta_{1}} \int_{0}^{1} |k(1,\sigma)| \sigma^{-p\Theta_{1}} d\sigma$$
$$\leq s^{1-\gamma-p\Theta_{1}} \left[\nu \int_{0}^{\eta_{0}} \sigma^{-l-p\Theta_{1}} d\sigma + \eta_{0}^{-p\Theta_{1}} \int_{\eta_{0}}^{1} |k(1,\sigma)| d\sigma \right]$$
$$= C_{1} s^{1-\gamma-p\Theta_{1}},$$
(2.5)

where

$$C_{1} = \nu \int_{0}^{\eta_{0}} \sigma^{-l-p\Theta_{1}} d\sigma + \eta_{0}^{-p\Theta_{1}} \int_{\eta_{0}}^{1} |k(1,\sigma)| d\sigma.$$
(2.6)

Since $p\Theta_1 < a$ (see Lemma 2.1(iv)) and k satisfies (K3), we conclude that $C_1 < \infty$. From (2.4), (2.5) and properties (iv) and (v) of Lemma 2.1,

$$t^{\beta_{1}} \| \Phi_{\varphi} u(t) - \Phi_{\psi} v(t) \|_{r_{1}} \\\leq t^{\beta_{1}} \| e^{t\Delta} (\varphi - \psi) \|_{r_{1}} \\+ 2C_{1} M^{p-1} p t^{\beta_{1}} \| u - v \|_{E} \int_{0}^{t} (t - s)^{-\frac{N}{2}(\frac{p}{\eta_{1}} - \frac{1}{r_{1}})} s^{1 - \gamma - p\Theta_{1}} ds \\\leq t^{\beta_{1}} \| e^{t\Delta} (\varphi - \psi) \|_{r_{1}} + C_{1}' \| u - v \|_{E},$$

$$(2.7)$$

where $C'_1 = 2C_1 M^{p-1} p \int_0^1 (1-s)^{-\frac{N}{2}(\frac{p}{\eta_1} - \frac{1}{r_1})} s^{1-\gamma-p\Theta_1} ds$. From Lemma 2.1, (ii) and (iv), we see that $C'_1 < \infty$. Similarly, one can prove that

$$t^{\beta_2} \|\Phi_{\varphi} u(t) - \Phi_{\psi} v(t)\|_{r_2} \le t^{\beta_2} \|e^{t\Delta}(\varphi - \psi)\|_{r_2} + C_2' \|u - v\|_E,$$
(2.8)

where

$$C_{2}' = 2C_{2}M^{p-1}p \int_{0}^{1} (1-s)^{-\frac{N}{2}(\frac{p}{\eta_{2}} - \frac{1}{r_{2}})} s^{1-\gamma-p\Theta_{2}} ds < \infty,$$

$$C_{2} = \nu \int_{0}^{\eta_{0}} \sigma^{-l-p\Theta_{2}} d\sigma + \eta_{0}^{-p\Theta_{1}} \int_{\eta_{0}}^{1} |k(1,\sigma)| d\sigma < \infty,$$

$$\Theta_{2} = \frac{1}{p} (1 - \frac{N}{2r_{1}\alpha}) (2 - \gamma + \tilde{\alpha}).$$

From (2.7) and (2.8) we obtain

$$\|\Phi_{\varphi}(u)(t) - \Phi_{\psi}(v)(t)\|_{E} \le \mathcal{N}(\varphi - \psi) + C\|u - v\|_{E},$$
(2.9)

where

$$C = \max\{C'_1, C'_2\}.$$
 (2.10)

Setting $\psi = 0, v = 0$ in (2.9) we get $\|\Phi_{\varphi}(u)\|_{E} \leq \mathcal{N}(\varphi) + C\|u\|_{E}$. Since φ satisfies (1.10) and $R + CM \leq M$, we conclude that $\Phi_{\varphi}u \in K$. Moreover, since C < 1 we

conclude from (2.9) that Φ_{φ} is a strict contraction from K into itself, so Φ_{φ} has a unique fixed point in K.

