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DARBOUX INTEGRABILITY AND RATIONAL REVERSIBILITY
IN CUBIC SYSTEMS WITH TWO INVARIANT

STRAIGHT LINES

DUMITRU COZMA

Abstract. We find conditions for a singular point O(0, 0) of a center or a

focus type to be a center, in a cubic differential system with two distinct

invariant straight lines. The presence of a center at O(0, 0) is proved by using
the method of Darboux integrability and the rational reversibility.

1. Introduction and statement of results

A cubic system with a singular point with pure imaginary eigenvalues (λ1,2 = ±i,
i2 = −1) by a nondegenerate transformation of variables and time rescaling can be
brought to the form

ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3 = P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) = Q(x, y),
(1.1)

where the variables x, y and coefficients a, b, . . . , s in (1.1) are assumed to be real.
Then the origin O(0, 0) is a singular point of a center or a focus type for (1.1).
The problem arises of distinguishing between a center and a focus, i.e. of finding
the coefficient conditions under which O(0, 0) is, for example, a center. These
conditions are called the conditions for a center existence or the center conditions
and the problem - the problem of the center.

The derivation of necessary conditions for a center existence often involves ex-
tensive use of computer algebra (see, for example, [12], [13]), in many cases making
very heavy demands on the available algorithms and hardware. The necessary con-
ditions are shown to be sufficient by a variety of methods. A number of techniques,
of progressively wider application, have been developed.

A theorem of Poincaré in [15] says that a singular point O(0, 0) is a center for
(1.1) if and only if the system has a nonconstant analytic first integral F in the
neighborhood of O(0, 0). It is known [1] that the origin is a center for system (1.1)
if and only if the system has in the neighborhood of O(0, 0) an analytic integrating
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factor of the form

µ(x, y) = 1 +
∞∑
k=1

µk(x, y),

where µk are homogeneous polynomials of degree k.
There exists a formal power series F (x, y) =

∑
Fj(x, y) such that the rate of

change of F (x, y) along trajectories of (1.1) is a linear combination of polynomi-
als {(x2 + y2)j}∞j=2 : dF/dt =

∑∞
j=2 Lj−1(x2 + y2)j . Quantities Lj , j = 1,∞

are polynomials with respect to the coefficients of system (1.1) called to be the
Lyapunov quantities [14]. The origin O(0, 0) is a center for (1.1) if and only if
Lj = 0, j = 1,∞. The set of these conditions, which are polynomial equations in
the coefficients of the system (1.1), is denumerable [9] and hence by Hilbert’s basis
theorem, it is sufficient that a finite number of them be satisfied.

A singular point O(0, 0) is a center for (1.1) if the equations of (1.1) are invariant
under reflection in a line through the origin and reversion of time, called time-
reversible systems. The classical condition is that the system is invariant under
one or other of the transformations (x, y, t)→ (−x, y,−t) or (x, y, t)→ (x,−y,−t).
The first corresponds to reflection in the y-axis and the second to reflection in the
x-axis.

Żo la̧dek [23] mentioned three general mechanisms for producing centers: search-
ing for (1) a Darboux first integral or (2) a Darboux–Schwarz–Christoffel first in-
tegral or by (3) generating centers by rational reversibility, and he claimed that
these are sufficient for producing all cases of real polynomial differential systems
with centers. This conjecture is still open, even for cubic systems (1.1).

The time-reversibility in two-dimensional autonomous systems was studied in
[16] and the relation between time-reversibility and the center-focus problem was
discussed in [21].

The problem of the center was solved for quadratic systems and for cubic sym-
metric systems. The problem of finding a finite number of necessary and sufficient
conditions for the center in the cubic case (for cubic system (1.1)) is still open. It
was possible to find the conditions for the center only in some particular cases (see,
for example, [2, 3, 4, 5, 6, 7, 8, 11, 12, 17, 18, 19, 20, 22]).

The problem of the center for cubic differential systems (1.1) with invariant
straight lines (real or complex) was considered in [3], [4], [5], [6], [11], [19], [20].
In these papers, the problem of the center was completely solved for cubic systems
with at least three invariant straight lines. The main results of these works is that
every center in the cubic system (1.1) with at least three invariant straight lines
comes from a Darboux integrability or from a rational reversibility.

The goal of this paper is to obtain center conditions for a cubic differential system
(1.1) with two distinct invariant straight lines by using the method of Darboux
integrability and rational reversibility. Our main result is the following one.

Theorem 1.1. The origin is a center for a cubic differential system (1.1), with at
least two invariant straight lines, if one of the conditions (i)–(xiv), (1)– (26) hold.

The paper is organized as follows. In Section 2 we summarize the results ob-
tained for cubic differential systems with at least three invariant straight lines and
centers. In Section 3 we find four series of conditions for the existence of two dis-
tinct invariant straight lines. In Section 4 we study the Darboux integrability in
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cubic systems with two distinct invariant straight lines and obtain the center condi-
tions (i)–(xiv). In Section 5 we describe the algorithm to transform a cubic system
(1.1) to one which is symmetric in a line by means of a rational transformation. In
Section 6 for cubic system (1.1) with at least two invariant straight lines we obtain
conditions (1)–(26) for the system to be rationally reversible. In the last section,
we prove the main theorem.

2. Cubic systems with at least three invariant straight lines

We shall study the problem of the center for cubic system (1.1) assuming that
(1.1) has invariant straight lines.

Definition 2.1. An algebraic invariant curve (or an algebraic particular integral)
of (1.1) is the solution set in C2 of an equation f(x, y) = 0, where f is a polynomial
in x, y with complex coefficients such that

df

dt
= ḟ =

∂f

∂x
P +

∂f

∂y
Q = fK,

for some polynomial in x, y, K = K(x, y) with complex coefficients, called the
cofactor of the invariant algebraic curve f(x, y) = 0.

By the above definition, a straight line

L ≡ C +Ax+By = 0, A,B,C ∈ C, (A,B) 6= (0, 0), (2.1)

is an invariant straight line for (1.1) if and only if there exists a polynomial K(x, y)
such that the following identity holds

A · P (x, y) +B ·Q(x, y) ≡ (C +Ax+By) ·K(x, y). (2.2)

If the cubic system (1.1) has complex invariant straight lines then obviously they
occur in complex conjugated pairs

L ≡ C +Ax+By = 0 and L ≡ C +Ax+By = 0.

According to [3] the cubic system (1.1) cannot have more than four nonhomoge-
neous invariant straight lines, i.e. invariant straight lines of the form

1 +Ax+By = 0, (A,B) 6= (0, 0). (2.3)

As homogeneous straight lines Ax + By = 0, this system can have only the lines
x± iy = 0, i2 = −1.

From (2.2) it results that (2.3) is an invariant straight line of (1.1) if and only if
A and B are the solutions of the system

F1(A,B) ≡ AB2 − fAB + bB2 + rA− lB = 0,

F2(A,B) ≡ A2B + aA2 − gAB − kA+ sB = 0,

F3(A,B) ≡ B3 − 2A2B + fA2 + (c− b)AB − dB2 − pA+ nB = 0,

F4(A,B) ≡ A3 − 2AB2 − cA2 + (d− a)AB + gB2 +mA− qB = 0.

