Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 228, pp. 1-12.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO PARABOLIC
PROBLEMS WITH NONLINEAR NONLOCAL TERMS

MIGUEL LOAYZA

ABSTRACT. We study the existence and asymptotic behavior of self-similar
solutions to the parabolic problem

t
ut — Au = / E(t, s)|ulP~tu(s)ds on (0,00) x RN,
0

with p > 1 and u(0,-) € Co(RY).

1. INTRODUCTION

In this work we study the existence and asymptotic behavior of global solutions
of the semilinear parabolic problem

t
up — Au = / E(t, s)|ulP"tu(s)ds in (0,00) x RV,
0 (1.1)

u(0,2) = p(a) in RN,
where p > 1 and k : R — R satisfies

(K1) k is a continuous function on the region R = {(t,s) € R%;0 < s < t},
(K2) k(At,As) = \77k(t, s) for all (¢t,s) € R, A > 0 and some v € R,
(Kg) k(]‘ﬂ ) € Ll(ov 1);
(K4) limsup, o+ n'|k(1,n)| < oo for some I € R.

Problem models diffusion phenomena with memory effects and has been con-
sidered by several authors for some values of the function & (see [T, 4, 6} [7, 10, 12]
and the references therein). When k(t,s) = (t — s)™7, v € [0,1) and ¥ € Cy(R"),
it was shown in [4] that if

p>pe =max{l/y,14 (4= 27)/[(N =2+ 27)7]} € (0,00,

then the solution of is global, for ||¢||« small enough, where r* = N(p —
1)/[2(2 — «)]. The value p, is the Fujita critical exponent and is not given by a
scaling argument. Similar results were obtained in [6] replacing the operator —A
by the operator (fA)ﬁ/2 with 0 < 8 < 2. When the function k is nonnegative and
satisfies conditions (K1)—(K4), with v < 2 and [ < 1, it was shown in [10] that if

p(2—7)/(p—1) <N/2+aand p(1 —v) <(p—1)a,
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where a = min{1 — 1,2 — v}, then has a global solution if ||/
small.

It is clear that if u is a global solution of problem then for every A > 0, the
function uy (t, 2) = A%u(A\%t, \z) satisfies

~ is sufficiently

t
up — Ay = N2e=p)+2-9] / E(t, s)|ulP~tu(s)ds in (0,00) x RY, (1.2)
0 .

u(0,z) = A2*p(Az) in RV,

In particular, if & = (2 —7)/(p — 1), then u, is also a solution of problem (L.I). A
solution satisfying u = uy for all A > 0 is called a self-similar solution of problem
. Note that, in this case, ¥ (z) = A\2*)(Az); that is, the function v is a
homogeneous function of degree —2a.

Our objective is to determine the asymptotic behavior of global solutions of (1.1)
in terms of the self-similar solution w corresponding to the cases (see Theorem [1.5
for details):

(i) alp—1)=2—-1.

¢
wy — Aw = / E(t, s)|w|P~tw(s)ds in (0,00) x RY,

0
w(0,z) = |z|72* in RY,

(i) a(p—1) >2—1~.

w; — Aw =0 in (0,00) x RY,

w(0,2) = |z| 2% in RY.

For a(p—1) < 2 —1, we show that there is no nonnegative global solution of ,
if w(0,z) ~ |z|~2% for |z| large enough (see Theorem for details).

To show the existence of global solutions to (|1.1)) we use a contraction mapping
argument on the associated integral equation

t s
u(t) = e + / elt=s)a / k(s,o)|ulP~ u(o)dods, (1.3)
0 0

where (em)tzo is the heat semigroup. Precisely, this contraction mapping argument
is done on a given Banach space equipped with a norm chosen so that we obtain
directly the global character of the solution. Our approach works for unbounded and
sign changing initial data. On the other hand, the self-similar solutions constructed
in this work may be not radially symmetric. In fact,we adapt a method introduced
by Fujita and Kato [8, [0] and used later in [2, [3] [5 T3] 14].

