Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 228, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO PARABOLIC PROBLEMS WITH NONLINEAR NONLOCAL TERMS

MIGUEL LOAYZA

$$
\begin{aligned}
& \text { ABSTRACT. We study the existence and asymptotic behavior of self-similar } \\
& \text { solutions to the parabolic problem } \\
& \qquad u_{t}-\Delta u=\int_{0}^{t} k(t, s)|u|^{p-1} u(s) d s \quad \text { on }(0, \infty) \times \mathbb{R}^{N}, \\
& \text { with } p>1 \text { and } u(0, \cdot) \in C_{0}\left(\mathbb{R}^{N}\right) \text {. }
\end{aligned}
$$

1. Introduction

In this work we study the existence and asymptotic behavior of global solutions of the semilinear parabolic problem

$$
\begin{gather*}
u_{t}-\Delta u=\int_{0}^{t} k(t, s)|u|^{p-1} u(s) d s \quad \text { in }(0, \infty) \times \mathbb{R}^{N} \tag{1.1}\\
u(0, x)=\psi(x) \quad \text { in } \mathbb{R}^{N}
\end{gather*}
$$

where $p>1$ and $k: \mathcal{R} \rightarrow \mathbb{R}$ satisfies
(K1) k is a continuous function on the region $\mathcal{R}=\left\{(t, s) \in \mathbb{R}^{2} ; 0<s<t\right\}$,
(K2) $k(\lambda t, \lambda s)=\lambda^{-\gamma} k(t, s)$ for all $(t, s) \in \mathcal{R}, \lambda>0$ and some $\gamma \in \mathbb{R}$,
(K3) $k(1, \cdot) \in L^{1}(0,1)$,
(K4) $\lim \sup _{\eta \rightarrow 0^{+}} \eta^{l}|k(1, \eta)|<\infty$ for some $l \in \mathbb{R}$.
Problem 1.1 models diffusion phenomena with memory effects and has been considered by several authors for some values of the function k (see [1, 4, 6, 7, 10, 12] and the references therein). When $k(t, s)=(t-s)^{-\gamma}, \gamma \in[0,1)$ and $\psi \in C_{0}\left(\mathbb{R}^{N}\right)$, it was shown in 4 that if

$$
p>p_{*}=\max \left\{1 / \gamma, 1+(4-2 \gamma) /\left[(N-2+2 \gamma)^{+}\right]\right\} \in(0, \infty]
$$

then the solution of 1.1$)$ is global, for $\|\psi\|_{r^{*}}$ small enough, where $r^{*}=N(p-$ $1) /[2(2-\gamma)]$. The value p_{*} is the Fujita critical exponent and is not given by a scaling argument. Similar results were obtained in [6] replacing the operator $-\Delta$ by the operator $(-\Delta)^{\beta / 2}$ with $0<\beta \leq 2$. When the function k is nonnegative and satisfies conditions (K1)-(K4), with $\gamma<2$ and $l<1$, it was shown in [10] that if

$$
p(2-\gamma) /(p-1)<N / 2+a \text { and } p(1-\gamma)<(p-1) a
$$

2000 Mathematics Subject Classification. 35K15, 35B40, 35E15.
Key words and phrases. Nonlocal parabolic equation; global solution; self-similar solution. (C) 2013 Texas State University - San Marcos.

Submitted August 9, 2012. Published October 16, 2013.
where $a=\min \{1-l, 2-\gamma\}$, then 1.1$\}$ has a global solution if $\|\psi\|_{r^{*}}$ is sufficiently small.

It is clear that if u is a global solution of problem 1.1) then for every $\lambda>0$, the function $u_{\lambda}(t, x)=\lambda^{\alpha} u\left(\lambda^{2} t, \lambda x\right)$ satisfies

$$
\begin{gather*}
u_{t}-\Delta u=\lambda^{2[\alpha(1-p)+2-\gamma]} \int_{0}^{t} k(t, s)|u|^{p-1} u(s) d s \quad \text { in }(0, \infty) \times \mathbb{R}^{N} \tag{1.2}\\
u(0, x)=\lambda^{2 \alpha} \psi(\lambda x) \quad \text { in } \mathbb{R}^{N}
\end{gather*}
$$

In particular, if $\alpha=(2-\gamma) /(p-1)$, then u_{λ} is also a solution of problem 1.1). A solution satisfying $u=u_{\lambda}$ for all $\lambda>0$ is called a self-similar solution of problem (1.1). Note that, in this case, $\psi(x)=\lambda^{2 \alpha} \psi(\lambda x)$; that is, the function ψ is a homogeneous function of degree -2α.

Our objective is to determine the asymptotic behavior of global solutions of 1.1 in terms of the self-similar solution w corresponding to the cases (see Theorem 1.5 for details):
(i) $\alpha(p-1)=2-\gamma$.

$$
\begin{gathered}
w_{t}-\Delta w=\int_{0}^{t} k(t, s)|w|^{p-1} w(s) d s \quad \text { in }(0, \infty) \times \mathbb{R}^{N} \\
w(0, x)=|x|^{-2 \alpha} \quad \text { in } \mathbb{R}^{N}
\end{gathered}
$$

(ii) $\alpha(p-1)>2-\gamma$.

$$
\begin{gathered}
w_{t}-\Delta w=0 \quad \text { in }(0, \infty) \times \mathbb{R}^{N} \\
w(0, x)=|x|^{-2 \alpha} \quad \text { in } \mathbb{R}^{N}
\end{gathered}
$$

For $\alpha(p-1)<2-\gamma$, we show that there is no nonnegative global solution of 1.1 , if $w(0, x) \sim|x|^{-2 \alpha}$ for $|x|$ large enough (see Theorem 1.7 for details).

To show the existence of global solutions to (1.1) we use a contraction mapping argument on the associated integral equation

$$
\begin{equation*}
u(t)=e^{t \Delta} \psi+\int_{0}^{t} e^{(t-s) \Delta} \int_{0}^{s} k(s, \sigma)|u|^{p-1} u(\sigma) d \sigma d s \tag{1.3}
\end{equation*}
$$

where $\left(e^{t \Delta}\right)_{t \geq 0}$ is the heat semigroup. Precisely, this contraction mapping argument is done on a given Banach space equipped with a norm chosen so that we obtain directly the global character of the solution. Our approach works for unbounded and sign changing initial data. On the other hand, the self-similar solutions constructed in this work may be not radially symmetric. In fact, we adapt a method introduced by Fujita and Kato [8, 9] and used later in [2, 3, 5, 13, 14].