(2.4)

The cofactor of (2.3) is

K(x, y) = −Bx+Ay + (aA− gB +AB)x2 + (cA− dB +B2 −A2)xy

+ (fA− bB −AB)y2.
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The problem of the center for cubic systems with at least three invariant straight
lines was completely solved. The main results of these works are summarized in
the following three theorems.

Theorem 2.2 ([3, 4]). Let the cubic differential system have four invariant straight
lines (real, real and complex, complex). Then any singular point with pure imag-
inary eigenvalues of this system is a center if and only if the first two Liapunov
quantities vanish (L1 = L2 = 0).

Theorem 2.3 ([5, 6, 19, 20]). Let the cubic differential system have exactly three
invariant straight lines (real, real and complex). Then any singular point with
pure imaginary eigenvalues of this system is a center if and only if the first seven
Liapunov quantities vanish (Lj = 0, j = 1, . . . , 7).

Theorem 2.4. Every center in the cubic differential system (1.1) with:

(1) four invariant straight lines comes from a Darboux first integral or a Dar-
boux integrating factor;

(2) three invariant straight lines comes from a Darboux integrating factor or a
rational reversibility.

3. Cubic systems with two invariant straight lines

Let the cubic system (1.1) have two distinct invariant straight lines L1 and L2

real or complex. If L1, L2 are complex and L2 6= L1, then the straight lines L1, L2

conjugate with L1, L2 will be also invariant for (1.1) (the coefficients in (1.1) are
real). In this case the system (1.1) has four distinct invariant straight lines and the
problem of the center is solved by Theorem 2.2. If L1 is complex and L2 is real,
then the problem of the center is solved by Theorem 2.3.

In this section, we shall consider cubic systems (1.1) with two distinct invariant
straight lines, where L1, L2 are real or L1, L2 are complex (L2 = L1). It is easy to
see that for the relative positions of two distinct invariant straight lines three cases
can occur:

(1) two parallel invariant straight lines;
(2) two homogeneous invariant straight lines;
(3) two nonhomogeneous and nonparallel invariant straight lines.

3.1. Two parallel invariant straight lines. Let the cubic system (1.1) have two
parallel invariant straight lines L1, L2, then by a rotation of axes we can make them
parallel to the axis of ordinates (Oy). Note that by a rotation of axes of coordinates
the linear part of (1.1) preserves the form.

Assume L1 and L2 are complex, then L2 = L1. From L1||L1, it follows that L1

looks as 1 + A(x + By) = 0, where A is a complex number and B is real. In this
case, via a rotation of axes about the origin, it is also possible to make the straight
lines L1 and L2 to be parallel to the axis Oy.

In order that the cubic system (1.1) had two invariant straight lines L1, L2 par-
allel to the axis Oy, it is necessary and sufficient that the following coefficient
conditions to be satisfied

a = f = k = p = r = 0, m(c2 − 4m) 6= 0. (3.1)
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In this case the invariant straight lines L1 and L2 are

L1,2 ≡ 1 +
c±
√
c2 − 4m
2

x = 0. (3.2)

3.2. Two homogeneous invariant straight lines. For homogeneous invariant
straight lines, it is easily verified that the cubic system (1.1) can have only the lines
x± iy = 0, i2 = −1. These lines are invariant if and only if the following conditions
hold

g = b+ c, f = a+ d, q = p+ l − k, s = m+ n− r. (3.3)

3.3. Two nonhomogeneous and nonparallel invariant straight lines. Let
the cubic system (1.1) have two nonhomogeneous and nonparallel invariant straight
lines L1, L2 intersecting at a point (x0, y0). The intersection point (x0, y0) is a sin-
gular point for (1.1) and has real coordinates. By rotating the system of coordinates
(x → x cosϕ − y sinϕ, y → x sinϕ + y cosϕ) and rescaling the axes of coordinates
(x → αx, y → αy), we obtain L1 ∩ L2 = (0, 1). In this case the invariant straight
lines can be written as

Lj ≡ 1 +Ajx− y = 0, Aj ∈ C, j = 1, 2; A1 −A2 6= 0. (3.4)

As the point (0, 1) is a singular point for (1.1), then P (0, 1) = Q(0, 1) = 0. These
equalities yield r = −f − 1, l = −b. Substituting B = −1, r = −f − 1 and l = −b
in (2.4) we find that the straight lines (3.4) are invariant for (1.1) if and only if A1

and A2 are the solutions of the system

F2(A1) ≡ (a− 1)A2
1 + (g − k)A1 − s = 0,

F3(A1) ≡ (f + 2)A2
1 + (b− c− p)A1 − d− n− 1 = 0,

F4(A1) ≡ A3
1 − cA2

1 + (a− d+m− 2)A1 + g + q = 0,

F2(A2) ≡ (a− 1)A2
2 + (g − k)A2 − s = 0,

F3(A2) ≡ (f + 2)A2
2 + (b− c− p)A2 − d− n− 1 = 0,

F4(A2) ≡ A3
2 − cA2

2 + (a− d+m− 2)A2 + g + q = 0.

(3.5)

It is easy to see from (3.5) that the system (1.1) can have two distinct invariant
straight lines of the form (3.4) if and only if the following coefficient conditions are
satisfied

k = (a− 1)(A1 +A2) + g, l = −b, r = −f − 1,

m = −A2
1 −A1A2 −A2

2 + c(A1 +A2)− a+ d+ 2,

n = −(f + 2)A1A2 − (d+ 1), s = (1− a)A1A2,

p = (f + 2)(A1 +A2) + b− c, q = (A1 +A2 − c)A1A2 − g.

(3.6)

Theorem 3.1. The cubic differential system (1.1) has at least two distinct invari-
ant straight lines if and only if one of the sets of conditions (3.1), (3.3) and (3.6)
holds.

4. Darboux integrability in cubic systems with two invariant
straight lines

Let the cubic system (1.1) have sufficiently many invariant algebraic curves
fj(x, y) = 0, j = 1, . . . , q with cofactors Kj(x, y). Then in most cases a first
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integral (an integrating factor) can be constructed in the Darboux form [10]

fα1
1 fα2

2 · · · fαq
q (4.1)

and we say that the cubic system (1.1) is Darboux integrable. The function (4.1),
with αi ∈ C not all zero, is a first integral (an integrating factor) for (1.1) if and
only if

q∑
i=1

αiKi ≡ 0
( q∑
i=1

αiKi ≡
∂Q

∂y
− ∂P

∂x

)
.

The method of Darboux turns out to be very useful and elegant one to prove
integrability for some classes of systems depending on parameters.

In this section we shall find center conditions for cubic system (1.1) with two
invariant straight lines by constructing an integrating factor of the Darboux form

µ = Lα1
1 Lα2

2 , (4.2)

where Lj = 0, j = 1, 2 are invariant straight lines for (1.1) with cofactor Kj(x, y)
and αj ∈ C. The cubic system (1.1) will have an integrating factor of the form
(4.2) if and only if the numbers αj satisfy the following identity

α1K1(x, y) + α2K2(x, y) ≡ ∂Q

∂y
− ∂P

∂x
. (4.3)

4.1. Centers of system (1.1) with two parallel invariant straight lines and
Darboux integrability.

Lemma 4.1. The following set of conditions is sufficient condition for the origin
to be a center for system (1.1):

(i) a = d = f = k = l = p = q = r = 0.