Since the homogeneous function ¢ = |- |~2%, does not belong to any LP(RY)
space, we consider initial data so that sup,.,t*~V/@r1)|etAq],, < oo, for some
r1 > 1. Hence, it is necessary to consider that o < N/2 since this condition ensures
that 1 belongs to Li (RY).

The following result determines the asymptotic behavior for the heat semigroup
on homogeneous functions, see [5, page 118] and [I3, Proposition 2.3].

Proposition 1.1. Let r; > N/(2a) > 1, 1 = a — N/(2r1) and let ¢y, be a
tempered distribution homogeneous of degree —2a such that op(z) = p(x)|z| =2,
where p € L™ (SN71) is a function homogeneous of degree 0. Assume that 1 is a
cut-off function, that is, identically 1 near the origin and of compact support. Then
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(i) supysgt? (e opllr, < oo;
(ii) sup;~g t21 5912 (nep)|lry, < 00 for 0 <6 < N/2 — oy
(i) supyso t7[le"*(1 = n)enllr, < oo

Our first result is technical. It will be used to formulate the global existence and
asymptotic behavior results.

Proposition 1.2. Let | < 1,7 < 2 and set a = min{l — [,2 — v}. Assume that
a € (0,N/2) satisfies

N
2—7+a<5+a, (1.4)

1—n
2— — ' <a. 1.5
( 'y+a)277<a (1.5)

Then, there exits 11 > 1 satisfying
(i) r > %(2—’7),7"1 >22 41 andry > %

«

(i) 2—v+a)(1-52) <a.

2r i«

We now give the following existence result for problem (|1.1)) shows the existence
of global solutions and its continuous dependence.

Theorem 1.3. Let p > 1 and k satisfying conditions K1) — K4) with v < 2 and
Il <1. Assume

p>1+2(2—7)/N (1.6)
and o € (0, N/2) satisfying (L.4), and
% <a< g (1.7)
Fix & > 0 such that
a<i=7 (1.8)
-

Let r1 > 1 be given by Pmposition and let o > 1 be defined by ro = ari/a.
For every ¢ € S'(RY) define N by

N(p) = iglg{tﬁl e @llri, 72 e 2 0l ), (1.9)
where f1 = a — N/(2r1) and By = & — N/(2r3).

Let M > 0 be such that C = C(M) < 1, where C is a positive constant given by
. Choose R > 0 such that R+CM < M. If ¢ is a tempered distribution such
that

N(g) <R, (1.10)
then there exits a unique global solution u of satisfying

ilg{tﬁlI\U(t)llmt[bIIU(t)Ilm} <M.
In addition, if ¢, satisfy and if u, and uy respectively are the solutions
of with initial data p, ¥, then
iglg[tﬁl [ () = v (8) [l 172 g (8) = g (D)l 72] < (1= C) "N (@ =) (L.11)
Moreover, if ¢, are such that
Ns(p —o) = i;llg{tﬁﬁéﬂem(w = )l 17 (0 = P)[lrn} <00, (1.12)
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for some § € (0,0p), where g =1—1—(2—~v+ a)[l — N/(2ria)] > 0. Then

iglg{t’@l*‘slluw =ty 2 — |y} < (1= Co) " NG (@ —9),  (113)

where Cs is given by (2.16]) below and the constant M > 0 is chosen small enough
so that Cs < 1.

Remark 1.4. Suppose that a(p — 1) = 2 — « in Theorem

(i) From and , we see that it is possible to choose & = a. It follows
that v = rg, 61 = (2. Therefore, Theorem holds replacing the norm N of
by Ni() := sup,so{t” [, }-

(i) Assume that k(t,s) = (t —s)™7 with v € (0,1). Then k satisfies K1) — K4)
with [ = 0, and therefore @ = min{l — ,2 — v} = 1. From conditions (T.4)-
(1.7) we have that p(N —2+2vy) > N+2, py > land p > 1+ 2(2 —~)/N
respectively. Since p > 1+ (4 —27)/[(N —2+2v)"] > 1+2(2—+)/N, we conclude
that p > p* = max{1/y,1+ (4 — 27)/[(N — 2 + 2)*]} which coincides with the
condition encountered in [4].

