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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO PARABOLIC
PROBLEMS WITH NONLINEAR NONLOCAL TERMS

MIGUEL LOAYZA

Abstract. We study the existence and asymptotic behavior of self-similar

solutions to the parabolic problem

ut −∆u =

Z t

0
k(t, s)|u|p−1u(s)ds on (0,∞)× RN ,

with p > 1 and u(0, ·) ∈ C0(RN ).

1. Introduction

In this work we study the existence and asymptotic behavior of global solutions
of the semilinear parabolic problem

ut −∆u =
∫ t

0

k(t, s)|u|p−1u(s)ds in (0,∞)× RN ,

u(0, x) = ψ(x) in RN ,
(1.1)

where p > 1 and k : R → R satisfies
(K1) k is a continuous function on the region R = {(t, s) ∈ R2; 0 < s < t},
(K2) k(λt, λs) = λ−γk(t, s) for all (t, s) ∈ R, λ > 0 and some γ ∈ R,
(K3) k(1, ·) ∈ L1(0, 1),
(K4) lim supη→0+ ηl|k(1, η)| <∞ for some l ∈ R.

Problem (1.1) models diffusion phenomena with memory effects and has been con-
sidered by several authors for some values of the function k (see [1, 4, 6, 7, 10, 12]
and the references therein). When k(t, s) = (t− s)−γ , γ ∈ [0, 1) and ψ ∈ C0(RN ),
it was shown in [4] that if

p > p∗ = max{1/γ, 1 + (4− 2γ)/[(N − 2 + 2γ)+]} ∈ (0,∞],

then the solution of (1.1) is global, for ‖ψ‖r∗ small enough, where r∗ = N(p −
1)/[2(2 − γ)]. The value p∗ is the Fujita critical exponent and is not given by a
scaling argument. Similar results were obtained in [6] replacing the operator −∆
by the operator (−∆)β/2 with 0 < β ≤ 2. When the function k is nonnegative and
satisfies conditions (K1)–(K4), with γ < 2 and l < 1, it was shown in [10] that if

p(2− γ)/(p− 1) < N/2 + a and p(1− γ) < (p− 1)a,
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where a = min{1− l, 2− γ}, then (1.1) has a global solution if ‖ψ‖r∗ is sufficiently
small.

It is clear that if u is a global solution of problem (1.1) then for every λ > 0, the
function uλ(t, x) = λαu(λ2t, λx) satisfies

ut −∆u = λ2[α(1−p)+2−γ]

∫ t

0

k(t, s)|u|p−1u(s)ds in (0,∞)× RN ,

u(0, x) = λ2αψ(λx) in RN .
(1.2)

In particular, if α = (2− γ)/(p− 1), then uλ is also a solution of problem (1.1). A
solution satisfying u = uλ for all λ > 0 is called a self-similar solution of problem
(1.1). Note that, in this case, ψ(x) = λ2αψ(λx); that is, the function ψ is a
homogeneous function of degree −2α.

Our objective is to determine the asymptotic behavior of global solutions of (1.1)
in terms of the self-similar solution w corresponding to the cases (see Theorem 1.5
for details):

(i) α(p− 1) = 2− γ.

wt −∆w =
∫ t

0

k(t, s)|w|p−1w(s)ds in (0,∞)× RN ,

w(0, x) = |x|−2α in RN ,

(ii) α(p− 1) > 2− γ.

wt −∆w = 0 in (0,∞)× RN ,

w(0, x) = |x|−2α in RN .

For α(p− 1) < 2− γ, we show that there is no nonnegative global solution of (1.1),
if w(0, x) ∼ |x|−2α for |x| large enough (see Theorem 1.7 for details).

To show the existence of global solutions to (1.1) we use a contraction mapping
argument on the associated integral equation

u(t) = et∆ψ +
∫ t

0

e(t−s)∆
∫ s

0

k(s, σ)|u|p−1u(σ)dσds, (1.3)

where (et∆)t≥0 is the heat semigroup. Precisely, this contraction mapping argument
is done on a given Banach space equipped with a norm chosen so that we obtain
directly the global character of the solution. Our approach works for unbounded and
sign changing initial data. On the other hand, the self-similar solutions constructed
in this work may be not radially symmetric. In fact,we adapt a method introduced
by Fujita and Kato [8, 9] and used later in [2, 3, 5, 13, 14].