Since the homogeneous function $\psi=|\cdot|^{-2 \alpha}$, does not belong to any $L^{p}\left(\mathbb{R}^{N}\right)$ space, we consider initial data so that $\sup _{t>0} t^{\alpha-N /\left(2 r_{1}\right)}\left\|e^{t \Delta} \psi\right\|_{r_{1}}<\infty$, for some $r_{1} \geq 1$. Hence, it is necessary to consider that $\alpha<N / 2$ since this condition ensures that ψ belongs to $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$.

The following result determines the asymptotic behavior for the heat semigroup on homogeneous functions, see [5, page 118] and [13, Proposition 2.3].
Proposition 1.1. Let $r_{1}>N /(2 \alpha)>1, \beta_{1}=\alpha-N /\left(2 r_{1}\right)$ and let φ_{h} be a tempered distribution homogeneous of degree -2α such that $\varphi_{h}(x)=\mu(x)|x|^{-2 \alpha}$, where $\mu \in L^{r_{1}}\left(S^{N-1}\right)$ is a function homogeneous of degree 0 . Assume that η is a cut-off function, that is, identically 1 near the origin and of compact support. Then
(i) $\sup _{t>0} t^{\beta_{1}}\left\|e^{t \Delta} \varphi_{h}\right\|_{r_{1}}<\infty$;
(ii) $\sup _{t>0} t^{\beta_{1}+\delta}\left\|e^{t \Delta}\left(\eta \varphi_{h}\right)\right\|_{r_{1}}<\infty$ for $0<\delta<N / 2-\alpha$;
(iii) $\sup _{t>0} t^{\beta_{1}}\left\|e^{t \Delta}(1-\eta) \varphi_{h}\right\|_{r_{1}}<\infty$.

Our first result is technical. It will be used to formulate the global existence and asymptotic behavior results.

Proposition 1.2. Let $l<1, \gamma<2$ and set $a=\min \{1-l, 2-\gamma\}$. Assume that $\alpha \in(0, N / 2)$ satisfies

$$
\begin{align*}
& 2-\gamma+\alpha<\frac{N}{2}+a \tag{1.4}\\
& (2-\gamma+\alpha) \frac{1-\gamma}{2-\gamma}<a \tag{1.5}
\end{align*}
$$

Then, there exits $r_{1} \geq 1$ satisfying
(i) $r_{1}>\frac{N}{2 \alpha}(2-\gamma), r_{1}>\frac{2-\gamma}{\alpha}+1$ and $r_{1}>\frac{N}{2 \alpha}$.
(ii) $(2-\gamma+\alpha)\left(1-\frac{N}{2 r_{1} \alpha}\right)<a$.

We now give the following existence result for problem shows the existence of global solutions and its continuous dependence.

Theorem 1.3. Let $p>1$ and k satisfying conditions $K 1)-K 4$) with $\gamma<2$ and $l<1$. Assume

$$
\begin{equation*}
p>1+2(2-\gamma) / N \tag{1.6}
\end{equation*}
$$

and $\alpha \in(0, N / 2)$ satisfying 1.4 , 1.5) and

$$
\begin{equation*}
\frac{2-\gamma}{p-1} \leq \alpha<\frac{N}{2} \tag{1.7}
\end{equation*}
$$

Fix $\tilde{\alpha}>0$ such that

$$
\begin{equation*}
\tilde{\alpha} \leq \frac{2-\gamma}{p-1} \tag{1.8}
\end{equation*}
$$

Let $r_{1}>1$ be given by Proposition 1.2, and let $r_{2}>1$ be defined by $r_{2}=\alpha r_{1} / \tilde{\alpha}$. For every $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ define \mathcal{N} by

$$
\begin{equation*}
\mathcal{N}(\varphi)=\sup _{t>0}\left\{t^{\beta_{1}}\left\|e^{t \Delta} \varphi\right\|_{r_{1}}, t^{\beta_{2}}\left\|e^{t \Delta} \varphi\right\|_{r_{2}}\right\} \tag{1.9}
\end{equation*}
$$

where $\beta_{1}=\alpha-N /\left(2 r_{1}\right)$ and $\beta_{2}=\tilde{\alpha}-N /\left(2 r_{2}\right)$.
Let $M>0$ be such that $C=C(M)<1$, where C is a positive constant given by (2.10). Choose $R>0$ such that $R+C M \leq M$. If φ is a tempered distribution such that

$$
\begin{equation*}
\mathcal{N}(\varphi) \leq R \tag{1.10}
\end{equation*}
$$

then there exits a unique global solution u of (1.1) satisfying

$$
\sup _{t>0}\left\{t^{\beta_{1}}\|u(t)\|_{r_{1}}, t^{\beta_{2}}\|u(t)\|_{r_{2}}\right\} \leq M
$$

In addition, if φ, ψ satisfy 1.10 and if u_{φ} and u_{ψ} respectively are the solutions of (1.3) with initial data φ, ψ, then

$$
\begin{equation*}
\sup _{t>0}\left[t^{\beta_{1}}\left\|u_{\varphi}(t)-u_{\psi}(t)\right\|_{r_{1}}, t^{\beta_{2}}\left\|u_{\varphi}(t)-u_{\psi}(t)\right\|_{r_{2}}\right] \leq(1-C)^{-1} \mathcal{N}(\varphi-\psi) \tag{1.11}
\end{equation*}
$$

Moreover, if φ, ψ are such that

$$
\begin{equation*}
\mathcal{N}_{\delta}(\varphi-\psi)=\sup _{t>0}\left\{t^{\beta_{1}+\delta}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}, t^{\beta_{2}+\delta}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{2}}\right\}<\infty \tag{1.12}
\end{equation*}
$$

for some $\delta \in\left(0, \delta_{0}\right)$, where $\delta_{0}=1-l-(2-\gamma+\alpha)\left[1-N /\left(2 r_{1} \alpha\right)\right]>0$. Then

$$
\begin{equation*}
\sup _{t>0}\left\{t^{\beta_{1}+\delta}\left\|u_{\varphi}-u_{\psi}\right\|_{r_{1}}, t^{\beta_{2}+\delta}\left\|u_{\varphi}-u_{\psi}\right\|_{r_{2}}\right\} \leq\left(1-C_{\delta}\right)^{-1} \mathcal{N}_{\delta}(\varphi-\psi) \tag{1.13}
\end{equation*}
$$

where C_{δ} is given by (2.16) below and the constant $M>0$ is chosen small enough so that $C_{\delta}<1$.