Proof. Let the conditions (3.1) hold, then the cubic system (1.1) has two invari-
ant straight lines of the form (3.2) with cofactors K1,2(x, y) = [y(c + 2mx ±√
c2 − 4m )]/2. Taking into account the cofactors, the identity (4.3) yields d =

q = l = 0 and

α1,2 = [(n−m)
√
c2 − 4m± (2bm− cn)]/(m

√
c2 − 4m ),

we obtain the center conditions (i). �

4.2. Centers of system (1.1) with two homogeneous invariant straight lines
and Darboux integrability.

Lemma 4.2. The following three sets of conditions are sufficient conditions for the
origin to be a center for system (1.1):

(ii) c = −2b, d = −2a, f = −a, g = −b, n = 2r −m, p = −l, q = −k, s = r;
(iii) a = d = f = 0, g = b+c, k = l, m = (2br+cn−cr)/(2b), p = q = [l(b+c)]/b,

s = (2bn+ cn− cr)/(2b);
(iv) c = (bd)/a, f = a + d, g = [b(a + d)]/a, p = q = [l(a + d)]/a, k = l,

m = (2ar + dn− dr)/(2a), s = (2an+ dn− dr)/(2a).

Proof. Assume the conditions (3.3) are satisfied, then the cubic system (1.1) has
two homogeneous invariant straight lines x± iy = 0 with cofactors

K1(x, y) = −i+ (a− ib− ic)x− (b+ ia+ id)y + (k − im− in+ ir)x2

+ (r − n− il − ip)xy − (l + ir)y2,
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K2 = K1.

In this case the system (1.1) will have an integrating factor of the form (4.2) if and
only if the identity (4.3) holds. Substituting in this identity the expressions of the
cofactors and identifying the coefficients of x0, x, y, x2, xy and y2, we obtain that
α2 = α1 and α1 obey the following system of algebraic equations:

(r − n)α1 +m− n = 0, 2a(α1 + 1)− d = 0, 2b(α1 + 1)− c = 0,

2k(α1 + 2)− l − p = 0, (α1 + 2)(k − l) = 0.
(4.4)

Let α1 = −2, then from (4.4) we obtain the conditions (ii). Assume α1 6= −2,
then k = l. If a = 0, then b 6= 0, α1 = (c − 2b)/(2b) and from (4.4) we get the
conditions (iii). If a 6= 0, then α1 = (d− 2a)/(2a) and (4.4) implies the conditions
(iv).

In each of the cases (ii)–(iv), the system (1.1) has an integrating factor of the
form (4.2) and therefore the origin is a center for (1.1). �

4.3. Centers of system (1.1) with two nonhomogeneous and nonparallel
invariant straight lines and Darboux integrability. Let the coefficient con-
ditions (3.6) hold. Denote λ = a − 1, γ = f + 2 and consider the following two
cases:

4.3.1. λ = 0. In this case a = 1 and (3.6) yields the following conditions

a = 1, k = g, l = −b, q = [(d+ n+ 1)(cγ + b− c− p)− gγ2]/γ2,

m = [(γ(d+ 1) + c2)(γ − 1)− (b− p)(c(γ − 2) + b− p)− nγ]/γ2,

r = 1− γ, s = 0, γ[(b− c− p)2 + 4γ(d+ n+ 1)] 6= 0

(4.5)

for the existence of two distinct invariant straight lines of the form (3.4) where Aj ,
j = 1, 2 are the solutions of the equation

γA2 + (b− c− p)A− d− n− 1 = 0. (4.6)

Lemma 4.3. The following five sets of conditions are sufficient conditions for the
origin to be a center for system (1.1):

(v) a = γ = 1, d = −2, k = −q = g, p = −l = b, m = −n, r = s = 0;
(vi) a = n = 1, b = l = s = 0, d = −2, k = −q = g, p = c(γ − 1), f = γ − 2,

m = −1, r = 1− γ;
(vii) a = n = 1, d = −2, f = γ − 2, k = −q = g, l = −b, r = 1 − γ, s = 0,

c = [2b(γ − 2)]/γ, m = −(4b2γ − 4b2 + γ2)/γ2, p = b(4− 3γ)/γ;
(viii) a = 1, d = −1, f = (−3)/2, k = g = q = s = 0, l = −b, m = −2n,

p = (2b− c)/2, r = 1/2;
(ix) a = 1, k = g, l = −b, q = [(d+n+1)(cγ+b−c−p)−gγ2]/γ2, m = [(γ(d+

1)+c2)(γ−1)−(b−p)(c(γ−2)+b−p)−nγ]/γ2, f = γ−2, r = 1−γ, s = 0,
p = b(1−d)+(c−2b)γ−c, g = [b((d+γ)2−γ2+(n+1)(d+2γ))]/[(d+2)γ2],
n = [b(d+ 2γ)(cγ − 2bd− 2bγ) + dγ(d+ 1)(γ − 1)]/[γ(d+ 2γ)].

Proof. Indeed, if the conditions (4.5) hold, then the cubic system (1.1) has two
invariant straight lines of the form L1,2 ≡ 1 +A1,2x− y = 0 with cofactors

K1,2(x, y) = x+A1,2y + gx2 + (1 + d−A2
1,2 + cA1,2)xy + ((γ − 1)A1,2 + b)y2,

where A1, A2 are the roots of the equation (4.6):

A1,2 = (p− b+ c±
√

(b− c− p)2 + 4γ(d+ n+ 1) )/(2γ).
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In this case system (1.1) will have an integrating factor of the form (4.2) if and
only if the identity (4.3) holds. Substituting in (4.3) the expressions of the cofactors
and identifying the coefficients of x, y, x2, xy and y2, we obtain that

α1 = d− 2− α2, α2 = [(d− 2)A1 − 2b+ c]/(A1 −A2)

and

p = b(1− d) + (c− 2b)γ − c, g(d+ 2)γ2 − b(d+ n+ 1)(d+ 2γ) = 0,

(d2 − 4b2 + 2bc+ d− 2n)γ2 + dγ(bc− 6b2 − d− n− 1)− 2b2d2 = 0.
(4.7)

Let d = −2. If γ = 1, then from (4.7) we obtain the conditions (v); if γ 6= 1 and
b = 0 – the conditions (vi); if b(γ − 1) 6= 0 and n = 1 – the conditions (vii).