Since the homogeneous function ψ = | · |−2α, does not belong to any Lp(RN )
space, we consider initial data so that supt>0 t

α−N/(2r1)‖et∆ψ‖r1 < ∞, for some
r1 ≥ 1. Hence, it is necessary to consider that α < N/2 since this condition ensures
that ψ belongs to L1

loc(RN ).
The following result determines the asymptotic behavior for the heat semigroup

on homogeneous functions, see [5, page 118] and [13, Proposition 2.3].

Proposition 1.1. Let r1 > N/(2α) > 1, β1 = α − N/(2r1) and let ϕh be a
tempered distribution homogeneous of degree −2α such that ϕh(x) = µ(x)|x|−2α,
where µ ∈ Lr1(SN−1) is a function homogeneous of degree 0. Assume that η is a
cut-off function, that is, identically 1 near the origin and of compact support. Then
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(i) supt>0 t
β1‖et∆ϕh‖r1 <∞;

(ii) supt>0 t
β1+δ‖et∆(ηϕh)‖r1 <∞ for 0 < δ < N/2− α;

(iii) supt>0 t
β1‖et∆(1− η)ϕh‖r1 <∞.

Our first result is technical. It will be used to formulate the global existence and
asymptotic behavior results.

Proposition 1.2. Let l < 1, γ < 2 and set a = min{1 − l, 2 − γ}. Assume that
α ∈ (0, N/2) satisfies

2− γ + α <
N

2
+ a, (1.4)

(2− γ + α)
1− γ
2− γ

< a. (1.5)

Then, there exits r1 ≥ 1 satisfying
(i) r1 >

N
2α (2− γ), r1 >

2−γ
α + 1 and r1 >

N
2α .

(ii) (2− γ + α)(1− N
2r1α

) < a.

We now give the following existence result for problem (1.1) shows the existence
of global solutions and its continuous dependence.

Theorem 1.3. Let p > 1 and k satisfying conditions K1) −K4) with γ < 2 and
l < 1. Assume

p > 1 + 2(2− γ)/N (1.6)
and α ∈ (0, N/2) satisfying (1.4), (1.5) and

2− γ
p− 1

≤ α < N

2
. (1.7)

Fix α̃ > 0 such that
α̃ ≤ 2− γ

p− 1
. (1.8)

Let r1 > 1 be given by Proposition 1.2, and let r2 > 1 be defined by r2 = αr1/α̃.
For every ϕ ∈ S ′(RN ) define N by

N (ϕ) = sup
t>0
{tβ1‖et∆ϕ‖r1 , tβ2‖et∆ϕ‖r2}, (1.9)

where β1 = α−N/(2r1) and β2 = α̃−N/(2r2).
Let M > 0 be such that C = C(M) < 1, where C is a positive constant given by

(2.10). Choose R > 0 such that R+CM ≤M . If ϕ is a tempered distribution such
that

N (ϕ) ≤ R, (1.10)
then there exits a unique global solution u of (1.1) satisfying

sup
t>0
{tβ1‖u(t)‖r1 , tβ2‖u(t)‖r2} ≤M.

In addition, if ϕ,ψ satisfy (1.10) and if uϕ and uψ respectively are the solutions
of (1.3) with initial data ϕ,ψ, then

sup
t>0

[tβ1‖uϕ(t)− uψ(t)‖r1 , tβ2‖uϕ(t)− uψ(t)‖r2 ] ≤ (1− C)−1N (ϕ− ψ). (1.11)

Moreover, if ϕ,ψ are such that

Nδ(ϕ− ψ) = sup
t>0
{tβ1+δ‖et∆(ϕ− ψ)‖r1 , tβ2+δ‖et∆(ϕ− ψ)‖r2} <∞, (1.12)
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for some δ ∈ (0, δ0), where δ0 = 1− l − (2− γ + α)[1−N/(2r1α)] > 0. Then

sup
t>0
{tβ1+δ‖uϕ − uψ‖r1 , tβ2+δ‖uϕ − uψ‖r2} ≤ (1− Cδ)−1Nδ(ϕ− ψ), (1.13)

where Cδ is given by (2.16) below and the constant M > 0 is chosen small enough
so that Cδ < 1.

Remark 1.4. Suppose that α(p− 1) = 2− γ in Theorem 1.3.
(i) From (1.7) and (1.8), we see that it is possible to choose α̃ = α. It follows

that r1 = r2, β1 = β2. Therefore, Theorem 1.3 holds replacing the norm N of (1.9)
by Ns(ϕ) := supt>0{tβ1‖et∆ϕ‖r1}.