The continuous dependence (1.11) follows clearly from (2.9). To show (1.13), let

$$||u - v||_{E,\delta} = \sup_{t>0} \{ t^{\beta_1 + \delta} ||u(t)||_{r_1}, t^{\beta_2 + \delta} ||v(t)||_{r_2} \}.$$
 (2.11)

Proceeding as (2.3) we obtain

$$t^{\beta_{1}+\delta} \|u(t)-v(t)\|_{r_{1}} \leq t^{\beta_{1}+\delta} \|e^{t\Delta}(\varphi-\psi)\|_{r_{1}} + 2pM^{p-1}t^{\beta_{1}+\delta} \int_{0}^{t} (t-s)^{-\frac{N}{2}(\frac{p}{\eta_{1}}-\frac{1}{r_{1}})} \\ \times \int_{0}^{s} |k(s,\sigma)|\sigma^{-[\theta_{1}\beta_{1}+(1-\theta_{1})\beta_{2}](p-1)}\|u-v\|_{\eta_{1}}d\sigma ds \qquad (2.12) \\ \leq t^{\beta_{1}+\delta} \|e^{t\Delta}(\varphi-\psi)\|_{r_{1}} + 2pM^{p-1} \sup_{\sigma\in(0,t)} \{\sigma^{\beta_{1}+\delta}\|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta}\|v(\sigma)\|_{r_{2}}\} \\ \times t^{\beta_{1}+\delta} \int_{0}^{t} (t-s)^{-\frac{N}{2}(\frac{p}{\eta_{1}}-\frac{1}{r_{1}})} \int_{0}^{s} |k(s,\sigma)|\sigma^{-p[\theta_{1}\beta_{1}+(1-\theta_{1})\beta_{2}]-\delta} d\sigma dt \\ \text{ or } 0 < \delta < 1-t-p = n\Theta_{t}, \text{ arguing as in } (2.5) \text{ we have}$$

For $0 < \delta < 1 - l - p\Theta_1$, arguing as in (2.5), we have

$$\begin{split} &\int_0^s |k(s,\sigma)| \sigma^{-p[\theta_1\beta_1+\theta_2\beta_2]-\delta} d\sigma \\ &= s^{1-\gamma-p\Theta_1-\delta} \int_0^1 |k(1,\sigma)| \sigma^{-p\Theta_1-\delta} \\ &\leq s^{1-\gamma-p\Theta_1-\delta} \Big[\nu \int_0^{\eta_0} \sigma^{-l-p\Theta_1-\delta} d\sigma + \eta_0^{-p\Theta_1-\delta} \int_{\eta_0}^1 |k(1,\sigma)| d\sigma \Big] \\ &= C_{1,\delta} s^{1-\gamma-p\Theta_1-\delta}, \end{split}$$

where

$$C_{1,\delta} = \nu \int_0^{\eta_0} \sigma^{-l-p\Theta_1-\delta} d\sigma + \eta_0^{-p\Theta_1-\delta} \int_{\eta_0}^1 |k(1,\sigma)| d\sigma < \infty$$

Therefore, from (2.12) we obtain

$$t^{\beta_{1}+\delta} \|u(t)-v(t)\|_{r_{1}} \leq t^{\beta_{1}+\delta} \|e^{t\Delta}(\varphi-\psi)\|_{r_{1}} + C_{1,\delta}' \sup_{\sigma \in (0,t)} \{\sigma^{\beta_{1}+\delta} \|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta} \|v(\sigma)\|_{r_{2}}\},$$
(2.13)

and

$$C_{1,\delta}' = 2pM^{p-1}C_{1,\delta}.$$
(2.14)

Similarly, for $0 < \delta < 1 - l - p\Theta_2$, one can to obtain

$$t^{\beta_{2}+\delta} \|u(t) - v(t)\|_{r_{2}} \leq t^{\beta_{2}+\delta} \|e^{t\Delta}\varphi - \psi\|_{r_{2}} + C_{2,\delta}' \sup_{\sigma \in (0,t)} \{\sigma^{\beta_{1}+\delta} \|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta} \|v(\sigma)\|_{r_{2}}\},$$
(2.15)

where

$$C_{2,\delta} = \nu \int_0^{\eta_0} \sigma^{-l-p\Theta_2-\delta} d\sigma + \eta_0^{-p\Theta_2-\delta} \int_{\eta_0}^1 k(1,\sigma) d\sigma < \infty$$

and $C'_{2,\delta} = 2pM^{p-1}C_{2,\delta}$. From (2.13) and (2.15) it follows that

$$(1 - C_{\delta}) \| u - v \|_{E,\delta} \le \mathcal{N}_{\delta}(\varphi - \psi),$$

where

$$C_{\delta} = \max\{C'_{1,\delta}, C'_{2,\delta}\}.$$
(2.16)

3. Asymptotic behavior

The next result will be used in the proof of Theorem 1.5(1).