Remark 1.4. Suppose that $\alpha(p-1)=2-\gamma$ in Theorem 1.3 .
(i) From 1.7) and 1.8, we see that it is possible to choose $\tilde{\alpha}=\alpha$. It follows that $r_{1}=r_{2}, \beta_{1}=\beta_{2}$. Therefore, Theorem 1.3 holds replacing the norm \mathcal{N} of (1.9) by $\mathcal{N}_{s}(\varphi):=\sup _{t>0}\left\{t^{\beta_{1}}\left\|e^{t \Delta} \varphi\right\|_{r_{1}}\right\}$.
(ii) Assume that $k(t, s)=(t-s)^{-\gamma}$ with $\gamma \in(0,1)$. Then k satisfies $\left.\left.K 1\right)-K 4\right)$ with $l=0$, and therefore $a=\min \{1-l, 2-\gamma\}=1$. From conditions (1.4)(1.7) we have that $p(N-2+2 \gamma)>N+2, p \gamma>1$ and $p>1+2(2-\gamma) / N$ respectively. Since $p>1+(4-2 \gamma) /\left[(N-2+2 \gamma)^{+}\right]>1+2(2-\gamma) / N$, we conclude that $p>p^{*}=\max \left\{1 / \gamma, 1+(4-2 \gamma) /\left[(N-2+2 \gamma)^{+}\right]\right\}$which coincides with the condition encountered in 4.
(iii) Conditions 1.4)-1.6 become $2(2-\gamma) p<(N+2 a)(p-1), p(1-\gamma)<a(p-1)$ and $p>1+2(2-\gamma) / N$ respectively. The last inequality is obtained from the first one, since $2(2-\gamma) p<(N+2 a)(p-1) \leq[N+2(1-l)](p-1)$ and $\gamma<2$. Indeed, $p>1+2(2-\gamma) /\left[N-2+2(\gamma-l)^{+}\right]>1+2(2-\gamma) / N$. These conditions were used in 10 to show global existence of 1.1.

We now state the following asymptotic behavior result for some global solution of problem (1.1) with small initial data with respect to the norm \mathcal{N} given by 1.9 .

Theorem 1.5 (Asymptotically self-similar solutions). Let $p>1$ satisfying 1.6 and k be a function satisfying conditions $K 1)-K 4)$ with $\gamma<2$ and $l<1$. Let $\alpha \in(0, N / 2)$ be satisfying (1.4), (1.5) and (1.7), $\tilde{\alpha}>0$ satisfying (1.8), r_{1} given by Proposition 2 and $r_{2}=\alpha r_{1} / \widetilde{\alpha}$. Set $\varphi_{h}(x)=\mu(x)|x|^{-2 \alpha}$, where μ is homogeneous of degree 0 and $\mu \in L^{r_{1}}\left(S^{N-1}\right)$.

Suppose that $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ satisfies 1.10 , u is the corresponding solution of (1.1) given by Theorem 1.3. and

$$
\begin{equation*}
\sup _{t>0} t^{\beta_{1}+\delta}\left\|e^{t \Delta}\left(\varphi-\varphi_{h}\right)\right\|_{r_{1}}<\infty \tag{1.14}
\end{equation*}
$$

for some $\delta \in\left(0, \delta_{0}\right)$, where $\delta_{0}=1-l-p(2-\gamma) /(p-1)+N p /\left(2 r_{1}\right)$ when $\alpha(p-1)=$ $2-\gamma$ and given by Lemma 3.1 when $\alpha(p-1)>2-\gamma$. We have the following:
(i) If $\alpha(p-1)>2-\gamma$, then $\sup _{t>0} t^{\beta_{1}+\delta}\left\|u(t)-e^{t \Delta} \varphi_{h}\right\|_{r_{1}} \leq C_{\delta}$, for some constant $C_{\delta}>0$.
(ii) If $\alpha(p-1)=2-\gamma$ and w is the solution of (1.1) given by Theorem 1.3 with initial data φ_{h} (we multiplied φ_{h} by a small constant so that 1.10) is satisfied), then w is self-similar and $\sup _{t>0} t^{\beta_{1}+\delta}\|u(t)-w(t)\|_{r_{1}} \leq C_{\delta}$ for some constant $C_{\delta}>0$.

Remark 1.6. The class of functions φ satisfying the condition 1.14 is nonempty. Indeed, from Proposition 1.1(2), condition (1.14) is satisfied for $\varphi=(1-\eta) \varphi_{h}$.

In the following result, we analyze the non existence of global solutions of problem (1.1), under the assumption
(K5) There exist $T>0$ and a nonnegative, non-increasing continuous function $\phi \in C([0, \infty))$ with integrable derivative such that $\phi(0)=1$ and $\phi(t)=0$ for $t \geq T$ satisfying $k(\cdot, t) \phi(\cdot) \in L^{1}(t, T)$ for $t>0$ and

$$
\begin{equation*}
\int_{0}^{T} \phi(t)^{p^{\prime}}\left(\int_{t}^{T} k(s, t) \phi(s) d s\right)^{-p^{\prime} / p} d t<\infty \tag{1.15}
\end{equation*}
$$

where p^{\prime} is the conjugate of p.
Theorem 1.7. Let $p>1$ and let k be a nonnegative function satisfying conditions (K1)-(K3), (K5). If $\psi \in C_{0}\left(\mathbb{R}^{N}\right), \psi \geq 0$ satisfies $\lim \inf _{|x| \rightarrow \infty}|x|^{2(2-\gamma) /(p-1)} \psi(x)=$ ∞ and u is a corresponding nonnegative solution of problem 1.1), then u is not a global solution.

Remark 1.8. Regarding Theorem 1.7 we have the following statements:
(i) Under conditions (K1)-(K3), existence of local solutions for (1.1) in the class $C\left([0, T), C_{0}\left(\mathbb{R}^{N}\right)\right)$ and initial data $\psi \in C_{0}\left(\mathbb{R}^{N}\right)$, were studied in [10]. In particular, we know that if k and ψ are nonnegative, then the solution of 1.1 is nonnegative.
(ii) Let $k(t, s)=(t-s)^{-\gamma_{1}} s^{-\gamma_{2}}$ for $0<s<t$ and $\gamma_{i} \in[0,1), i=1,2$. Clearly, k satisfies $K 1)-K 3)$. We show that k satisfies (K5) with $\phi(t)=\left[(1-t)^{+}\right]^{q}, t \geq 0$, $T=1$ and $q>1 /(p-1)$. Indeed, since $\phi \leq 1$, we have for $t>0$

$$
\int_{t}^{1} k(s, t) \phi(s) d s=t^{-\gamma_{2}} \int_{t}^{1}(s-t)^{-\gamma_{1}} \phi(s) d s \leq \frac{t^{-\gamma_{2}}}{1-\gamma_{1}}(1-t)^{1-\gamma_{1}}<\infty
$$