(ii) Assume that k(t, s) = (t− s)−γ with γ ∈ (0, 1). Then k satisfies K1)−K4)
with l = 0, and therefore a = min{1 − l, 2 − γ} = 1. From conditions (1.4)-
(1.7) we have that p(N − 2 + 2γ) > N + 2, pγ > 1 and p > 1 + 2(2 − γ)/N
respectively. Since p > 1 + (4− 2γ)/[(N − 2 + 2γ)+] > 1 + 2(2− γ)/N , we conclude
that p > p∗ = max{1/γ, 1 + (4 − 2γ)/[(N − 2 + 2γ)+]} which coincides with the
condition encountered in [4].

(iii) Conditions (1.4)-(1.6) become 2(2−γ)p < (N+2a)(p−1), p(1−γ) < a(p−1)
and p > 1 + 2(2− γ)/N respectively. The last inequality is obtained from the first
one, since 2(2− γ)p < (N + 2a)(p− 1) ≤ [N + 2(1− l)](p− 1) and γ < 2. Indeed,
p > 1 + 2(2− γ)/[N − 2 + 2(γ− l)+] > 1 + 2(2− γ)/N . These conditions were used
in [10] to show global existence of (1.1).

We now state the following asymptotic behavior result for some global solution
of problem (1.1) with small initial data with respect to the norm N given by (1.9).

Theorem 1.5 (Asymptotically self-similar solutions). Let p > 1 satisfying (1.6)
and k be a function satisfying conditions K1) − K4) with γ < 2 and l < 1. Let
α ∈ (0, N/2) be satisfying (1.4), (1.5) and (1.7), α̃ > 0 satisfying (1.8), r1 given by
Proposition 2 and r2 = αr1/α̃. Set ϕh(x) = µ(x)|x|−2α, where µ is homogeneous
of degree 0 and µ ∈ Lr1(SN−1).

Suppose that ϕ ∈ S ′(RN ) satisfies (1.10), u is the corresponding solution of (1.1)
given by Theorem 1.3, and

sup
t>0

tβ1+δ‖et∆(ϕ− ϕh)‖r1 <∞ (1.14)

for some δ ∈ (0, δ0), where δ0 = 1− l−p(2−γ)/(p−1)+Np/(2r1) when α(p−1) =
2− γ and given by Lemma 3.1 when α(p− 1) > 2− γ. We have the following:

(i) If α(p − 1) > 2 − γ, then supt>0 t
β1+δ‖u(t) − et∆ϕh‖r1 ≤ Cδ, for some

constant Cδ > 0.
(ii) If α(p − 1) = 2 − γ and w is the solution of (1.1) given by Theorem 1.3

with initial data ϕh(we multiplied ϕh by a small constant so that (1.10) is
satisfied), then w is self-similar and supt>0 t

β1+δ‖u(t) − w(t)‖r1 ≤ Cδ for
some constant Cδ > 0.

Remark 1.6. The class of functions ϕ satisfying the condition (1.14) is nonempty.
Indeed, from Proposition 1.1(2), condition (1.14) is satisfied for ϕ = (1− η)ϕh.

In the following result, we analyze the non existence of global solutions of problem
(1.1), under the assumption
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(K5) There exist T > 0 and a nonnegative, non-increasing continuous function
φ ∈ C([0,∞)) with integrable derivative such that φ(0) = 1 and φ(t) = 0
for t ≥ T satisfying k(·, t)φ(·) ∈ L1(t, T ) for t > 0 and∫ T

0

φ(t)p
′
(∫ T

t

k(s, t)φ(s)ds
)−p′/p

dt <∞, (1.15)

where p′ is the conjugate of p.

Theorem 1.7. Let p > 1 and let k be a nonnegative function satisfying conditions
(K1)–(K3), (K5). If ψ ∈ C0(RN ), ψ ≥ 0 satisfies lim inf |x|→∞ |x|2(2−γ)/(p−1)ψ(x) =
∞ and u is a corresponding nonnegative solution of problem (1.1), then u is not a
global solution.

Remark 1.8. Regarding Theorem 1.7 we have the following statements:
(i) Under conditions (K1)–(K3), existence of local solutions for (1.1) in the class

C([0, T ), C0(RN )) and initial data ψ ∈ C0(RN ), were studied in [10]. In particular,
we know that if k and ψ are nonnegative, then the solution of (1.1) is nonnegative.