(iii) Conditions (T.4)-(L.6)) become 2(2—v)p < (N+2a)(p—1), p(1—7) < a(p—1)
and p > 1+ 2(2 — «)/N respectively. The last inequality is obtained from the first
one, since 2(2 —y)p < (N +2a)(p—1) < [N +2(1 =1)](p—1) and v < 2. Indeed,
p>1+2(2—7)/[N—-24+2(y—1)"] >1+42(2—7)/N. These conditions were used
in [10] to show global existence of (L.1)).

We now state the following asymptotic behavior result for some global solution
of problem (1.1)) with small initial data with respect to the norm N given by (1.9).

Theorem 1.5 (Asymptotically self-similar solutions). Let p > 1 satisfying
and k be a function satisfying conditions K1) — K4) with v < 2 and | < 1. Let
a € (0,N/2) be satisfying (1.4), and ([L.7), & > 0 satisfying (L.8), r1 given by
Proposition 2 and ro = ary/a. Set on(x) = u(z)|z| =2, where u is homogeneous
of degree 0 and p € L™ (SN-1).

Suppose that p € S'(RY) satisfies , u 18 the corresponding solution of
given by Theorem and

sup #9492 (i — ), < 00 (1.14)
>0
for some 6 € (0,00), where b9 =1—-1—p(2—7)/(p—1)+Np/(2r1) when a(p—1) =
2 — v and given by Lemma when a(p — 1) > 2 — . We have the following:

(1) If a(p — 1) > 2 — v, then sup,~o 7 0 |u(t) — e®pull,, < Cs, for some
constant Cs > 0.

(ii) If a(p — 1) = 2 — v and w is the solution of giwen by Theorem
with initial data @ (we multiplied ¢, by a small constant so that @ 18
satisfied), then w is self-similar and sup; o 7 T||u(t) — w(t)||,, < Cs for
some constant Cs > 0.

Remark 1.6. The class of functions ¢ satisfying the condition (1.14)) is nonempty.
Indeed, from Proposition [1.1)(2), condition (L.14) is satisfied for ¢ = (1 — ).

In the following result, we analyze the non existence of global solutions of problem
(1.1), under the assumption
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(K5) There exist T > 0 and a nonnegative, non-increasing continuous function
¢ € C([0,00)) with integrable derivative such that ¢(0) = 1 and ¢(t) =0
for t > T satisfying k(-,t)¢(-) € L(¢,T) for t > 0 and

/OT ¢>(t)p’(/tT k(s,t)¢(s)ds) < oo (1.15)

where p’ is the conjugate of p.

Theorem 1.7. Let p > 1 and let k be a nonnegative function satisfying conditions
(K1)—(K3), (K5). If¢ € Co(RN), 4 > 0 satisfies lim inf ;oo || 2=/ (P= D) (z) =
oo and u is a corresponding nonnegative solution of problem , then u is not a
global solution.

Remark 1.8. Regarding Theorem we have the following statements:

(1) Under conditions (K1)—(K3), existence of local solutions for in the class
C([0,T),Co(RY)) and initial data 1 € Co(RY), were studied in [I0]. In particular,
we know that if £k and v are nonnegative, then the solution of is nonnegative.

(ii) Let k(t,s) = (t—s) Ms "™ for 0 < s <t and ; € [0,1),7 = 1,2. Clearly, k
satisfies K1) — K3). We show that k satisfies (K5) with ¢(¢) = [(1 —¢)T]%, t > 0,
T=1and g >1/(p—1). Indeed, since ¢ < 1, we have for ¢t > 0

1 1 2
/ k(s,t)p(s)ds =t~ / (s—t) " Mp(s)ds < tw (1—t)'" < oo
t t I-m
On the other hand,
1 1 1 42
/ k(s,t)p(s)ds =t 72 / (s —t) " g(s)ds >t [ ¢(s)ds = ——(1 —t)' T4,
t t t I+q

Therefore,

/01 qb(t)pl(/tl k(s,t)¢(s)ds) 7p//pdt =(1+ q)p’/p /01(1 _ Z5)1/(117“4“) 222’ dt,

which is finite, since

L plg- i) =L Py 2+q<p—1>1>§'<p—1>>0.