On the other hand,

$$
\int_{t}^{1} k(s, t) \phi(s) d s=t^{-\gamma_{2}} \int_{t}^{1}(s-t)^{-\gamma_{1}} \phi(s) d s \geq t^{-\gamma_{2}} \int_{t}^{1} \phi(s) d s=\frac{t^{-\gamma_{2}}}{1+q}(1-t)^{1+q}
$$

Therefore,

$$
\int_{0}^{1} \phi(t)^{p^{\prime}}\left(\int_{t}^{1} k(s, t) \phi(s) d s\right)^{-p^{\prime} / p} d t=(1+q)^{p^{\prime} / p} \int_{0}^{1}(1-t)^{p^{\prime}\left(q-\frac{1+q}{p}\right)} t^{\frac{\gamma_{2} p^{\prime}}{p}} d t
$$

which is finite, since

$$
1+p^{\prime}\left(q-\frac{1+q}{p}\right)=\frac{p^{\prime}}{p}[p-2+q(p-1)]>\frac{p^{\prime}}{p}(p-1)>0 .
$$

2. Existence of global solutions

Proof of Proposition 1.2, Let $A=\frac{2 \alpha}{N}\left(1-\frac{a}{2-\gamma+\alpha}\right)$. Since $a>0$ we conclude that $A<2 \alpha / N<1$. From (1.5) and (1.4) we have $A<2 \alpha /[N(2-\gamma)]$ and $A<\alpha /(2-\gamma+\alpha)$, respectively. Now, it is sufficient to choose $r_{1}>1$ satisfying $A<\frac{1}{r_{1}}<\min \left\{\frac{2 \alpha}{N(2-\gamma)}, \frac{\alpha}{2-\gamma+\alpha}, \frac{2 \alpha}{N}\right\}$.

Lemma 2.1. Assume the conditions 1.4-1.8. Let $r_{2}=\frac{\alpha r_{1}}{\tilde{\alpha}}, \beta_{1}=\alpha-\frac{N}{2 r_{1}}$, $\beta_{2}=\tilde{\alpha}-\frac{N}{2 r_{2}}, \frac{1}{\eta_{1}}=\frac{1}{p r_{1}}\left(\frac{2-\gamma}{\alpha}+1\right), \frac{1}{\eta_{2}}=\frac{1}{p r_{1}}\left(\frac{2-\gamma}{\alpha}+\frac{\tilde{\alpha}}{\alpha}\right), \theta_{1}=\frac{2-\gamma+\alpha-p \tilde{\alpha}}{p(\alpha-\tilde{\alpha})}$, and $\theta_{2}=\frac{2-\gamma+(1-p) \tilde{\alpha}}{p(\alpha-\tilde{\alpha})}$. For $i=1,2$ we have
(i) $\eta_{i} \in\left[r_{1}, r_{2}\right]$ and $\eta_{i} \in\left(p, r_{i} p\right)$.
(ii) $\frac{p}{\eta_{1}}-\frac{1}{r_{1}}=\frac{p}{\eta_{2}}-\frac{1}{r_{2}}=\frac{2-\gamma}{r_{1} \alpha}<\frac{2}{N}$.
(iii) $\theta_{i} \in[0,1], \frac{1}{\eta_{i}}=\frac{\theta_{i}}{r_{1}}+\frac{\left(1-\theta_{i}\right)}{r_{2}}$.
(iv) $\frac{1}{p} a>\theta_{i} \beta_{1}+\left(1-\theta_{i}\right) \beta_{2}$, with

$$
\begin{aligned}
& \theta_{1} \beta_{1}+\left(1-\theta_{1}\right) \beta_{2}=\frac{1}{p}(2-\gamma+\alpha)\left(1-\frac{N}{2 r_{1} \alpha}\right) \\
& \theta_{2} \beta_{1}+\left(1-\theta_{2}\right) \beta_{2}=\frac{1}{p}(2-\gamma+\tilde{\alpha})\left(1-\frac{N}{2 r_{1} \alpha}\right)
\end{aligned}
$$

(v) $2-\gamma+\beta_{i}-\frac{N}{2}\left(\frac{p}{\eta_{i}}-\frac{1}{r_{i}}\right)-p\left[\beta_{1} \theta_{i}+\beta_{2}\left(1-\theta_{i}\right)\right]=0$.

Proof. (i) From (1.7), we see that $\eta_{1} \geq r_{1}$ and $\eta_{2} \leq r_{2}$. Since $\tilde{\alpha} \leq \alpha$, it follows from (1.7) and 1.8 that

$$
\begin{equation*}
2-\gamma+\tilde{\alpha} \leq p \alpha, p \tilde{\alpha} \leq 2-\gamma+\alpha \tag{2.1}
\end{equation*}
$$

respectively. From here, $\eta_{2} \geq r_{1}$ and $\eta_{1} \leq r_{2}$. The condition $r_{1}>(2-\gamma) / \alpha+1$ of Proposition 1.2(i) and $\gamma<2$ ensure that $\eta_{1} \in\left(p, r_{1} p\right)$. Moreover, since $r_{1}>$ $(2-\gamma) / \alpha+1 \geq(2-\gamma+\tilde{\alpha}) / \alpha$ and $\gamma<2$, we conclude that $\eta_{2} \in\left(p, r_{2} p\right)$.

Item (ii) follows from Proposition 1.2 (i).
(iii) From (1.7) and 1.8 we get $\theta_{1} \leq 1$ and $\theta_{2} \geq 0$ respectively, and from (2.1) we see that $\theta_{2} \leq 1$ and $\theta_{1} \geq 0$ respectively.

We obtain (iv) from Proposition 1.2(ii).
Proof of Theorem 1.3. The proof is based on a contraction mapping argument. Let E be the set of Bochner measurable functions $u:(0, \infty) \rightarrow L^{r_{1}}\left(\mathbb{R}^{N}\right) \cap L^{r_{2}}\left(\mathbb{R}^{N}\right)$, such that $\|u\|_{E}=\sup _{t>0}\left\{t^{\beta_{1}}\|u(t)\|_{r_{1}}, t^{\beta_{2}}\|u(t)\|_{r_{2}}\right\}<\infty$, where $\beta_{1}=\alpha-N /\left(2 r_{1}\right), \beta_{2}=$ $\tilde{\alpha}-N /\left(2 r_{2}\right)$. The space E is a Banach space. Let $M>0$ and K be the closed ball of radius M in E.