(ii) Let k(t, s) = (t− s)−γ1s−γ2 for 0 < s < t and γi ∈ [0, 1), i = 1, 2. Clearly, k
satisfies K1) −K3). We show that k satisfies (K5) with φ(t) = [(1 − t)+]q, t ≥ 0,
T = 1 and q > 1/(p− 1). Indeed, since φ ≤ 1, we have for t > 0∫ 1

t

k(s, t)φ(s)ds = t−γ2
∫ 1

t

(s− t)−γ1φ(s)ds ≤ t−γ2

1− γ1
(1− t)1−γ1 <∞.

On the other hand,∫ 1

t

k(s, t)φ(s)ds = t−γ2
∫ 1

t

(s− t)−γ1φ(s)ds ≥ t−γ2
∫ 1

t

φ(s)ds =
t−γ2

1 + q
(1− t)1+q.

Therefore,∫ 1

0

φ(t)p
′
(∫ 1

t

k(s, t)φ(s)ds
)−p′/p

dt = (1 + q)p
′/p

∫ 1

0

(1− t)p
′(q− 1+q

p )t
γ2p
′

p dt,

which is finite, since

1 + p′(q − 1 + q

p
) =

p′

p
[p− 2 + q(p− 1)] >

p′

p
(p− 1) > 0.

2. Existence of global solutions

Proof of Proposition 1.2. Let A = 2α
N (1 − a

2−γ+α ). Since a > 0 we conclude
that A < 2α/N < 1. From (1.5) and (1.4) we have A < 2α/[N(2 − γ)] and
A < α/(2 − γ + α), respectively. Now, it is sufficient to choose r1 > 1 satisfying
A < 1

r1
< min{ 2α

N(2−γ) ,
α

2−γ+α ,
2α
N }.

Lemma 2.1. Assume the conditions (1.4)-(1.8). Let r2 = αr1
α̃ , β1 = α − N

2r1
,

β2 = α̃ − N
2r2

, 1
η1

= 1
pr1

( 2−γ
α + 1), 1

η2
= 1

pr1
( 2−γ
α + α̃

α ), θ1 = 2−γ+α−pα̃
p(α−α̃) , and

θ2 = 2−γ+(1−p)α̃
p(α−α̃) . For i = 1, 2 we have

(i) ηi ∈ [r1, r2] and ηi ∈ (p, rip).
(ii) p

η1
− 1

r1
= p

η2
− 1

r2
= 2−γ

r1α
< 2

N .

(iii) θi ∈ [0, 1], 1
ηi

= θi
r1

+ (1−θi)
r2

.
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(iv) 1
pa > θiβ1 + (1− θi)β2, with

θ1β1 + (1− θ1)β2 =
1
p

(2− γ + α)(1− N

2r1α
),

θ2β1 + (1− θ2)β2 =
1
p

(2− γ + α̃)(1− N

2r1α
).

(v) 2− γ + βi − N
2 ( pηi −

1
ri

)− p[β1θi + β2(1− θi)] = 0.

Proof. (i) From (1.7), we see that η1 ≥ r1 and η2 ≤ r2. Since α̃ ≤ α, it follows
from (1.7) and (1.8) that

2− γ + α̃ ≤ pα, pα̃ ≤ 2− γ + α (2.1)

respectively. From here, η2 ≥ r1 and η1 ≤ r2. The condition r1 > (2 − γ)/α + 1
of Proposition 1.2(i) and γ < 2 ensure that η1 ∈ (p, r1p). Moreover, since r1 >
(2− γ)/α+ 1 ≥ (2− γ + α̃)/α and γ < 2, we conclude that η2 ∈ (p, r2p).

Item (ii) follows from Proposition 1.2(i).
(iii) From (1.7) and (1.8) we get θ1 ≤ 1 and θ2 ≥ 0 respectively, and from (2.1)

we see that θ2 ≤ 1 and θ1 ≥ 0 respectively.
We obtain (iv) from Proposition 1.2(ii). �

Proof of Theorem 1.3. The proof is based on a contraction mapping argument. Let
E be the set of Bochner measurable functions u : (0,∞)→ Lr1(RN )∩Lr2(RN ), such
that ‖u‖E = supt>0{tβ1‖u(t)‖r1 , tβ2‖u(t)‖r2} < ∞, where β1 = α −N/(2r1), β2 =
α̃−N/(2r2). The space E is a Banach space. Let M > 0 and K be the closed ball
of radius M in E.