Assume d 6= −2. If d+2γ = 0, then we get the conditions (viii) and if d+2γ 6= 0 –
the conditions (ix). In each of the cases (v)–(ix), the system (1.1) has an integrating
factor of the form (4.2) and therefore the origin is a center for (1.1). �

4.3.2. λ 6= 0. In this case (3.6) yields the following conditions

p = [(b− c)λ+ (k − g)γ]/λ, q = [λ(cs− gλ) + s(g − k)]/λ2,

l = −b, m = [(d− λ+ 1)λ2 + λ(c(k − g)− s)− (k − g)2]/λ2,

r = 1− γ, n = [sγ − (1 + d)λ]/λ, (g − k)2 + 4sλ 6= 0

(4.8)

for the existence of two distinct invariant straight lines of the form (3.4) where
Aj , j = 1, 2 are the solutions of the equation

λA2 + (g − k)A− s = 0. (4.9)

Lemma 4.4. The following five sets of conditions are sufficient conditions for the
origin to be a center for system (1.1):

(x) a = λ + 1, b = −(2cλ + g)/(2λ), d = 2λ − 1, f = (−3)/2, k = cλ + g,
l = (2cλ + g)/(2λ), m = (λ2 − s)/λ, q = −g, n = (s − 4λ2)/(2λ), p =
−(3cλ+ g)/(2λ), r = 1/2;

(xi) a = λ + 1, d = −2, f = λ − 1, k = cλ + g, l = −b = c − g, q = −g,
m = −λ− 1− sλ−1, n = s+ 1 + sλ−1, p = c(λ− 1) + g, r = −λ;

(xii) a = λ + 1, b = l = 0, c = [g(2λ − d − 2)]/(2λ), k = [g(2λ − d)]/2,
f = γ − 2, p = [(b − c)λ + (k − g)γ]/λ, n = [sγ − (1 + d)λ]/λ, m =
[(d − λ + 1)λ2 + λ(c(k − g) − s) − (k − g)2]/λ2, r = 1 − γ, q = −g,
s = [λ(d2 − 2dλ+ 3d− 4λ+ 2)]/(d+ 2γ − 2λ);

(xiii) a = λ+1, f = −2, d = 2λ, n = −(2λ+1), b = [(cλ+g−k)(cλ+2(g−k))−
2λ2(λ + 1)]/[2λ(cλ + g − k)], p = (b − c), q = [λ(cs − gλ) + s(g − k)]/λ2,
r = 1, l = −b, m = [λ2(λ + 1) + λ(c(k − g) − s) − (k − g)2]/λ2, s =
−λ2(2λ2(λ+ 1) + (k + g)(k − g − cλ))/(cλ+ g − k)2;

(xiv) a = λ+1, f = γ−2, r = 1−γ, l = −b, b = [γ(cλ+g−k)]/[λ(d+2(γ−λ))],
n = [sγ−(1+d)λ]/λ, p = [(b−c)λ+(k−g)γ]/λ, q = [λ(cs−gλ)+s(g−k)]/λ2,
m = [(d−λ+ 1)λ2 +λ(c(k− g)− s)− (k− g)2]/λ2, s = [λ2((2b− c−2g)λ+
3k− g+dg)]/(cλ+ g−k), 2(d+ 2)λ3 + ((c− b)2− b2−d2−3d−2s−2)λ2 +
((3c− 2b)(g − k) + (d+ 2γ)s)λ+ 2(g − k)2 = 0.

Proof. Indeed, if the conditions (4.8) hold, then the cubic system (1.1) has two
invariant straight lines of the form L1,2 ≡ 1 + A1,2x − y = 0 with cofactors
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K1,2(x, y) = x+A1,2y+(g+λA1,2)x2 +(1+d+cA1,2−A2
1,2)xy+(b+(γ−1)A1,2)y2,

where A1, A2 are the roots of the equation (4.9):

A1,2 = (k − g ±
√

(g − k)2 + 4λs )/(2λ).

In this case the system (1.1) will have an integrating factor of the form (4.2) if and
only if the identity (4.3) holds. Substituting in this identity the expressions of the
cofactors and identifying the coefficients of x, y, x2, xy and y2, we obtain that

α1 = d− 2(λ+ 1)− α2, α2 = [c− 2b+ (d− 2− 2λ)A1]/(A1 −A2)

and
b = [(c+ 2g)λ3 + (g − dg − 3k)λ2 + (cλ+ g − k)s]/(2λ3),

2bλ2 + ((c− 2b)γ − bd)λ+ (g − k)γ = 0,

2(d+ 2)λ3 + ((c− b)2 − b2 − d2 − 3d− 2s− 2)λ2

+ ((3c− 2b)(g − k) + (d+ 2γ)s)λ+ 2(g − k)2 = 0.

(4.10)

Let k = cλ + g. If d = 2(λ − γ), then from (4.10) we obtain the conditions (x)
and (xi); if d 6= 2(λ− γ), then (4.10) implies the conditions (xii).

Let k 6= cλ + g. If d = 2(λ − γ), then from (4.10) we get the conditions (xiii)
and if d 6= 2(λ− γ), then (4.10) yields the conditions (xiv).

In each of the cases (x)–(xiv), the system (1.1) has an integrating factor of the
form (4.2) and therefore the origin is a center for (1.1). �

Taking into account Lemmas 4.1–4.4, for cubic differential system (1.1) with two
distinct invariant straight lines (real or complex conjugated), it was proved the
following theorem.

Theorem 4.5. The differential system (1.1) with two distinct invariant straight
lines has a Darboux integrating factor of the form (4.2) if and only if one of the
sets of conditions (i)–(xiv) is satisfied.

5. Rational transformation in cubic systems

It is well known from Poincaré [15] that if a differential system with a singular
point O(0, 0) of a center or a focus type is invariant by the reflection with respect,
for example, to the axis X = 0 and reversion of time then O(0, 0) is a center for
(1.1) (X = 0 is called the axis of symmetry). It is clear that (1.1) has a center at
O(0, 0) if there exists a diffeomorphism

Φ : U → V, Φ = {X = ϕ(x, y), Y = ψ(x, y)}, Φ(0, 0) = (0, 0), (5.1)

which brings system (1.1) to a system with the axis of symmetry. In particular, if
ϕ(x, y) and ψ(x, y) are rational functions in (5.1), then we say that (1.1) is rationally
reversible ([24]).

In [13] is described an algorithm based on application of Gröebner bases in the
search for a bilinear transformation, which is invertible in a neighbourhood of the
origin and transform a given system to one which is symmetric in a line. This
algorithm is applied to find center conditions for some cubic systems.

In this section we shall consider a general mechanism to produce center by ra-
tional reversibility. We seek a transformation of the form

x =
a1X + b1Y

a3X + b3Y − 1
, y =

a2X + b2Y

a3X + b3Y − 1
(5.2)
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with a1b2 − b1a2 6= 0 and aj , bj ∈ R, j = 1, 2, 3. The condition a1b2 − b1a2 6= 0
guarantees that (5.2) is invertible in a neighborhood of O(0, 0) and the singular
point is mapped to X = Y = 0. Applying the transformation (5.2) to (1.1) we
obtain a system of the form

Ẋ =
P (X,Y )
R(X,Y )

, Ẏ =
Q(X,Y )
R(X,Y )

,

whose orbits in some neighborhood of O(0, 0) are the same as those of the system

Ẋ =
4∑

i+j=0

UijX
iY j ≡ P (X,Y ), Ẏ =

4∑
i+j=0

VijX
iY j ≡ Q(X,Y ), (5.3)

where Uij , Vij are polynomials in the coefficients of the original system and the
parameters a1, a2, a3, b1, b2, b3 of the transformation.