2. EXISTENCE OF GLOBAL SOLUTIONS

Proof of Proposition Let A = 22(1 — 57a)- Since a > 0 we conclude
that A < 2a/N < 1. From and we have A < 2a/[N(2 — v)] and
A< a/(2 — v + «), respectively. Now, it is sufficient to choose r; > 1 satisfying
A< < mm{N22 = 7 Ta 20

)2 y+a’ N
Lemma 2.1. Assume the conditions (L4)-(L8)). Let 1o = 22, 81 = a — %
_ A5 _ N 1 _ 1 (2= 1o 12— G _2+
P2 = & — Bra0 m = (G ), o= (0 0= p"zafa)pa, and
fy = M, Fori=1,2 we have
pla—a)
(i) mi € [r1,72] and n; € (10, Tip).
(ii>£_L:£_L: 2=y 2
7 T1 M2 T2 T N -*

: 1-6;
(iii) 0; € ]0,1], % = %4—7( - ) |
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(iv) %a > 0,61 + (1 — 6;)B2, with

1 N
0161+ (1 —01)B2 = };(277+a)(172r1a)’
6ah + (L= )60 = -2 =7+ Q)1 - 7).

(V) 2=+ 08— 5(Z — &) —plBi6i + B2(1 - 0;)] = 0.

i

Proof. (i) From (L1.7), we see that 1y > r1 and 12 < 7. Since & < a, it follows

from (|1.7)) and (1.8) that
2—y4+a<pa, pa <2—y+a (2.1)

respectively. From here, o > r1 and n; < ry. The condition 71 > (2 —v)/a +1
of Proposition ) and v < 2 ensure that n; € (p,r1p). Moreover, since r, >
2—-7)/a+1> (2 v+ &)/a and v < 2, we conclude that 7o € (p, r2p).

TItem (ii) follows from Proposition i).

(iii) From (|1.7)) and (L.8)) we get 6; < 1 and 65 > 0 respectively, and from (2.1))
we see that 65 < 1 and #; > 0 respectively.

We obtain (iv) from Proposition ii). O

Proof of Theorem[1.3 The proof is based on a contraction mapping argument. Let
E be the set of Bochner measurable functions u : (0,00) — L™ (RY)NL"2(RY), such
that ||ullz = supys o {t” u(t)llr, ¢ [u(t)|lr, } < 0o, where B = o — N/(2r1), B> =
@ — N/(2r3). The space E is a Banach space. Let M > 0 and K be the closed ball
of radius M in F.

Let @, : K — E be the mapping defined by

D, (u)(t) = e —l—/o elt=9)A /0( k(s,o)ulP u(o)dods. (2.2)

We will prove that ®, is a strict contraction mapping on K. Let ¢, satisfying
(1.10) and u,v € K. We will use several times the smoothing effect for the heat
semigroup: if 1 < s <r <ooand ¢ € L", then

N1
el < t=FGE=D gl

for all t > 0. From (2.2)), we deduce
[y () (t) = Py (0) ()|, < 7|2 (0 = D) |1,y

t s
S / ||e<t‘S’A/O (s, @) [([ul?~* + [0~ (o) — 0(0)] | dor

K _N(p_ 1 (2.3)
tBIHStA((P 1/J)||r1+Ptﬁl/ (t—s) 2(,,1 T1)

/\kso (lullp = + ol Hllule) = v(o) g, dods.

From Lemma [2.1)(i) and (iii), and an interpolation inequality

[%
letllgy < a7l
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1 _ 61 1-6, . . . . .
where - = 7L 4 <%, Replacing this inequality into (2.3) we obtain

L
7| @y () (8) — @y () (1),
< e (o = ) lry +2MP 7 pllu — v]| pt™

(2.4)
t s

x/ (tfs)_%(%_ﬁ)/ |k(s, o) o PEBHA=00B2] g .
0 0

From (K4), there exist 19, v > 0 such that 7!|k(1,7)| < v for n € (0,10). Thus, if
0181 + B2(1 — 61) = ©1, we have

s 1
/ |k(s,0)|oPO1do = s1=7 P61 / |k(1,0)|c P9 do
0 0

7o 1
< g7 PO {1// a*l*p@1d0+770_p®1/ |k(1,o’)|da}
0 !