Let Φϕ : K → E be the mapping defined by

Φϕ(u)(t) = et∆ϕ+
∫ t

0

e(t−s)∆
∫ s

0

k(s, σ)|u|p−1u(σ)dσds. (2.2)

We will prove that Φϕ is a strict contraction mapping on K. Let ϕ,ψ satisfying
(1.10) and u, v ∈ K. We will use several times the smoothing effect for the heat
semigroup: if 1 ≤ s ≤ r ≤ ∞ and ϕ ∈ Lr, then

‖et∆ϕ‖r ≤ t−
N
2 ( 1

s−
1
r )‖ϕ‖s

for all t > 0. From (2.2), we deduce

tβ1‖Φϕ(u)(t)− Φψ(v)(t)‖r1 ≤ tβ1‖et∆(ϕ− ψ)‖r1

+ ptβ1

∫ t

0

‖e(t−s)∆
∫ s

0

|k(s, σ)|(|u|p−1 + |v|p−1)|u(σ)− v(σ)|‖r1dσ

≤ tβ1‖et∆(ϕ− ψ)‖r1 + ptβ1

∫ t

0

(t− s)−
N
2 ( pη1

− 1
r1

)

×
∫ s

0

|k(s, σ)|(‖u‖p−1
η1 + ‖v‖p−1

η1 )‖u(σ)− v(σ)‖η1dσds.

(2.3)

From Lemma 2.1,(i) and (iii), and an interpolation inequality

‖u‖η1 ≤ ‖u‖θ1r1‖u‖
1−θ1
r2
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where 1
η1

= θ1
r1

+ 1−θ1
r2

. Replacing this inequality into (2.3) we obtain

tβ1‖Φϕ(u)(t)− Φψ(v)(t)‖r1
≤ tβ1‖et∆(ϕ− ψ)‖r1 + 2Mp−1p‖u− v‖Etβ1

×
∫ t

0

(t− s)−
N
2 ( pη1

− 1
r1

)
∫ s

0

|k(s, σ)|σ−p[θ1β1+(1−θ1)β2]dσds.

(2.4)

From (K4), there exist η0, ν > 0 such that ηl|k(1, η)| < ν for η ∈ (0, η0). Thus, if
θ1β1 + β2(1− θ1) = Θ1, we have∫ s

0

|k(s, σ)|σ−pΘ1dσ = s1−γ−pΘ1

∫ 1

0

|k(1, σ)|σ−pΘ1dσ

≤ s1−γ−pΘ1

[
ν

∫ η0

0

σ−l−pΘ1dσ + η−pΘ1
0

∫ 1

η0

|k(1, σ)|dσ
]

= C1s
1−γ−pΘ1 ,

(2.5)
where

C1 = ν

∫ η0

0

σ−l−pΘ1dσ + η−pΘ1
0

∫ 1

η0

|k(1, σ)|dσ. (2.6)

Since pΘ1 < a (see Lemma 2.1(iv)) and k satisfies (K3), we conclude that C1 <∞.
From (2.4), (2.5) and properties (iv) and (v) of Lemma 2.1,

tβ1‖Φϕu(t)− Φψv(t)‖r1
≤ tβ1‖et∆(ϕ− ψ)‖r1

+ 2C1M
p−1ptβ1‖u− v‖E

∫ t

0

(t− s)−
N
2 ( pη1

− 1
r1

)s1−γ−pΘ1ds

≤ tβ1‖et∆(ϕ− ψ)‖r1 + C ′1‖u− v‖E ,

(2.7)

where C ′1 = 2C1M
p−1p

∫ 1

0
(1− s)−

N
2 ( pη1

− 1
r1

)s1−γ−pΘ1ds. From Lemma 2.1, (ii) and
(iv), we see that C ′1 <∞. Similarly, one can prove that

tβ2‖Φϕu(t)− Φψv(t)‖r2 ≤ tβ2‖et∆(ϕ− ψ)‖r2 + C ′2‖u− v‖E , (2.8)

where

C ′2 = 2C2M
p−1p

∫ 1

0

(1− s)−
N
2 ( pη2

− 1
r2

)s1−γ−pΘ2ds <∞,

C2 = ν

∫ η0

0

σ−l−pΘ2dσ + η−pΘ1
0

∫ 1

η0

|k(1, σ)|dσ <∞,

Θ2 =
1
p

(1− N

2r1α
)(2− γ + α̃).