The requirement is to show that a1, a2, a3, b1, b2, b3 can be chosen so that the
system (5.3) is symmetric in the Y -axis; i.e. the transformation (5.2) brings in
some neighborhood of O(0, 0) the system (1.1) to one equivalent with a polynomial
system

dX

dt
= Y +M(X2, Y ),

dY

dt
= −X(1 +N(X2, Y )). (5.4)

The obtained system has an axis of symmetry X = 0 and therefore O(0, 0) is a
center for (1.1). The system (5.4) is equivalent to the system (5.3) if the following
conditions are satisfied:

U31 ≡ V22 = 0, U13 ≡ V04 = 0, U10 ≡ V01 = 0, V40 = 0, U00 = 0, V00 = 0

and

V04 ≡ a3[sb41 + ((k + q)b21 + (m+ n)b1b2 + (l + p)b22)b1b2 + rb42] = 0,

V22 ≡ a3[ma2
1b

2
2 + ca1b

2
2a3 + (2p− 3k − q)a1a2b

2
2 + da2b

2
1a3

+ (3l + p− 2q)a2
2b1b2 + (3(r + s)− 2(m+ n))a2

2b
2
2 + na2

2b
2
1

+ (2b+ c− 2g)a2b1b2a3 + (2f − 2a− d)a2b
2
2a3 + a2

3] = 0,

U30 ≡ 2aa2
1b2a3 + [(m− s)a1 + (p− q)a2 + 2(c− g)a3]a1a2b2

+ ka3
1b2 + a3

2(lb1 − nb2 + rb2) + 2a2
2a3(bb1 − db2 + fb2) = 0,

U12 ≡ (qa2 + 2ga3)b31 + [2(a+ d)a3 + (m+ 2n− 3s)a2]b21b2 +
[
(3l − 3k

+ 2p− 2q)a2 + 2(b+ c)a3

]
b1b

2
2 + [pa1 − (2m+ n− 3r)a2 + 2fa3]b32 = 0,

V03 ≡ (ka2 − ga3)b31 + [(m− s)a2 − (a+ d)a3]b21b2

+ [(p− q)a2 − (b+ c)a3]b1b22 + (la1 − (n− r)a2 − fa3)b32 = 0,

V21 ≡ qa3
1b2 + (m+ 2n− 3s)a2

1a2b2 + (d− a)a2
1a3b2

+ (3l − 3k + 2p− 2q)a1a
2
2b2 + [pb1 + (3r − 2m− n)b2]a3

2

+ (2b− g)a1a2a3b2 + [(f − 2a)b2 − (b− c)b1]a2
2a3 = 0,

V02 ≡ aa2b
2
1 + (c− g)b1b2a2 + (ba1 − da2 + fa2)b22 − a3 = 0,

V20 ≡ ga3
1 + (a+ d)a2

1a2 + (b+ c)a1a
2
2 + fa3

2 + 2a3 = 0,

U11 ≡ [db1 + (2b+ c− 2g)b2]a2b1 + [ca1 + (2f − 2a− d)a2]b22 + 3a3 = 0,

U01 ≡ b21 + b22 − 1 = 0, U10 ≡ a1b1 + a2b2 = 0, V10 ≡ a2
1 + a2

2 − 1 = 0. (5.5)
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Next we shall study the compatibility of (5.5) assuming that the cubic system
(1.1) has two distinct invariant straight lines (real or complex conjugated). If (5.5)
is compatible, then the cubic system (1.1) with two distinct invariant straight lines
is rationally reversible and a singular point O(0, 0) is a center.

6. Rationally reversible cubic systems with at least two invariant
straight lines

In this section we shall find conditions on the coefficients, for cubic system (1.1)
with two distinct invariant straight lines, which allow us to transform the system
to the system (5.4), symmetric in a line, by means of the rational transformations
(5.2).

It is easy to verify that the equations U01 = 0, V10 = 0 of (5.5) admit the
following parametrization

a1 = (2u)/(u2 + 1), a2 = (u2 − 1)/(u2 + 1),

b1 = (2v)/(v2 + 1), b2 = (v2 − 1)/(v2 + 1),

where u and v are some real parameters. In this case U10 ≡ j1j2 = 0, where
j1 = uv + u− v + 1, j2 = uv − u+ v + 1.

Next assume j1 = 0, then v = (1 + u)/(1 − u) and U10 ≡ 0. The case j2 = 0 is
equivalent with j1 = 0 if we take into consideration that j2(u, v) = j1(−u,−v).

6.1. Centers of system (1.1) with two parallel invariant straight lines and
reversibility. Consider the system of algebraic equations (5.5) and let the condi-
tions (3.1) hold.

6.1.1. a3 = 0. In this case V04 ≡ 0 and V22 ≡ 0. If u = 0; u = −1 or u(u+ 1) 6= 0,
then from the equations of (5.5) we obtain, respectively, the following three sets of
conditions for the existence of a center:

(1) a = d = f = k = l = p = q = r = 0;
(2) a = b = c = f = g = k = l = p = q = r = 0;
(3) a = f = k = p = r = 0, l = [4mu(u6 − 7u4 + 7u2 − 1)]/(u2 + 1)4,

b = [c(6u2 − u4 − 1)]/(u2 + 1)2, s = [m(u4 − 6u2 + 1)2]/(u2 + 1)4, g = −b,
q = −3l, d = [2cu(10u2 − 3u4 − 3)]/[(u2 + 1)2(u2 − 1)], n = [−2m(u8 −
20u6 + 54u4 − 20u2 + 1)]/(u2 + 1)4.

6.1.2. a3 6= 0. In this case from the equation V02 = 0 of (5.5) we have

a3 = [2u((g − c)u4 − 2du3 + 2(2b+ c− g)u2 + 2du+ g − c)]/(u2 + 1)3.

If u = 0, then (5.5) yields the center conditions which are contained in (1).
If u = −1, then from the equations of (5.5) we obtain the following conditions

for the existence of a center
(4) a = f = k = l = p = r = 0, c = −3b, g = −2b, m = 2b2, q = −bd.

Assume u(u + 1) 6= 0, then from the equations {U11 = 0, V04 = 0, U12 = 0, V03 =
0, V21 = 0, U30 = 0} of (5.5) we express, g, l, s,m, q, n, respectively and

V22 ≡ V20 ≡ (3b+ c)(3u2 − 1)(u2 − 3)u− d(u4 − 10u2 + 1)(u2 − 1) = 0.

If (3u2 − 1)(u2 − 3) = 0, then we obtain the following two sets of conditions for
the existence of a center:
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(5) a = d = f = k = p = r = 0, g = (c − 7b)/5, n = [3c(2b − c)]/20,
l = [
√

3(8b2 + 2bc− 3c2)]/100, m = [2(2c2− 2b2− 3bc)]/25, q = [3
√

3(3c2−
8b2 − 2bc)]/100, s = [3(16b2 − 6bc− c2)]/100;

(6) a = d = f = k = p = r = 0, g = (c − 7b)/5, n = [3c(2b − c)]/20,
l = [
√

3(−8b2−2bc+3c2)]/100, m = [2(2c2−2b2−3bc)]/25, q = [3
√

3(−3c2+
8b2 + 2bc)]/100, s = [3(16b2 − 6bc− c2)]/100.