$$\begin{array}{l} \text{Lemma 3.1. Let } l < 1, \ \gamma < 2, \ p > 1 \ and \ a = \min\{1 - l, 2 - \gamma\}. \ Assume \ (1.7) \ and \\ let \ \alpha \ satisfying \ (1.4), \ (1.5) \ and \ (1.7). \ Let \ \tilde{\eta} \ satisfying \ (1.8). \ For \ \delta > 0 \ we \ define \\ \eta' \geq 1 \ by \ \frac{1}{\eta_1'} = \frac{1}{pr_1} \left(\frac{2 - \gamma + \delta}{\alpha} + 1\right), \ and \ \theta_1' = \frac{2 - \gamma + \delta + \alpha - p\tilde{\alpha}}{p(\alpha - \tilde{\alpha})}. \\ If \ \frac{2 - \gamma}{p - 1} < \alpha, \ then \ there \ exists \ \delta_0 > 0 \ small \ such \ that \ for \ all \ \delta \in (0, \delta_0]: \\ (i) \ \eta_1' \in [r_1, r_2] \ and \ \eta_1' \in (p, r_1 p), \ where \ r_2 = (\alpha r_1) / \tilde{\alpha}. \\ (ii) \ \frac{N}{2} \left(\frac{p}{\eta_1'} - \frac{1}{r_1}\right) = \frac{N}{2r_1\alpha} (2 - \gamma + \delta) < 1. \\ (iii) \ \theta_1 \in [0, 1], \ \frac{1}{\eta_1'} = \frac{\theta_1'}{r_1} + \frac{1 - \theta_1'}{r_2}. \\ (iv) \ If \ \beta_1 = \alpha - \frac{N}{2r_1} \ and \ \beta_2 = \tilde{\alpha} - \frac{N}{2r_2}, \ then \\ a > p[\beta_1 \theta_1' + \beta_2 (1 - \theta_1')] = (2 - \gamma + \alpha + \delta)(1 - \frac{N}{2r_1\alpha}). \\ (v) \ 2 - \gamma + \beta_1 + \delta - \frac{N}{2} \left(\frac{p}{\eta_1'} - \frac{1}{r_1}\right) - p[\beta_1 \theta_1' + \beta_2 (1 - \theta_1')] = 0. \end{array}$$

Proof. Since $\alpha > (2 - \gamma)/(p - 1)$, (1.4) and (1.5) hold, it follows from Proposition 1.2 that there exists $\delta_0 > 0$ small so that such that $\alpha > (2 - \gamma + \delta_0)/(p - 1)$, $r_1 > \frac{N}{2\alpha}(2 - \gamma + \delta_0)$, $r_1 > (2 - \gamma + \delta_0)/\alpha + 1$ and $(2 - \gamma + \alpha + \delta_0)(1 - N/(2r_1\alpha)) < a$. The rest of the proof follows similarly as the proof of Lemma 2.1.

Proof of Theorem 1.5. (i) Let $\varphi \in \mathcal{S}'(\mathbb{R}^N)$ be satisfying (1.10) and let u be the corresponding solution given by Theorem 1.3. We have that

$$\sup_{t>0} \{ t^{\beta_1} \| u(t) \|_{r_1}, t^{\beta_2} \| u(t) \|_{r_2} \} \le M.$$

Arguing as in (2.12), (2.5) and (2.6), we conclude that

$$\begin{split} t^{\beta_{1}+\delta} \|u(t) - e^{t\Delta}\varphi_{h}\|_{r_{1}} &\leq t^{\beta_{1}+\delta} \|e^{t\Delta}(\varphi - \varphi_{h})\|_{r_{1}} + 2pM^{p}t^{\beta_{1}+\delta} \int_{0}^{t} (t-s)^{-\frac{N}{2}(\frac{p}{\eta_{1}'} - \frac{1}{r_{1}})} \\ &\times \int_{0}^{s} |k(s,\sigma)|\sigma^{-p[\theta_{1}'\beta_{1} + (1-\theta_{1}')\beta_{2}]} d\sigma dt \\ &\leq t^{\beta_{1}+\delta} \|e^{t\Delta}(\varphi - \varphi_{h})\|_{r_{1}} + C_{\delta}', \end{split}$$

where $C'_{\delta} = 2pM^pC_{\delta}$, $C_{\delta} = \nu \int_0^{\eta_0} \sigma^{-l-p\Theta_{\delta}} d\sigma + \eta_0^{-p\Theta_{\delta}} \int_{\eta_0}^1 |k(1,\sigma)| d\sigma$ and $\Theta_{\delta} = \frac{1}{p}(1-\frac{N}{2}\frac{P_1}{r_1})(2-\gamma+\frac{1}{P_1}+\delta)$. From the above result and (1.14) we have the desired conclusion.