Let $\Phi_{\varphi}: K \rightarrow E$ be the mapping defined by

$$
\begin{equation*}
\Phi_{\varphi}(u)(t)=e^{t \Delta} \varphi+\int_{0}^{t} e^{(t-s) \Delta} \int_{0}^{s} k(s, \sigma)|u|^{p-1} u(\sigma) d \sigma d s \tag{2.2}
\end{equation*}
$$

We will prove that Φ_{φ} is a strict contraction mapping on K. Let φ, ψ satisfying (1.10) and $u, v \in K$. We will use several times the smoothing effect for the heat semigroup: if $1 \leq s \leq r \leq \infty$ and $\varphi \in L^{r}$, then

$$
\left\|e^{t \Delta} \varphi\right\|_{r} \leq t^{-\frac{N}{2}\left(\frac{1}{s}-\frac{1}{r}\right)}\|\varphi\|_{s}
$$

for all $t>0$. From (2.2), we deduce

$$
\begin{align*}
& t^{\beta_{1}}\left\|\Phi_{\varphi}(u)(t)-\Phi_{\psi}(v)(t)\right\|_{r_{1}} \leq t^{\beta_{1}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}} \\
& +p t^{\beta_{1}} \int_{0}^{t}\left\|e^{(t-s) \Delta} \int_{0}^{s}|k(s, \sigma)|\left(|u|^{p-1}+|v|^{p-1}\right)|u(\sigma)-v(\sigma)|\right\|_{r_{1}} d \sigma \\
& \leq t^{\beta_{1}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+p t^{\beta_{1}} \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}}-\frac{1}{r_{1}}\right)} \tag{2.3}\\
& \quad \times \int_{0}^{s}|k(s, \sigma)|\left(\|u\|_{\eta_{1}}^{p-1}+\|v\|_{\eta_{1}}^{p-1}\right)\|u(\sigma)-v(\sigma)\|_{\eta_{1}} d \sigma d s
\end{align*}
$$

From Lemma 2.1.(i) and (iii), and an interpolation inequality

$$
\|u\|_{\eta_{1}} \leq\|u\|_{r_{1}}^{\theta_{1}}\|u\|_{r_{2}}^{1-\theta_{1}}
$$

where $\frac{1}{\eta_{1}}=\frac{\theta_{1}}{r_{1}}+\frac{1-\theta_{1}}{r_{2}}$. Replacing this inequality into 2.3 we obtain

$$
\begin{align*}
& t^{\beta_{1}}\left\|\Phi_{\varphi}(u)(t)-\Phi_{\psi}(v)(t)\right\|_{r_{1}} \\
& \leq t^{\beta_{1}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+2 M^{p-1} p\|u-v\|_{E} t^{\beta_{1}} \tag{2.4}\\
& \quad \times \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}}-\frac{1}{r_{1}}\right)} \int_{0}^{s}|k(s, \sigma)| \sigma^{-p\left[\theta_{1} \beta_{1}+\left(1-\theta_{1}\right) \beta_{2}\right]} d \sigma d s
\end{align*}
$$

From (K4), there exist $\eta_{0}, \nu>0$ such that $\eta^{l}|k(1, \eta)|<\nu$ for $\eta \in\left(0, \eta_{0}\right)$. Thus, if $\theta_{1} \beta_{1}+\beta_{2}\left(1-\theta_{1}\right)=\Theta_{1}$, we have

$$
\begin{align*}
\int_{0}^{s}|k(s, \sigma)| \sigma^{-p \Theta_{1}} d \sigma & =s^{1-\gamma-p \Theta_{1}} \int_{0}^{1}|k(1, \sigma)| \sigma^{-p \Theta_{1}} d \sigma \\
& \leq s^{1-\gamma-p \Theta_{1}}\left[\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{1}} d \sigma+\eta_{0}^{-p \Theta_{1}} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma\right] \\
& =C_{1} s^{1-\gamma-p \Theta_{1}} \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
C_{1}=\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{1}} d \sigma+\eta_{0}^{-p \Theta_{1}} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma \tag{2.6}
\end{equation*}
$$

Since $p \Theta_{1}<a$ (see Lemma 2.1(iv)) and k satisfies (K3), we conclude that $C_{1}<\infty$.
From (2.4), 2.5) and properties (iv) and (v) of Lemma 2.1.

$$
\begin{align*}
& t^{\beta_{1}}\left\|\Phi_{\varphi} u(t)-\Phi_{\psi} v(t)\right\|_{r_{1}} \\
& \leq \\
& t^{\beta_{1}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}} \tag{2.7}\\
& \quad+2 C_{1} M^{p-1} p t^{\beta_{1}}\|u-v\|_{E} \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{n_{1}}-\frac{1}{r_{1}}\right)} s^{1-\gamma-p \Theta_{1}} d s \\
& \leq \\
& \quad t^{\beta_{1}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+C_{1}^{\prime}\|u-v\|_{E}
\end{align*}
$$

where $C_{1}^{\prime}=2 C_{1} M^{p-1} p \int_{0}^{1}(1-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}}-\frac{1}{r_{1}}\right)} s^{1-\gamma-p \Theta_{1}} d s$. From Lemma 2.1. (ii) and (iv), we see that $C_{1}^{\prime}<\infty$. Similarly, one can prove that

$$
\begin{equation*}
t^{\beta_{2}}\left\|\Phi_{\varphi} u(t)-\Phi_{\psi} v(t)\right\|_{r_{2}} \leq t^{\beta_{2}}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{2}}+C_{2}^{\prime}\|u-v\|_{E} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{gathered}
C_{2}^{\prime}=2 C_{2} M^{p-1} p \int_{0}^{1}(1-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{2}}-\frac{1}{r_{2}}\right)} s^{1-\gamma-p \Theta_{2}} d s<\infty \\
C_{2}=\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{2}} d \sigma+\eta_{0}^{-p \Theta_{1}} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma<\infty \\
\Theta_{2}=\frac{1}{p}\left(1-\frac{N}{2 r_{1} \alpha}\right)(2-\gamma+\tilde{\alpha})
\end{gathered}
$$

From 2.7 and 2.8 we obtain

$$
\begin{equation*}
\left\|\Phi_{\varphi}(u)(t)-\Phi_{\psi}(v)(t)\right\|_{E} \leq \mathcal{N}(\varphi-\psi)+C\|u-v\|_{E} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\max \left\{C_{1}^{\prime}, C_{2}^{\prime}\right\} \tag{2.10}
\end{equation*}
$$

Setting $\psi=0, v=0$ in 2.9 we get $\left\|\Phi_{\varphi}(u)\right\|_{E} \leq \mathcal{N}(\varphi)+C\|u\|_{E}$. Since φ satisfies 1.10 and $R+C M \leq M$, we conclude that $\Phi_{\varphi} u \in K$. Moreover, since $C<1$ we
conclude from 2.9 that Φ_{φ} is a strict contraction from K into itself, so Φ_{φ} has a unique fixed point in K.