0
- Clslfwfp@l’
(2.5)
where

o 1
O = 1// o PO g 4 napgl/ |k(1, 0)|do. (2.6)
0 70
Since p©1 < a (see Lemma [2.1(iv)) and k satisfies (K3), we conclude that Cy < oco.

From (2.4)), and properties (iv) and (v) of Lemma [2.1]
7| @pu(t) = Dyo(t)]
<t |e (o = )]l
+ 20 M ptP u — )| /t(t —5) BT gl g
0

< t7|e" 2 (¢ = V)l + Clllu—vll,

P 1

where C] = 201 MP~1p fol(l —s) 2GR g1=7=PO145. From Lemma (ii) and
(iv), we see that C] < co. Similarly, one can prove that

%21 Dpu(t) — yo(t)llr, < 72 (0 = ¥)llr, + Collu — vz, (2.8)
where
1 N/ p 1
Ch = 2C2Mp*1p/ (1—s)" 26771777925 < 0,
0
70 o 1
Cy :y/ o~ P02y P 1/ |k(1,0)|do < oo,
0 70
1 N
=—(1- 2 — ).
0= (1 5 )2 =7 +4)
From (2.7)) and (2.8)) we obtain
[ @4 (u)(t) — Py (0)(t) |2 < N(p — ) + Cllu —vl|g, (2.9)
where
C = max{C}, C5}. (2.10)

Setting ¢ = 0,v = 0 in (2.9) we get | D, (u)|| gz < N (¢)+C||ul k. Since ¢ satisfies
(1.10) and R+ CM < M, we conclude that ®,u € K. Moreover, since C < 1 we
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conclude from (2.9) that ®, is a strict contraction from K into itself, so ®, has a
unique fixed point in K.

The continuous dependence (|1.11]) follows clearly from (2.9). To show (1.13)), let
lu—vllzs = igg{tm”IIU(t)llmtﬁz”llv(t)llw}- (2.11)
Proceeding as (2.3) we obtain
550 u(t) — o(t)l|r,

t
< e = ), + 2P [ )T H
0

X / ‘k(S, O—)‘0—7[0151+(1791)B2](1’71) ||u — U”"]ldo—ds (212)
0

<t (o — )y + 2pMP Sl(l(yt){am‘sllu(o)lln L0 [v(o)]lr, }
oe(0,

t s
X tﬁl+5/ (t - s)*%%*%)/ |k(s, o) o PlOPIH(=00521-0 g gy
0 0
For 0 < 0 < 1—1—p0Oq, arguing as in (2.5)), we have

S
/ |k(s,0) |J—p[91ﬁ1+9262]—5d0
0
1
= 511000 [ k(1,0)) 700
0

70 1
< gt=7—PO1-9 [V/ a_l_p@1_5d0+n()_pel_6/ |k(1,0)\da}
0

7o
— 1—y—p©;1 -4
—01,65 Y—PP1 ,

where
To ©1—5 1
Cis = l// oTITPO 0 g g PO / |k(1,0)|do < .

0 70
Therefore, from (2.12)) we obtain

0 ut) — v(t) |,
2.13
<P (g — )y + Cls sup (0P ()|, P u(0) |y}, B 1D)

oe(0,t)
and
Cls=2pMP"'Cys. (2.14)
Similarly, for 0 < § <1 — [ — pBO4, one can to obtain
£ u(t) — v (t)]l,

2.15
< %20 — |y, + Co s Sl(l(}a){Uﬂl”IIU(O)IIn7052+5llv(0)||r2}, (2.15)
oe(0,t

where

Mo 1
Cas = l// o PO 0y 4 naperé/ k(1,0)do < oo
0 0

and Cj 5 = 2pMP~1Cy 5.
From (2.13) and ([2.15) it follows that
(1= Cs)llu—vllps < Nslp =),
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where
Cs = max{C] 5,C3 5} (2.16)

3. ASYMPTOTIC BEHAVIOR
The next result will be used in the proof of Theorem [1.5(1).

Lemma 3.1. Letl<1 'y<2 p>1anda=min{l—1,2—~}. Assume (L.7) and

let satzsfymg , and . Let 1 satisfying . For § > 0 we define

17>1by 1%1( +1),and9’—W,

If 2= p71 < a, then there exists &g > 0 small such that for all 6 € (0, do]:
(i) n} € [r1,m2] and ny € (p,r1p), where ro = (ary)/a.