If (3u2 − 1)(u2 − 3) 6= 0, then we get the following conditions for the existence
of a center

(7) a = f = k = p = r = 0, m = [h(du2 − 4bu − 8cu − d)]/(100u2), g =
[4(b+ 2c)(u5 + u) + d(1− 19u2 + 19u4− u6)− 8(4b+ 3c)u3]/[10u(u2− 1)2],
l = [h(u2 − 1)(d(u6 − 19u4 + 19u2 − 1) − (19b + 3c)(u5 + u) + 6(7b −
c)u3)]/[25u(u2 + 1)4], h = d+ 4bu− 2cu− du2,

n = [h(d(1− 9u2 + 230u4 − 230u6 + 9u8 − u10) + 3(3b+ c)(u+ u9)

+ 16(c− 12b)(u7 + u3) + 2(279b+ 13c)u5)]/[50u2(u2 + 1)4],

q = [h(d(1− 21u2 + 458u4 − 458u6 + 21u8 − u10) + 12(2b− c)(u+ u9)

+ 40(c− 9b)(u3 + u7) + 8(144b+ 13c)u5)]/[50u(u2 − 1)(u2 + 1)4],

s = [2hu(d(4u7 − 76u5 + 76u3 − 4u) + 5(b− c)(u8 + 1)

+ 8(c− 7b)(u6 + u2) + 2(99b+ 13c)u4)]/[25(u2 − 1)2(u2 + 1)4],

c = [d(u4 − 10u2 + 1)(u2 − 1)]/[(3u2 − 1)(u2 − 3)u]− 3b.

Remark 6.1. In each of the cases (3) and (7) the system (1.1) has four invariant
straight lines. Thus, in conditions (3) besides the invariant straight lines (3.2), the
system (1.1) has two more invariant straight lines L3,4 = (c ±

√
c2 − 4m)[(u4 −

6u2 + 1)x+ 4u(1− u2)y] + 2(u2 + 1)2; in conditions (7): L3 = [4bu(3u2 − 1)(u2 −
3)−2d(u2 +2u−1)(u2−2u−1)(u2−1)](u2y+2ux−y)− (3u2−1)(u2 +1)2(u2−3),
L4 = (3u2− 1)(u2− 3)[4bu(u2− 1)(u2x− 2uy−x)− 2u(u2 + 1)2]− d(u2− 1)(u8x−
12u6x+ 32u5y + 38u4x− 32u3y − 12u2x+ x).

6.2. Centers of system (1.1) with two homogeneous invariant straight lines
and reversibility. Consider the system of algebraic equations (5.5) and let the
conditions (3.3) hold.

6.2.1. a3 = 0. In this case V04 ≡ V22 ≡ 0 and we have the following possibilities:
If u = −1 or u(u+1) 6= 0, then from the equations of (5.5) we obtain respectively

the following two sets of conditions for the existence of a center:
(8) b = c = g = k = l = p = q = 0, f = a+ d, r = m+ n− s;
(9) b = [a(1 − u2)]/(2u), c = [d(1 − u2)]/(2u), g = [(a + d)(1 − u2)]/(2u),

n = [(q−3k)(u4−6u2 +1)+4m(u3−u)]/[4u(u2−1)], l = k, f = a+d, r =
[(q − k)(u4 − 6u2 + 1) + 4m(u3 − u)]/[4u(u2 − 1)], s = [k(6u2 − u4 − 1) +
2mu(u2 − 1)]/[2u(u2 − 1)], p = q.

If u = 0, then (5.5) yields the symmetric set of conditions to (8).

6.2.2. a3 6= 0. In this case from the equation V02 = 0 of (5.5) we find

a3 = [a(u2 − 1) + 2bu]/(u2 + 1).

If u = −1, then (5.5) yields the following conditions for the existence of a center
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(10) c = −3b, f = a + d, g = −2b, k = −2ab, l = b(a + d), m = 2b2, p =
−2b(a+ d), q = b(a− d), r = 0, s = 2b2 + n.

In the case u = 0, we get the symmetric to (10) set of conditions for the existence
of a center.

Let u(u + 1) 6= 0, then from the equations of (5.5) we obtain the following
conditions for the existence of a center

(11) c = [(3a+ d)(1− u2)− 6bu]/(2u), g = [(3a+ d)(1− u2)− 4bu]/(2u),

l = [a(3a+ d)(u2 − 1) + 2(3ab+ bd+ k)u]/(2u),

m = [r(u2 + 1)4 + 2(au2 − a+ 2bu)((5a+ 2d)(u6 − 1)

+ (11a− 2d)(u2 − u4) + b(10u5 − 12u3 + 10u))]/(u2 + 1)4,

s = [n(u2 + 1)4 + 2(au2 − a+ 2bu)((5a+ 2d)(u6 − 1)

+ (11a− 2d)(u2 − u4) + b(10u5 − 12u3 + 10u))]/(u2 + 1)4,

f = a+ d, q = [2pu+ (3a+ d)(au2 − a+ 2bu)]/(2u),

r = [2(5ab+ bd+ k)(u11 − u) + 2(4b2 − 9a2 − 3ad)(u10 + u2)

+ a(3a+ d)(u12 + 1) + 2(3k − 5bd− 33ab)(u9 − u3)

+ (61a2 − ad− 64b2)(u8 + u4) + 4(45ab− 3bd+ k)(u7 − u5)

+ 4(28b2 − 23a2 + 3ad)u6]/[4u2(u2 + 1)4],

n = [2(k − 10ab− 2bd)(u9 + u) + 8(10ab+ k)(u7 + u3)

+ 2(14a2 + ad− 12b2)(u8 − u2) + 4(10b2 + ad− 8a2)(u6 − u4)

+ 4(3k − 14ab+ 2bd)u5 + 2a(2a+ d)(1− u10)]/[(u2 + 1)4(u2 − 1)],

p = [(12ab+ 2bd+ k)(u9 + u) + (12b2 − 5ad− 19a2)(u8 − u2)

+ 4(k − 16ab− 2bd)(u7 + u3) + 2(21a2 − 3ad− 26b2)(u6 − u4)

+ a(3a+ d)(u10 − 1) + 2(52ab− 10bd+ 3k)u5]/[u(u2 + 1)4].

Remark 6.2. In each of the cases (10) and (11) the system (1.1) has three invariant
straight lines. Thus, in conditions (10) besides the invariant straight lines x±iy = 0,
the system (1.1) has one more invariant straight line L3 = 1 − 2bx; in conditions
(11): L3 = (au2 − a+ 2bu)[4ux+ 2(u2 − 1)y]− (u2 + 1)2 = 0.

6.3. Centers of system (1.1) with two nonhomogeneous and nonparallel
invariant straight lines and reversibility. Consider the system of algebraic
equations (5.5) and let the conditions (3.6) hold.