The continuous dependence 1.11 follows clearly from 2.9. To show 1.13), let

$$
\begin{equation*}
\|u-v\|_{E, \delta}=\sup _{t>0}\left\{t^{\beta_{1}+\delta}\|u(t)\|_{r_{1}}, t^{\beta_{2}+\delta}\|v(t)\|_{r_{2}}\right\} \tag{2.11}
\end{equation*}
$$

Proceeding as 2.3 we obtain

$$
\begin{align*}
& t^{\beta_{1}+\delta}\|u(t)-v(t)\|_{r_{1}} \\
& \leq t^{\beta_{1}+\delta}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+2 p M^{p-1} t^{\beta_{1}+\delta} \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}}-\frac{1}{r_{1}}\right)} \\
& \quad \times \int_{0}^{s}|k(s, \sigma)| \sigma^{-\left[\theta_{1} \beta_{1}+\left(1-\theta_{1}\right) \beta_{2}\right](p-1)}\|u-v\|_{\eta_{1}} d \sigma d s \tag{2.12}\\
& \leq t^{\beta_{1}+\delta}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+2 p M^{p-1} \sup _{\sigma \in(0, t)}\left\{\sigma^{\beta_{1}+\delta}\|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta}\|v(\sigma)\|_{r_{2}}\right\} \\
& \quad \times t^{\beta_{1}+\delta} \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}}-\frac{1}{r_{1}}\right)} \int_{0}^{s}|k(s, \sigma)| \sigma^{-p\left[\theta_{1} \beta_{1}+\left(1-\theta_{1}\right) \beta_{2}\right]-\delta} d \sigma d t
\end{align*}
$$

For $0<\delta<1-l-p \Theta_{1}$, arguing as in 2.5, we have

$$
\begin{aligned}
& \int_{0}^{s}|k(s, \sigma)| \sigma^{-p\left[\theta_{1} \beta_{1}+\theta_{2} \beta_{2}\right]-\delta} d \sigma \\
& =s^{1-\gamma-p \Theta_{1}-\delta} \int_{0}^{1}|k(1, \sigma)| \sigma^{-p \Theta_{1}-\delta} \\
& \leq s^{1-\gamma-p \Theta_{1}-\delta}\left[\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{1}-\delta} d \sigma+\eta_{0}^{-p \Theta_{1}-\delta} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma\right] \\
& =C_{1, \delta} s^{1-\gamma-p \Theta_{1}-\delta}
\end{aligned}
$$

where

$$
C_{1, \delta}=\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{1}-\delta} d \sigma+\eta_{0}^{-p \Theta_{1}-\delta} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma<\infty
$$

Therefore, from 2.12 we obtain

$$
\begin{align*}
& t^{\beta_{1}+\delta}\|u(t)-v(t)\|_{r_{1}} \\
& \leq t^{\beta_{1}+\delta}\left\|e^{t \Delta}(\varphi-\psi)\right\|_{r_{1}}+C_{1, \delta}^{\prime} \sup _{\sigma \in(0, t)}\left\{\sigma^{\beta_{1}+\delta}\|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta}\|v(\sigma)\|_{r_{2}}\right\} \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
C_{1, \delta}^{\prime}=2 p M^{p-1} C_{1, \delta} \tag{2.14}
\end{equation*}
$$

Similarly, for $0<\delta<1-l-p \Theta_{2}$, one can to obtain

$$
\begin{align*}
& t^{\beta_{2}+\delta}\|u(t)-v(t)\|_{r_{2}} \\
& \leq t^{\beta_{2}+\delta}\left\|e^{t \Delta} \varphi-\psi\right\|_{r_{2}}+C_{2, \delta}^{\prime} \sup _{\sigma \in(0, t)}\left\{\sigma^{\beta_{1}+\delta}\|u(\sigma)\|_{r_{1}}, \sigma^{\beta_{2}+\delta}\|v(\sigma)\|_{r_{2}}\right\} \tag{2.15}
\end{align*}
$$

where

$$
C_{2, \delta}=\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{2}-\delta} d \sigma+\eta_{0}^{-p \Theta_{2}-\delta} \int_{\eta_{0}}^{1} k(1, \sigma) d \sigma<\infty
$$

and $C_{2, \delta}^{\prime}=2 p M^{p-1} C_{2, \delta}$.
From 2.13 and 2.15 it follows that

$$
\left(1-C_{\delta}\right)\|u-v\|_{E, \delta} \leq \mathcal{N}_{\delta}(\varphi-\psi)
$$

where

$$
\begin{equation*}
C_{\delta}=\max \left\{C_{1, \delta}^{\prime}, C_{2, \delta}^{\prime}\right\} \tag{2.16}
\end{equation*}
$$

3. Asymptotic Behavior

The next result will be used in the proof of Theorem 1.5 (1).
Lemma 3.1. Let $l<1, \gamma<2, p>1$ and $a=\min \{1-l, 2-\gamma\}$. Assume 1.7) and let α satisfying (1.4), (1.5) and (1.7). Let $\tilde{\eta}$ satisfying (1.8). For $\delta>0$ we define $\eta^{\prime} \geq 1$ by $\frac{1}{\eta_{1}^{\prime}}=\frac{1}{p r_{1}}\left(\frac{2-\gamma+\delta}{\alpha}+1\right)$, and $\theta_{1}^{\prime}=\frac{2-\gamma+\delta+\alpha-p \tilde{\alpha}}{p(\alpha-\tilde{\alpha})}$.

If $\frac{2-\gamma}{p-1}<\alpha$, then there exists $\delta_{0}>0$ small such that for all $\delta \in\left(0, \delta_{0}\right]$:
(i) $\eta_{1}^{\prime} \in\left[r_{1}, r_{2}\right]$ and $\eta_{1}^{\prime} \in\left(p, r_{1} p\right)$, where $r_{2}=\left(\alpha r_{1}\right) / \tilde{\alpha}$.
(ii) $\frac{N}{2}\left(\frac{p}{\eta_{1}^{\prime}}-\frac{1}{r_{1}}\right)=\frac{N}{2 r_{1} \alpha}(2-\gamma+\delta)<1$.
(iii) $\theta_{1} \in[0,1], \frac{1}{\eta_{1}^{\prime}}=\frac{\theta_{1}^{\prime}}{r_{1}}+\frac{1-\theta_{1}^{\prime}}{r_{2}}$.
(iv) If $\beta_{1}=\alpha-\frac{N}{2 r_{1}}$ and $\beta_{2}=\tilde{\alpha}-\frac{N}{2 r_{2}}$, then

$$
a>p\left[\beta_{1} \theta_{1}^{\prime}+\beta_{2}\left(1-\theta_{1}^{\prime}\right)\right]=(2-\gamma+\alpha+\delta)\left(1-\frac{N}{2 r_{1} \alpha}\right)
$$

(v) $2-\gamma+\beta_{1}+\delta-\frac{N}{2}\left(\frac{p}{\eta_{1}^{\prime}}-\frac{1}{r_{1}}\right)-p\left[\beta_{1} \theta_{1}^{\prime}+\beta_{2}\left(1-\theta_{1}^{\prime}\right)\right]=0$.