From (2.7) and (2.8) we obtain

‖Φϕ(u)(t)− Φψ(v)(t)‖E ≤ N (ϕ− ψ) + C‖u− v‖E , (2.9)

where
C = max{C ′1, C ′2}. (2.10)

Setting ψ = 0, v = 0 in (2.9) we get ‖Φϕ(u)‖E ≤ N (ϕ)+C‖u‖E . Since ϕ satisfies
(1.10) and R + CM ≤ M , we conclude that Φϕu ∈ K. Moreover, since C < 1 we
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conclude from (2.9) that Φϕ is a strict contraction from K into itself, so Φϕ has a
unique fixed point in K.

The continuous dependence (1.11) follows clearly from (2.9). To show (1.13), let

‖u− v‖E,δ = sup
t>0
{tβ1+δ‖u(t)‖r1 , tβ2+δ‖v(t)‖r2}. (2.11)

Proceeding as (2.3) we obtain

tβ1+δ‖u(t)− v(t)‖r1

≤ tβ1+δ‖et∆(ϕ− ψ)‖r1 + 2pMp−1tβ1+δ

∫ t

0

(t− s)−
N
2 ( pη1

− 1
r1

)

×
∫ s

0

|k(s, σ)|σ−[θ1β1+(1−θ1)β2](p−1)‖u− v‖η1dσds

≤ tβ1+δ‖et∆(ϕ− ψ)‖r1 + 2pMp−1 sup
σ∈(0,t)

{σβ1+δ‖u(σ)‖r1 , σβ2+δ‖v(σ)‖r2}

× tβ1+δ

∫ t

0

(t− s)−
N
2 ( pη1

− 1
r1

)
∫ s

0

|k(s, σ)|σ−p[θ1β1+(1−θ1)β2]−δdσdt

(2.12)

For 0 < δ < 1− l − pΘ1, arguing as in (2.5), we have∫ s

0

|k(s, σ)|σ−p[θ1β1+θ2β2]−δdσ

= s1−γ−pΘ1−δ
∫ 1

0

|k(1, σ)|σ−pΘ1−δ

≤ s1−γ−pΘ1−δ
[
ν

∫ η0

0

σ−l−pΘ1−δdσ + η−pΘ1−δ
0

∫ 1

η0

|k(1, σ)|dσ
]

= C1,δs
1−γ−pΘ1−δ,

where

C1,δ = ν

∫ η0

0

σ−l−pΘ1−δdσ + η−pΘ1−δ
0

∫ 1

η0

|k(1, σ)|dσ <∞.

Therefore, from (2.12) we obtain

tβ1+δ‖u(t)− v(t)‖r1
≤ tβ1+δ‖et∆(ϕ− ψ)‖r1 + C ′1,δ sup

σ∈(0,t)

{σβ1+δ‖u(σ)‖r1 , σβ2+δ‖v(σ)‖r2},
(2.13)

and
C ′1,δ = 2pMp−1C1,δ. (2.14)

Similarly, for 0 < δ < 1− l − pΘ2, one can to obtain

tβ2+δ‖u(t)− v(t)‖r2
≤ tβ2+δ‖et∆ϕ− ψ‖r2 + C ′2,δ sup

σ∈(0,t)

{σβ1+δ‖u(σ)‖r1 , σβ2+δ‖v(σ)‖r2},
(2.15)

where

C2,δ = ν

∫ η0

0

σ−l−pΘ2−δdσ + η−pΘ2−δ
0

∫ 1

η0

k(1, σ)dσ <∞

and C ′2,δ = 2pMp−1C2,δ.
From (2.13) and (2.15) it follows that

(1− Cδ)‖u− v‖E,δ ≤ Nδ(ϕ− ψ),
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where
Cδ = max{C ′1,δ, C ′2,δ}. (2.16)

�

3. Asymptotic behavior

The next result will be used in the proof of Theorem 1.5(1).

Lemma 3.1. Let l < 1, γ < 2, p > 1 and a = min{1− l, 2− γ}. Assume (1.7) and
let α satisfying (1.4), (1.5) and (1.7). Let η̃ satisfying (1.8). For δ > 0 we define
η′ ≥ 1 by 1

η′1
= 1

pr1

(
2−γ+δ
α + 1

)
, and θ′1 = 2−γ+δ+α−pα̃

p(α−α̃) .