(ii) %( %):27fva(27’y+5)<1.
(iii) 6, € [ ]izl—&-la/
(iv) Iﬁl—a—% and By = & — 2T,then
N
a>p[Ab; + Po(1 - 01)] =2~y +a+d)(1 - 27"104)'

(v) 2—’Y+51+5—%(%— o) = plBr0y + B2 (1 - 07)] =

n

Proof. Since a > (2—7)/(p — 1), and hold, it follows from Proposition
that there exists dyp > 0 small so that such that o > (2 — v+ do)/(p — 1),
> 2 (2—y+60), 11 > (2—v+00)/a+1and (2—y+a+8))(1—N/(2ra)) < a.
The rest of the proof follows similarly as the proof of Lemma O

Proof of Theorem|[I.5. (i) Let ¢ € S'(RY) be satisfying and let u be the
corresponding bolutlon glven by Theorem [I.3] We have that

iglg{t’gl|\U(t)llmtﬁ2IIU(t)Ilrz} <M.
Arguing as in (2.12)), (2.5) and (2.6)), we conclude conclude that
t
0 lu(t) — e nllr, < H (0 — o)l + QPMptBﬁ&/ (t—s) *
0

x / ) |k(s, 0)|o P01 +(1=00)52] g .
0

< e (0 — on)llr, + Cs,

where C§ = 2pMP C(;, Cs = v [ o "POsdo + 1, Ps 10 |k(1,0)|do and ©5 =
S1-5 1) (2=~ + $ +9). From the above result and (L.14) we have the desired
conclusmn
(ii) For A > 0, we define z(t, x) = A4=20/(=Dyy(X2¢, Az) for all ¢ > 0,2 € RV,
Clearly z is a solution of (L.I). We claim that sup,.t” | z|,, < M. To see this,
we observe that
2l = 1A (X M)y
= AT Jw(A2t)])r,
= (A2 w(A?t)],
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Since z(0) = ¢p, we have from (1.11)) that w = z; that is, w is self-similar. The
conclusion now follows from (L.13)) and the Remark [T.4{i). O

4. NON EXISTENCE OF GLOBAL SOLUTIONS

Proof of Theorem|[1.7. Let Bgr be the open ball in RY with radius R > 0. Let
Ar > 0 and pgr > 0 be the first eigenvalue and the first normalized (i.e. fBR pr=1)
eigenfunction of —A on Bg with zero Dirichlet boundary condition.

Set wgr(t) = IBR u(t)pr. Then by Green’s identity and Jensen’s inequality we
obtain

t
(wr)t + Arwgr > / k(t, s)wh (s)ds. (4.1)
0
Set ¢r(t) = ¢(t/R?) for all t > 0. Multiplying ([4.1) by ¢r and integrating on
[0, TR?], we have
TR? TR? ,t
—wr0) +dn [ wn®onitz [ [ ks ontd:
0 0 , 0 (42)
TR
:/ Ir(s)wh(s)ds,
0
where
TR?
In(s) = [ Kt.)on(t)at.
On the other hand, by Hélder’s inequality,

TR? TR?
/ wi(t)br(t)dt = / W) Tr() /P Ir(t) P b (1)dt
0 0

’

<{ / " Wity / Lty war)”".