Proof. Since $\alpha>(2-\gamma) /(p-1),(1.4)$ and 1.5$)$ hold, it follows from Proposition 1.2 that there exists $\delta_{0}>0$ small so that such that $\alpha>\left(2-\gamma+\delta_{0}\right) /(p-1)$, $r_{1}>\frac{N}{2 \alpha}\left(2-\gamma+\delta_{0}\right), r_{1}>\left(2-\gamma+\delta_{0}\right) / \alpha+1$ and $\left(2-\gamma+\alpha+\delta_{0}\right)\left(1-N /\left(2 r_{1} \alpha\right)\right)<a$. The rest of the proof follows similarly as the proof of Lemma 2.1.

Proof of Theorem 1.5. (i) Let $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$ be satisfying 1.10 and let u be the corresponding solution given by Theorem 1.3. We have that

$$
\sup _{t>0}\left\{t^{\beta_{1}}\|u(t)\|_{r_{1}}, t^{\beta_{2}}\|u(t)\|_{r_{2}}\right\} \leq M
$$

Arguing as in 2.12, , 2.5 and 2.6 , we conclude conclude that

$$
\begin{aligned}
t^{\beta_{1}+\delta}\left\|u(t)-e^{t \Delta} \varphi_{h}\right\|_{r_{1}} \leq & t^{\beta_{1}+\delta}\left\|e^{t \Delta}\left(\varphi-\varphi_{h}\right)\right\|_{r_{1}}+2 p M^{p} t^{\beta_{1}+\delta} \int_{0}^{t}(t-s)^{-\frac{N}{2}\left(\frac{p}{\eta_{1}^{\prime}}-\frac{1}{r_{1}}\right)} \\
& \times \int_{0}^{s}|k(s, \sigma)| \sigma^{-p\left[\theta_{1}^{\prime} \beta_{1}+\left(1-\theta_{1}^{\prime}\right) \beta_{2}\right]} d \sigma d t \\
\leq & t^{\beta_{1}+\delta}\left\|e^{t \Delta}\left(\varphi-\varphi_{h}\right)\right\|_{r_{1}}+C_{\delta}^{\prime}
\end{aligned}
$$

where $C_{\delta}^{\prime}=2 p M^{p} C_{\delta}, C_{\delta}=\nu \int_{0}^{\eta_{0}} \sigma^{-l-p \Theta_{\delta}} d \sigma+\eta_{0}^{-p \Theta_{\delta}} \int_{\eta_{0}}^{1}|k(1, \sigma)| d \sigma$ and $\Theta_{\delta}=$ $\frac{1}{p}\left(1-\frac{N}{2} \frac{P_{1}}{r_{1}}\right)\left(2-\gamma+\frac{1}{P_{1}}+\delta\right)$. From the above result and 1.14) we have the desired conclusion.
(ii) For $\lambda>0$, we define $z(t, x)=\lambda^{(4-2 \gamma) /(p-1)} w\left(\lambda^{2} t, \lambda x\right)$ for all $t>0, x \in \mathbb{R}^{N}$. Clearly z is a solution of (1.1). We claim that $\sup _{t>0} t^{\beta_{1}}\|z\|_{r_{1}} \leq M$. To see this, we observe that

$$
\begin{aligned}
t^{\beta_{1}}\|z\|_{r_{1}} & =t^{\beta_{1}} \lambda^{\frac{4-2 \gamma}{p-1}}\left\|w\left(\lambda^{2} t, \lambda \cdot\right)\right\|_{r_{1}} \\
& =t^{\beta_{1}} \lambda^{\frac{4-2 \gamma}{p-1}-\frac{N}{r_{1}}}\left\|w\left(\lambda^{2} t\right)\right\|_{r_{1}} \\
& =\left(\lambda^{2} t\right)^{\beta_{1}}\left\|w\left(\lambda^{2} t\right)\right\|_{r_{1}} .
\end{aligned}
$$

Since $z(0)=\varphi_{h}$, we have from 1.11 that $w=z$; that is, w is self-similar. The conclusion now follows from 1.13) and the Remark $1.4(\mathrm{i})$.

4. Non existence of global solutions

Proof of Theorem 1.7. Let B_{R} be the open ball in \mathbb{R}^{N} with radius $R>0$. Let $\lambda_{R}>0$ and $\rho_{R}>0$ be the first eigenvalue and the first normalized (i.e. $\int_{B_{R}} \rho_{R}=1$) eigenfunction of $-\Delta$ on B_{R} with zero Dirichlet boundary condition.

Set $w_{R}(t)=\int_{B_{R}} u(t) \rho_{R}$. Then by Green's identity and Jensen's inequality we obtain

$$
\begin{equation*}
\left(w_{R}\right)_{t}+\lambda_{R} w_{R} \geq \int_{0}^{t} k(t, s) w_{R}^{p}(s) d s \tag{4.1}
\end{equation*}
$$

Set $\phi_{R}(t)=\phi\left(t / R^{2}\right)$ for all $t \geq 0$. Multiplying 4.1) by ϕ_{R} and integrating on $\left[0, T R^{2}\right]$, we have

$$
\begin{align*}
-w_{R}(0)+\lambda_{R} \int_{0}^{T R^{2}} w_{R}(t) \phi_{R}(t) d t & \geq \int_{0}^{T R^{2}} \int_{0}^{t} k(t, s) w_{R}^{p}(s) d s \phi_{R}(t) d t \\
& =\int_{0}^{T R^{2}} I_{R}(s) w_{R}^{p}(s) d s \tag{4.2}
\end{align*}
$$

where

$$
I_{R}(s)=\int_{s}^{T R^{2}} k(t, s) \phi_{R}(t) d t
$$

On the other hand, by Hölder's inequality,

$$
\begin{align*}
\int_{0}^{T R^{2}} w_{R}(t) \phi_{R}(t) d t & =\int_{0}^{T R^{2}} w_{R}(t) I_{R}(t)^{1 / p} I_{R}(t)^{-1 / p} \phi_{R}(t) d t \\
& \leq\left\{\int_{0}^{T R^{2}} w_{R}^{p} I_{R}(t) d t\right\}^{1 / p} \underbrace{\left\{\int_{0}^{T R^{2}} I_{R}(t)^{-p^{\prime} / p} \phi_{R}^{p^{\prime}}(t) d t\right\}^{1 / p^{\prime}}}_{I I} \tag{4.3}
\end{align*}
$$