If 2−γ
p−1 < α, then there exists δ0 > 0 small such that for all δ ∈ (0, δ0]:

(i) η′1 ∈ [r1, r2] and η′1 ∈ (p, r1p), where r2 = (αr1)/α̃.
(ii) N

2 ( pη′1 −
1
r1

) = N
2r1α

(2− γ + δ) < 1.

(iii) θ1 ∈ [0, 1], 1
η′1

= θ′1
r1

+ 1−θ′1
r2

.

(iv) If β1 = α− N
2r1

and β2 = α̃− N
2r2

, then

a > p[β1θ
′
1 + β2(1− θ′1)] = (2− γ + α+ δ)(1− N

2r1α
).

(v) 2− γ + β1 + δ − N
2 ( pη′1 −

1
r1

)− p[β1θ
′
1 + β2(1− θ′1)] = 0.

Proof. Since α > (2− γ)/(p− 1), (1.4) and (1.5) hold, it follows from Proposition
1.2 that there exists δ0 > 0 small so that such that α > (2 − γ + δ0)/(p − 1),
r1 >

N
2α (2−γ+ δ0), r1 > (2−γ+ δ0)/α+ 1 and (2−γ+α+ δ0)(1−N/(2r1α)) < a.

The rest of the proof follows similarly as the proof of Lemma 2.1. �

Proof of Theorem 1.5. (i) Let ϕ ∈ S ′(RN ) be satisfying (1.10) and let u be the
corresponding solution given by Theorem 1.3. We have that

sup
t>0
{tβ1‖u(t)‖r1 , tβ2‖u(t)‖r2} ≤M.

Arguing as in (2.12), (2.5) and (2.6), we conclude conclude that

tβ1+δ‖u(t)− et∆ϕh‖r1 ≤ tβ1+δ‖et∆(ϕ− ϕh)‖r1 + 2pMptβ1+δ

∫ t

0

(t− s)−
N
2 ( p

η′1
− 1
r1

)

×
∫ s

0

|k(s, σ)|σ−p[θ
′
1β1+(1−θ′1)β2]dσdt

≤ tβ1+δ‖et∆(ϕ− ϕh)‖r1 + C ′δ,

where C ′δ = 2pMpCδ, Cδ = ν
∫ η0

0
σ−l−pΘδdσ + η−pΘδ0

∫ 1

η0
|k(1, σ)|dσ and Θδ =

1
p (1− N

2
P1
r1

)(2− γ + 1
P1

+ δ). From the above result and (1.14) we have the desired
conclusion.

(ii) For λ > 0, we define z(t, x) = λ(4−2γ)/(p−1)w(λ2t, λx) for all t > 0, x ∈ RN .
Clearly z is a solution of (1.1). We claim that supt>0 t

β1‖z‖r1 ≤ M . To see this,
we observe that

tβ1‖z‖r1 = tβ1λ
4−2γ
p−1 ‖w(λ2t, λ·)‖r1

= tβ1λ
4−2γ
p−1 −

N
r1 ‖w(λ2t)‖r1

= (λ2t)β1‖w(λ2t)‖r1 .
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Since z(0) = ϕh, we have from (1.11) that w = z; that is, w is self-similar. The
conclusion now follows from (1.13) and the Remark 1.4(i). �

4. Non existence of global solutions

Proof of Theorem 1.7. Let BR be the open ball in RN with radius R > 0. Let
λR > 0 and ρR > 0 be the first eigenvalue and the first normalized (i.e.

∫
BR

ρR = 1)
eigenfunction of −∆ on BR with zero Dirichlet boundary condition.

Set wR(t) =
∫
BR

u(t)ρR. Then by Green’s identity and Jensen’s inequality we
obtain

(wR)t + λRwR ≥
∫ t

0

k(t, s)wpR(s)ds. (4.1)

Set φR(t) = φ(t/R2) for all t ≥ 0. Multiplying (4.1) by φR and integrating on
[0, TR2], we have

−wR(0) + λR

∫ TR2

0

wR(t)φR(t)dt ≥
∫ TR2

0

∫ t

0

k(t, s)wpR(s)ds φR(t)dt

=
∫ TR2

0

IR(s)wpR(s)ds,

(4.2)

where

IR(s) =
∫ TR2

s

k(t, s)φR(t)dt.