6.3.1. a3 = 0. In this case V04 ≡ V22 ≡ 0 and we have the following possibilities:
If u = 0 or u = −1, then from the equations of (5.5) we obtain, respectively, the

following three sets of conditions for the existence of a center:

(12) a = b = d = f = k = l = p = q = 0, c = 2g, m = g2 + 1, n = 1, r = s = −1,
A1 = g −A2, A2

2 − gA2 − 1 = 0;
(13) b = c = g = k = l = p = q = 0, r = −(f + 1), s = (a− 1)(d− a−m+ 2),

n = (f + 2)(d− a−m+ 2)− d− 1, A1 = −A2, A2
2 + a+m− d− 2 = 0;

(14) b = c = g = l = p = q = s = 0, f = −2, n = −(d+1), r = 1, k = (a−1)A2,
A1 = 0, A2

2 + a− d+m− 2 = 0.
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If u(u+ 1) 6= 0, then from the equations {V02 = 0, V20 = 0, U11 = 0} of (5.5) we
express, b, g and d, respectively. Then V03 ≡ f1f2f3 = 0, where

f1 = 2uA1 + 1− u2, f2 = 2uA2 + 1− u2,

f3 = a(u4 + 1) + 2(A1 +A2 − c)(u3 − u) + 2(2f − a+ 4)u2.

Let f1 = 0, then A1 = (u2 − 1))/(2u) and V03 ≡ V21 ≡ 0. Express A2 from
U30 = 0 and denote z = u4 − 6u2 + 1, then U12 ≡ h1c + h2 = 0, where h1 =
2(fz + (u2 + 1)2 − 8au2)(u2 − 1)u and h2 = f(u2 + 1)4 − 32a2u4 + f2(u2 − 1)2z −
4a(f − 2)(u2 + 1)2u2.

If h1 = 0, then U12 = 0 yields f = −1 and a = 1. In this case we get the
following conditions for the existence of a center

(15) a = 1, b = [u6 − 15u4 + 15u2 − 1 − 2cuz]/[2u(u2 + 1)2], f = −1, d =
[4(u2− 1)z− 2cu(3z+ 8u2)]/[(u2 + 1)2(u2− 1)], g = k = l = −b, p = q = b,
m = (bz)/[2u(1 − u2)], r = s = 0, n = −m, z = u4 − 6u2 + 1, A1 =
(u2 − 1)/(2u), A2 = (2cu− u2 + 1)/(2u).

If h1 6= 0, then express c form U12 = 0 and obtain the following conditions for
the existence of a center

(16) g = [(a(1 − u2) + 2cu)z + 8f(1 − u2)u2]/[2u(1 + u2)2], s = (1 − a)A1A2,
d = [2(a− f)(u2 − 1)z − 2cu(3z + 8u2)]/[(u2 − 1)(u2 + 1)2],

c = −[f(u2 + 1)4 − 32a2u4 + f2(u2 − 1)2z − 4a(f − 2)(u2 + 1)2u2]

÷ [2(fz + (u2 + 1)2 − 8au2)(u2 − 1)u],

b = −g + (a+ f)(1− u2)/(2u), k = (a− 1)(A1 + A2) + g, q = (A1 + A2 −
c)A1A2−g, r = −f−1, n = A1A2(−f−2)−(d+1), p = (f+2)(A1 +A2)+
b−c, l = −b, m = −A2

1−A1A2−A2
2+c(A1+A2)−a+d+2, z = u4−6u2+1,

A1 = (u2 − 1)/(2u), A2 = 2(a− 1)u/(u2 − 1) + (2cu+ fu2 − f)/(2u).
The case f2 = 0 can be reduced to f1 = 0 if we replace A2 by A1.
Assume f1f2 6= 0 and f3 = 0. We express A1 from f3 = 0, a from V21 = 0 and

calculate the resultant of the equations {U30 = 0, U12 = 0} by A2. We find that
Res(U30, U12, A2) ≡ 64g2

1g
2
2(u2 + 1)12(u2− 1)4u2, where g1 = 2uz(u2− 1)c+ f(u8 +

1)− 8(f − 1)(u6 + u2) + 2(23f + 24)u4, g2 = (u2 + 1)2f + 8u2.
If g1 = 0 or g2 = 0, then we get the following center conditions, respectively:
(17) a = (8u2 − fz)/[2(u2 − 1)2], n = 2pu/(u2 − 1) + (z − 16u2)/z,

c = [8(f − 1)(u6 + u2)− 2(23f + 24)u4 − f(u8 + 1)]/[2zu(u2 − 1)],

d = [4(3f + 8)(u6 + u2)− 8(5f + 12)u4]/[z(u2 − 1)2], l = −b,
b = [2(f + 2)u]/(u2 − 1), g = [f(u4 + 1) + 2(5f + 12)u2]/[4u(1− u2)],

k = [32(f + 1)u2(u4 + 1) + f2(u2 + 1)4]/[8u(u2 − 1)3], r = −(f + 1),

m = [qz(u2 − 1)− 2u(5u4 − 14u2 + 5)]/[2zu], z = u4 − 6u2 + 1,

p = [f2(u2 + 1)4 + 48u2(u2 − 1)2 + 8fu2(7u4 − 10u2 + 7)]/[4uz(1− u2)],

s = [(f + 2)((f − 2)(u8 + 6u4 + 1) + 4(f + 6)(u6 + u2))]/[4(u2 − 1)4],

q = [f2(u2 + 1)4(u4 − 14u2 + 1) + 32(f + 3)(u10 + 10u6 + u2)

− 192(3f + 5)(u8 + u4)]/[8zu(u2 − 1)3],

A1 = [4z(1− u2)uA2 − 4(f + 10)(u6 + u2)− 6(f − 8)u4 − f(u8 + 1)]/[4zu(u2 − 1)],
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4zu(u2 − 1)2A2
2 + (u2 − 1)(8(5u4 − 6u2 + 5)u2 + f(u2 + 1)4)A2

+ 2u((f − 2)(u8 + 6u4 + 1) + 4(f + 6)(u6 + u2)) = 0;

(18) a = (8u2)/(u2 + 1)2, f = −a, l = g = −b, q = 3b, p = −3k, b = [4u(u2 −
1)(u4 − 14u2 + 1)− cz(u2 + 1)2]/(u2 + 1)4, d = [32z(u4 − u2)− 2cu(3u4 −
10u2 + 3)(u2 + 1)2]/[(u2 + 1)4(u2 − 1)], k = [4u(u2 − 1)]/(u2 + 1)2, s =
(−bz)/[4u(u2 − 1)], r = −z/(u2 + 1)2, m = [4u(u2 − 1)(u4 − 22u2 + 1) +
c(u2 + 1)4]/[4u(u2 − 1)(u2 + 1)2],

n = [c(u8 − 20u6 + 54u4 − 20u2 + 1)(u2 + 1)2 − 2u(u8 − 68u6 + 246u4

− 68u2 + 1)(u2 − 1)]/[2u(u2 + 1)4(1− u2)], z = u4 − 6u2 + 1,

A1 = c−A2−8(u3−u)/(u2 +1)2, 4u(u2−1)[(u2 +1)2(A2
2−cA2)+8u(u2−

1)A2 − u4 + 14u2 − 1] + cz(u2 + 1)2 = 0.

6.3.2. a3 6= 0. In this case the equation V02 = 0 of (5.5) yields

a3 = [a(u6−1)+2(g−c)(u5+u)+(3a+4d−4f)(u2−u4)+4(2b+c−g)u3]/(u2+1)3.