Since

$$
I_{R}\left(R^{2} s\right)=\int_{R^{2} s}^{T R^{2}} k(t, s) \phi\left(t / R^{2}\right) d t=\left(R^{2}\right)^{1-\gamma} \int_{s}^{T} k(t, s) \phi(t) d t=\left(R^{2}\right)^{1-\gamma} I_{1}(s)
$$

we have

$$
\begin{align*}
I I^{p^{\prime}} & =R^{2} \int_{0}^{T} I_{R}\left(R^{2} t\right)^{-p^{\prime} / p} \phi_{R}^{p^{\prime}}\left(R^{2} t\right) d t \\
& =\left(R^{2}\right)^{1-\left(p^{\prime} / p\right)(1-\gamma)} \int_{0}^{T} I_{1}(t)^{-p^{\prime} / p} \phi^{p^{\prime}}(t) d t \tag{4.4}\\
& =C(T)\left(R^{2}\right)^{1-\left(p^{\prime} / p\right)(1-\gamma)}
\end{align*}
$$

where $C(T)=\int_{0}^{T} \phi^{p^{\prime}}(t) I_{1}(t)^{-p^{\prime} / p} d t<\infty$ by 1.15. From 4.2 4.4 it follows that

$$
\begin{aligned}
& \lambda_{R}\left\{\int_{0}^{T R^{2}} w_{R}^{p}(t) I_{R}(t) d t\right\}^{1 / p} C(T)^{1 / p^{\prime}}\left(R^{2}\right)^{\frac{1}{p^{\prime}}-\frac{1-\gamma}{p}} \\
& \geq \int_{0}^{T R^{2}} I_{R}(s) w_{R}^{p}(s) d s+w_{R}(0)
\end{aligned}
$$

and by Young's inequality,

$$
\frac{1}{p} \int_{0}^{T R^{2}} w_{R}^{p}(t) I_{R}(t) d t+\frac{1}{p^{\prime}} \lambda_{R}^{p^{\prime}} C(T)\left(R^{2}\right)^{1-\frac{(1-\gamma) p^{\prime}}{p}} \geq w_{R}(0)+\int_{0}^{T R^{2}} I_{R}(t) w_{R}^{p}(t) d t
$$

Thus,

$$
\frac{1}{p^{\prime}} \lambda_{R}^{p^{\prime}} C(T)\left(R^{2}\right)^{1-\frac{(1-\gamma) p^{\prime}}{p}} \geq w_{R}(0)
$$

Since $\lambda_{R}=\lambda_{1} / R^{2}$ we concluded that

$$
\begin{equation*}
w_{R}(0) \leq C(T)\left(\frac{\lambda_{1}^{p^{\prime}}}{p^{\prime}}\right)\left(R^{2}\right)^{-p^{\prime}+1-\frac{(1-\gamma) p^{\prime}}{p}}=C^{\prime}(T)\left(R^{2}\right)^{-\frac{2-\gamma}{p-1}} \tag{4.5}
\end{equation*}
$$

where $C^{\prime}(T)=\left[C(T) \lambda_{1}^{p^{\prime}}\right] / p^{\prime}$. On the other hand, for $\epsilon \in(0,1)$ small

$$
\begin{aligned}
w_{R}(0) & =\int_{B_{R}} u_{0}(x) \rho_{R}(x) d x \\
& \geq\left(\inf _{R \geq|x| \geq \epsilon R} u_{0}(x)\right) \int_{\{\epsilon R \leq|x| \leq R\}} \rho_{R}(x) d x \\
& \geq\left(\inf _{R \geq|x| \geq \epsilon R} u_{0}(x)\right) \int_{\{\epsilon \leq|x| \leq 1\}} \rho_{1}(x) d x
\end{aligned}
$$

Thus, from 4.5, it follows that

$$
C^{\prime}(T) \geq\left(\inf _{R \geq|x| \geq \epsilon R}|x|^{2(2-\gamma) /(p-1)} u_{0}(x)\right) \int_{\{\epsilon \leq|x| \leq 1\}} \rho_{1}(x) d x .
$$

Putting, $\epsilon=\kappa / R>0$ and letting $R \rightarrow \infty$ we have $\inf _{\mid x \geq \kappa}|x|^{2\left(\frac{2-\gamma}{p-1}\right)} u_{0}(x) \leq C^{\prime}(T)$. Since $C^{\prime}(T)<\infty$ and κ is arbitrary the conclusion follows.

References

[1] H. Bellout; Blow-up of solution of parabolic equations with nonlinear memory, J. Diff. Eq. 70, (1987), 42-68.
[2] M. Cannone; A generalization of a theorem by Kato on Navier-Stokes equations, Mat. Ib. 13, (1997) 515-541.
[3] M. Cannone, F. Planchon; Self-similar solutions for the Navier-Stokes equations in \mathbb{R}^{3}, Comm. partial Diff. Eqs 21 (1996) 179-193.
[4] T. Cazenave, F. Dickstein, F. Weissler; An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal. 68, (2008) 862-874.
[5] T. Cazenave, F. Weissler; Asymptotically self similar global solutions of the nonlinear Schrodinger and heat equations, Math. Z. (1998) 83-120.
[6] A. Fino; Contributions aux problèmes d'évolution, Doctoral theses, Université de La Rochelle, France, 2009.
[7] A. Fino, M. Kirane; Qualitative properties of solutions to a space time fractional evolution equation. Quarterly of Applied Mathematics, 70, No 1, (2012), 133-157.
[8] H. Fujita, T. Kato; On the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 16, (1964) 269-315.
[9] T. Kato, H. Fujita; On the non stationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova 32 (1962) 243-260.
[10] M. Loayza; Global existence and blow up results for a heat equation with nonlinear nonlocal term, Diff. and Int. Eq. 25, (2012), 665-683.
[11] P. Souplet; Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29, (1998) 1301-1334.
[12] P. Souplet; Nonexistence of global solution to some differential inequalities of the second order and applications, Portugaliae Mathematica 52, (1995) 289-299.
[13] S. Snoussi, S. Tayachi; Asymptotic self-similar behavior of solutions for a semilinear parabolic system, Comm. Cont. Math. Vol 3, No 3 (2001), 363-392.
[14] F. Weissler; Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38 (1981), 29-40.
[15] F. Weissler; Local existence and nonexistence for semilinear parabolic equations in L^{p}. Indiana Univ. Math. J. 29 (1980), 79-102.

Miguel Loayza
Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540, Recife, PE, Brazil

E-mail address: miguel@dmat.ufpe.br