On the other hand, by Hölder’s inequality,∫ TR2

0

wR(t)φR(t)dt =
∫ TR2

0

wR(t)IR(t)1/pIR(t)−1/pφR(t)dt

≤
{∫ TR2

0

wpRIR(t)dt
}1/p {∫ TR2

0

IR(t)−p
′/pφp

′

R (t)dt
}1/p′

︸ ︷︷ ︸
II

.

(4.3)
Since

IR(R2s) =
∫ TR2

R2s

k(t, s)φ(t/R2)dt = (R2)1−γ
∫ T

s

k(t, s)φ(t)dt = (R2)1−γI1(s),

we have

IIp
′

= R2

∫ T

0

IR(R2t)−p
′/pφp

′

R (R2t)dt

= (R2)1−(p′/p)(1−γ)

∫ T

0

I1(t)−p
′/pφp

′
(t)dt

= C(T )(R2)1−(p′/p)(1−γ),

(4.4)

where C(T ) =
∫ T

0
φp
′
(t)I1(t)−p

′/pdt < ∞ by (1.15). From (4.2)–(4.4) it follows
that

λR

{∫ TR2

0

wpR(t)IR(t)dt
}1/p

C(T )1/p′(R2)
1
p′−

1−γ
p

≥
∫ TR2

0

IR(s)wpR(s)ds+ wR(0),
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and by Young’s inequality,

1
p

∫ TR2

0

wpR(t)IR(t)dt+
1
p′
λp
′

RC(T )(R2)1− (1−γ)p′
p ≥ wR(0) +

∫ TR2

0

IR(t)wpR(t)dt.

Thus,
1
p′
λp
′

RC(T )(R2)1− (1−γ)p′
p ≥ wR(0).

Since λR = λ1/R
2 we concluded that

wR(0) ≤ C(T )(
λp
′

1

p′
)(R2)−p

′+1− (1−γ)p′
p = C ′(T )(R2)−

2−γ
p−1 , (4.5)

where C ′(T ) = [C(T )λp
′

1 ]/p′. On the other hand, for ε ∈ (0, 1) small

wR(0) =
∫
BR

u0(x)ρR(x)dx

≥
(

inf
R≥|x|≥εR

u0(x)
)∫
{εR≤|x|≤R}

ρR(x)dx

≥
(

inf
R≥|x|≥εR

u0(x)
)∫
{ε≤|x|≤1}

ρ1(x)dx.

Thus, from (4.5), it follows that

C ′(T ) ≥
(

inf
R≥|x|≥εR

|x|2(2−γ)/(p−1)u0(x)
)∫
{ε≤|x|≤1}

ρ1(x)dx.

Putting, ε = κ/R > 0 and letting R →∞ we have inf |x≥κ |x|2( 2−γ
p−1 )u0(x) ≤ C ′(T ).

Since C ′(T ) <∞ and κ is arbitrary the conclusion follows. �
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France, 2009.

[7] A. Fino, M. Kirane; Qualitative properties of solutions to a space time fractional evolution

equation. Quarterly of Applied Mathematics, 70, No 1, (2012), 133-157.
[8] H. Fujita, T. Kato; On the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 16,

(1964) 269-315.

[9] T. Kato, H. Fujita; On the non stationary Navier-Stokes system, Rend. Sem. Math. Univ.
Padova 32 (1962) 243-260.

[10] M. Loayza; Global existence and blow up results for a heat equation with nonlinear nonlocal

term, Diff. and Int. Eq. 25, (2012) , 665-683.
[11] P. Souplet; Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29, (1998)

1301-1334.
[12] P. Souplet; Nonexistence of global solution to some differential inequalities of the second

order and applications, Portugaliae Mathematica 52, (1995) 289-299.



12 M. LOAYZA EJDE-2013/228

[13] S. Snoussi, S. Tayachi; Asymptotic self-similar behavior of solutions for a semilinear parabolic

system, Comm. Cont. Math. Vol 3, No 3 (2001), 363-392.

[14] F. Weissler; Existence and nonexistence of global solutions for a semilinear heat equation.
Israel J. Math. 38 (1981), 29-40.

[15] F. Weissler; Local existence and nonexistence for semilinear parabolic equations in Lp. Indi-

ana Univ. Math. J. 29 (1980), 79-102.

Miguel Loayza
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