17

(4.3)
Since
TR? T
Inlf2) = [kt s)olt/ )it = () [ kit )0l = (R (o),
R2s s
we have .
11" = R? / Ir(R*t) P /PP (R*t)dt
0
(4.4)

T
:(32)1*(10’/17)(177)/ L) /PP (t)dt
0

= C(T) (R~ /n)(1=7)
where C(T) = fOT P ()11 (t)"P'/Pdt < oo by (.15). From (&.2)-([&4) it follows

that

~

)\R{ /OTR2 w%(t)IR(t)dt}l/pc(T)l/p’ (RQ)i—l%

TR?
> /0 Ir(s)wh(s)ds + wgr(0),
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and by Young’s inequality,

1 TR a-— 'v)p TR?
5/ wh(On()dt + Loy Ry~ >wR(O)+/ Tr(tyuh (t)dt.
0 0
Thus,
1. _ >
;A%C(T)(Rz)l > wg(0).
Since Ag = A\;/R? we concluded that
0) < ()AL y(r2) - S _ oy (r2)- 45
wR()_()(p,)() v =C0(T)(R7) T, (4.5)

where C'(T) = [C’(T))\’f/]/p’. On the other hand, for € € (0,1) small

) = uo(z)pr(x)dx
Br

> ( inf w (z))/ pr(z)ds
R>|z[>¢R {cR<|2|<R}

> inf  wup(x / x)dz.
<R>\w|>6R ( )) {e<|z|<1} )

Thus, from (4.5)), it follows that

c'(T) > ( inf \x|2(2_”)/(”_1)u0(m)>/ p1(z)dx.
{e<|z|<1}

R>|z|>eR

Putting, e = x/R > 0 and letting R — oo we have inf|,> \x|2(i%¥)uo(x) < (7).
Since C'(T') < oo and & is arbitrary the conclusion follows. O

REFERENCES

[1] H. Bellout; Blow-up of solution of parabolic equations with nonlinear memory, J. Diff. Eq.
70, (1987), 42-68.

[2] M. Cannone; A generalization of a theorem by Kato on Navier-Stokes equations, Mat. Ib.
13, (1997) 515-541.

[3] M. Cannone, F. Planchon; Self-similar solutions for the Navier-Stokes equations in R3,
Comm. partial Diff. Egs 21 (1996) 179-193.

[4] T. Cazenave, F. Dickstein, F. Weissler; An equation whose Fujita critical exponent is not
given by scaling, Nonlinear Anal. 68, (2008) 862-874.

[5] T. Cazenave, F. Weissler; Asymptotically self similar global solutions of the nonlinear
Schrodinger and heat equations, Math. Z. (1998) 83-120.

[6] A. Fino; Contributions auz problémes d’évolution, Doctoral theses, Université de La Rochelle,
France, 2009.

[7] A. Fino, M. Kirane; Qualitative properties of solutions to a space time fractional evolution
equation. Quarterly of Applied Mathematics, 70, No 1, (2012), 133-157.

[8] H. Fujita, T. Kato; On the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 16,
(1964) 269-315.

[9] T. Kato, H. Fujita; On the non stationary Navier-Stokes system, Rend. Sem. Math. Univ.
Padova 32 (1962) 243-260.

[10] M. Loayza; Global existence and blow up results for a heat equation with nonlinear nonlocal
term, Diff. and Int. Eq. 25, (2012) , 665-683.

[11] P. Souplet; Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29, (1998)
1301-1334.

[12] P. Souplet; Nonezistence of global solution to some differential inequalities of the second
order and applications, Portugaliae Mathematica 52, (1995) 289-299.



12 M. LOAYZA EJDE-2013/228

[13] S. Snoussi, S. Tayachi; Asymptotic self-similar behavior of solutions for a semilinear parabolic
system, Comm. Cont. Math. Vol 3, No 3 (2001), 363-392.

[14] F. Weissler; Ezistence and nonexistence of global solutions for a semilinear heat equation.
Israel J. Math. 38 (1981), 29-40.

[15] F. Weissler; Local existence and nonezistence for semilinear parabolic equations in LP. Indi-
ana Univ. Math. J. 29 (1980), 79-102.

MIGUEL LoAYzA
DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE FEDERAL DE PERNAMBUCO, 50740-540, RECIFE,
PE, BraziL

E-mail address: miguel@dmat.ufpe.br



	1. Introduction
	2. Existence of global solutions
	Proof of Proposition 1.2

	3. Asymptotic behavior
	4. Non existence of global solutions
	References