(ii) For $\lambda > 0$, we define $z(t, x) = \lambda^{(4-2\gamma)/(p-1)} w(\lambda^2 t, \lambda x)$ for all $t > 0, x \in \mathbb{R}^N$. Clearly z is a solution of (1.1). We claim that $\sup_{t>0} t^{\beta_1} ||z||_{r_1} \leq M$. To see this, we observe that

$$t^{\beta_1} \|z\|_{r_1} = t^{\beta_1} \lambda^{\frac{4-2\gamma}{p-1}} \|w(\lambda^2 t, \lambda \cdot)\|_{r_1}$$

= $t^{\beta_1} \lambda^{\frac{4-2\gamma}{p-1} - \frac{N}{r_1}} \|w(\lambda^2 t)\|_{r_1}$
= $(\lambda^2 t)^{\beta_1} \|w(\lambda^2 t)\|_{r_1}.$

Since $z(0) = \varphi_h$, we have from (1.11) that w = z; that is, w is self-similar. The conclusion now follows from (1.13) and the Remark 1.4(i).

4. Non existence of global solutions

Proof of Theorem 1.7. Let B_R be the open ball in \mathbb{R}^N with radius R > 0. Let $\lambda_R > 0$ and $\rho_R > 0$ be the first eigenvalue and the first normalized (i.e. $\int_{B_R} \rho_R = 1$) eigenfunction of $-\Delta$ on B_R with zero Dirichlet boundary condition.

Set $w_R(t) = \int_{B_R} u(t)\rho_R$. Then by Green's identity and Jensen's inequality we obtain

$$(w_R)_t + \lambda_R w_R \ge \int_0^t k(t,s) w_R^p(s) ds.$$
(4.1)

Set $\phi_R(t) = \phi(t/R^2)$ for all $t \ge 0$. Multiplying (4.1) by ϕ_R and integrating on $[0, TR^2]$, we have

$$-w_{R}(0) + \lambda_{R} \int_{0}^{TR^{2}} w_{R}(t)\phi_{R}(t)dt \ge \int_{0}^{TR^{2}} \int_{0}^{t} k(t,s)w_{R}^{p}(s)ds \,\phi_{R}(t)dt$$

$$= \int_{0}^{TR^{2}} I_{R}(s)w_{R}^{p}(s)ds,$$
(4.2)

where

$$I_R(s) = \int_s^{TR^2} k(t,s)\phi_R(t)dt.$$

On the other hand, by Hölder's inequality,

$$\int_{0}^{TR^{2}} w_{R}(t)\phi_{R}(t)dt = \int_{0}^{TR^{2}} w_{R}(t)I_{R}(t)^{1/p}I_{R}(t)^{-1/p}\phi_{R}(t)dt$$
$$\leq \left\{\int_{0}^{TR^{2}} w_{R}^{p}I_{R}(t)dt\right\}^{1/p}\underbrace{\left\{\int_{0}^{TR^{2}} I_{R}(t)^{-p'/p}\phi_{R}^{p'}(t)dt\right\}^{1/p'}}_{II}.$$
(4.3)

Since

$$I_R(R^2s) = \int_{R^2s}^{TR^2} k(t,s)\phi(t/R^2)dt = (R^2)^{1-\gamma} \int_s^T k(t,s)\phi(t)dt = (R^2)^{1-\gamma} I_1(s),$$

we have

$$II^{p'} = R^2 \int_0^T I_R(R^2 t)^{-p'/p} \phi_R^{p'}(R^2 t) dt$$

= $(R^2)^{1-(p'/p)(1-\gamma)} \int_0^T I_1(t)^{-p'/p} \phi^{p'}(t) dt$
= $C(T)(R^2)^{1-(p'/p)(1-\gamma)},$ (4.4)

where $C(T) = \int_0^T \phi^{p'}(t) I_1(t)^{-p'/p} dt < \infty$ by (1.15). From (4.2)–(4.4) it follows that

$$\lambda_R \left\{ \int_0^{TR^2} w_R^p(t) I_R(t) dt \right\}^{1/p} C(T)^{1/p'} (R^2)^{\frac{1}{p'} - \frac{1-\gamma}{p}}$$

$$\geq \int_0^{TR^2} I_R(s) w_R^p(s) ds + w_R(0),$$

and by Young's inequality,

$$\frac{1}{p} \int_0^{TR^2} w_R^p(t) I_R(t) dt + \frac{1}{p'} \lambda_R^{p'} C(T) (R^2)^{1 - \frac{(1 - \gamma)p'}{p}} \ge w_R(0) + \int_0^{TR^2} I_R(t) w_R^p(t) dt.$$

Thus,

r

$$\frac{1}{p'}\lambda_R^{p'}C(T)(R^2)^{1-\frac{(1-\gamma)p'}{p}} \ge w_R(0).$$

Since $\lambda_R = \lambda_1/R^2$ we concluded that

$$w_R(0) \le C(T) \left(\frac{\lambda_1^{p'}}{p'}\right) (R^2)^{-p'+1-\frac{(1-\gamma)p'}{p}} = C'(T) (R^2)^{-\frac{2-\gamma}{p-1}},$$
(4.5)

where $C'(T) = [C(T)\lambda_1^{p'}]/p'$. On the other hand, for $\epsilon \in (0,1)$ small

$$w_{R}(0) = \int_{B_{R}} u_{0}(x)\rho_{R}(x)dx$$

$$\geq \left(\inf_{R \geq |x| \geq \epsilon R} u_{0}(x)\right) \int_{\{\epsilon R \leq |x| \leq R\}} \rho_{R}(x)dx$$

$$\geq \left(\inf_{R \geq |x| \geq \epsilon R} u_{0}(x)\right) \int_{\{\epsilon \leq |x| \leq 1\}} \rho_{1}(x)dx.$$

Thus, from (4.5), it follows that

$$C'(T) \ge \left(\inf_{R \ge |x| \ge \epsilon R} |x|^{2(2-\gamma)/(p-1)} u_0(x)\right) \int_{\{\epsilon \le |x| \le 1\}} \rho_1(x) dx.$$

Putting, $\epsilon = \kappa/R > 0$ and letting $R \to \infty$ we have $\inf_{|x \ge \kappa} |x|^{2(\frac{2-\gamma}{p-1})} u_0(x) \le C'(T)$. Since $C'(T) < \infty$ and κ is arbitrary the conclusion follows.

References

- [1] H. Bellout; Blow-up of solution of parabolic equations with nonlinear memory, J. Diff. Eq. 70, (1987), 42-68.
- [2] M. Cannone; A generalization of a theorem by Kato on Navier-Stokes equations, Mat. Ib. 13, (1997) 515-541.
- [3] M. Cannone, F. Planchon; Self-similar solutions for the Navier-Stokes equations in \mathbb{R}^3 , Comm. partial Diff. Eqs 21 (1996) 179-193.
- [4] T. Cazenave, F. Dickstein, F. Weissler; An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal. 68, (2008) 862-874.
- [5] T. Cazenave, F. Weissler; Asymptotically self similar global solutions of the nonlinear Schrodinger and heat equations, Math. Z. (1998) 83-120.
- [6] A. Fino; Contributions aux problèmes d'évolution, Doctoral theses, Université de La Rochelle, France, 2009.
- [7] A. Fino, M. Kirane; Qualitative properties of solutions to a space time fractional evolution equation. Quarterly of Applied Mathematics, 70, No 1, (2012), 133-157.
- [8] H. Fujita, T. Kato; On the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 16, (1964) 269-315.
- [9] T. Kato, H. Fujita; On the non stationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova 32 (1962) 243-260.
- [10] M. Loayza; Global existence and blow up results for a heat equation with nonlinear nonlocal term, Diff. and Int. Eq. 25, (2012), 665-683.
- [11] P. Souplet; Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29, (1998) 1301-1334.
- [12] P. Souplet; Nonexistence of global solution to some differential inequalities of the second order and applications, Portugaliae Mathematica 52, (1995) 289-299.

- [13] S. Snoussi, S. Tayachi; Asymptotic self-similar behavior of solutions for a semilinear parabolic system, Comm. Cont. Math. Vol 3, No 3 (2001), 363-392.
- [14] F. Weissler; Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38 (1981), 29-40.
- [15] F. Weissler; Local existence and nonexistence for semilinear parabolic equations in L^p. Indiana Univ. Math. J. 29 (1980), 79-102.

Miguel Loayza

Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540, Recife, PE, Brazil

 $E\text{-}mail \ address: \texttt{miguel@dmat.ufpe.br}$

12