If u = 0 or u = −1, then from the equations of (5.5) we obtain, respectively, the
following three sets of conditions for the existence of a center:

(19) b = l = s = 0, a = r = 1, d = −3, n = −f = 2, k = g, p = −c, q = −2g,
A3

2 − cA2
2 + (m+ 2)A2 − g = 0, A2

1 + (A2 − c)A1 +A2
2 − cA2 +m+ 2 = 0;

(20) r = s = 0, a = 1/2, c = b + 2g, d = (−3)/2, f = −1, k = g/2, l = −b,
m = g(b+ g), n = 1/2, p = −g, q = −g, A1 = 0, A2 = g;

(21) c = −3b, f = −1, g = −2b, k = −2ab, l = −b, m = 2b2, n = 1 − a,
p = 2b, q = b(a − d), s = 3a − a2 + ad − d − 2, r = 0, A1 = −A2 − 2b,
A2

2 + 2bA2 + a− d− 2.
If u(u+1) 6= 0, then we express d from V20 = 0 and replace in V04 = 0. Factoring

we obtain V04 ≡ f1f2f3 = 0, where

f1 = A1(u2 − 1) + 2u, f2 = A2(u2 − 1) + 2u,

f3 = (a− 1)(u4 + 1) + 2(A1 +A2 − c)(u3 − u) + 2(3− a+ 2f)u2.

Let f1 = 0, then A1 = (2u)/(1− u2) and we find U12 ≡ g1g2 = 0, where

g1 = (2a+ 2f + 1)(u4 + 1) + 4(b+ g)(u3 − u)− 2(2a+ 2f − 1)u2,

g2 = (2a+ f)(u4 + 1) + 2(b− c+ g)(u3 − u) + 2(f − 2a)u2.

Assume g1 = 0 and express g from g1 = 0, then U12 ≡ U30 ≡ 0. Replacing g in
V03 = 0 and factoring we obtain V03 ≡ h1h2 = 0, where

h1 = 4u(1− u2)A2 + u4 − 6u2 + 1,

h2 = (2a− 1)(u4 + 1) + 4(A2 − c)(u3 − u) + 2(3− 2a+ 4f)u2.

If h1 = 0, then A2 = (u4−6u2 + 1)/[4u(u2−1)]. We express a from V22 ≡ V21 ≡
U11 = 0 and obtain the following set of conditions for the existence of a center

(22)

a = [(f + 1)(8u6 − u8 + 8u2 − 1) + 2(b+ c)(u− u7) + 2(b− 7c)(u3 − u5)

+ 2(9− 7f)u4]/[8u2(u2 − 1)2],

k = (a− 1)(A1 +A2) + g, l = −b,
d = [(f + 1)(−u8 − 1) + 2(b+ c)(u− u7) + 2(4f − 1)(u6 + u2)
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+ 2(7b+ 3c)(u5 − u3)− 2(7f + 1)u4]/[4u2(u2 − 1)2],

r = −(f + 1),

g = [(f + 1)(u8 + 1) + 2(b+ c)(u7 − 7u5 + 7u3 − u)

− 4(4f + 3)(u6 + u2) + 2(15f − 13)u4]/[16u3(u2 − 1)],

n = −(f + 2)A1A2 − d− 1, m = c(A1 +A2)−A2
1 −A1A2 −A2

2 − a+ d+ 2,
s = (1− a)A1A2, q = A1A2(A1 +A2− c)− g, p = (f + 2)(A1 +A2) + b− c,
A1 = (2u)/(1− u2), A2 = (u4 − 6u2 + 1)/[4u(u2 − 1)].

If h1 6= 0, h2 = 0, then express A2 from h2 = 0 and a from U11 ≡ V22 = 0. We
obtain the following two sets of conditions for the existence of a center

(23) a = [2cu(u2 − 1)− 4fu2]/(u2 − 1)2, k = (a− 1)(A1 +A2) + g, l = −b, b =
[(f+1)(10u2−u4−1)+2c(u−u3)]/[2(u3−u)], r = −(f+1), d = [6(4f+5)u2−
(4f+9)(u4+1)+4c(u−u3)]/[2(u2−1)2], g = [u4−2(4f+11)u2+1]/[4(u3−
u)], n = −(f+2)A1A2−d−1, m = c(A1 +A2)−A2

1−A1A2−A2
2−a+d+2,

s = (1− a)A1A2, q = A1A2(A1 +A2− c)− g, p = (f + 2)(A1 +A2) + b− c,
A1 = (2u)/(1− u2), A2 = (u4 − 6u2 + 1)/[4u(u2 − 1)];

(24) a = [2(3f + 4)u2 − f(u4 + 1)]/[2(u2 − 1)2], r = −(f + 1),

b = [2c(u− 7u3 + 7u5 − u7)− (f + 1)(u8 + 1) + 4(3f + 2)(u6 + u2)

− 2(19f + 7)u4]/[2u(u2 − 1)(u2 + 1)2],

k = (a− 1)(A1 +A2) + g,

d = [28(2f + 1)(u6 + u2)− 3(2f + 3)(u8 + 1) + 4c(3u− 13u3

+ 13u5 − 3u7)− 6(22f + 9)u4]/[2(u4 − 1)2],

s = (1− a)A1A2,

g = [(f + 1)(u8 − 28u6 − 28u2 + 1) + 4c(u7 − 7u5 + 7u3 − u)

+ 2(35f + 3)u4]/[4u(u2 + 1)2(u2 − 1)],

n = −(f + 2)A1A2 − d− 1, m = c(A1 +A2)−A2
1 −A1A2 −A2

2 − a+ d+ 2,

l = −b, q = A1A2(A1 +A2 − c)− g, p = (f + 2)(A1 +A2) + b− c,
A1 = (2u)/(1− u2), A2 = [(f + 1)(u4 − 14u2 + 1)]/[4u(u2 − 1)] + c.

Assume now g1 6= 0 and g2 = 0. We express g from g2 = 0, A2 from V03 = 0, c
from U30 = 0 and a from V22 = 0. Then U11 ≡ g1 6= 0.

The case f2 = 0 can be reduced to f1 = 0 if we replace A2 by A1.
Assume f1f2 6= 0 and f3 = 0. We reduce the equations of (5.5) by c from f3 = 0.

Factoring we obtain that V03 ≡ e1e2 = 0, where

e1 = (a+ f + 1)(u2 − 1) + 2(b+ g −A1)u,

e2 = (a+ f + 1)(u2 − 1) + 2(b+ g −A2)u.

Let e1 = 0, then A1 = [(a+ f + 1)(u2− 1) + 2(b+ g)u]/(2u). From the equations
V21 ≡ V22 = 0, U12 = 0 and f3 = 0 of (5.5) we express b, g and A2, respectively.

If a = 1, then {U11 = 0, U30 = 0} yields f = −2 and we obtain the following
conditions for the existence of a center

(25) a = r = 1, f = −2, k = g, l = −b, q = A1A2(A1 + A2 − c)− g, b = [z(z −
4u2−2u(u2−1)c)]/[2u(u2−1)(u2+1)2], p = b−c, d = [2u(3A2u

4−10A2u
2+

3A2+8u3−8u)]/[(u2+1)2(1−u2)], g = [(A2(u2−1)+2u)z]/[(u2+1)2(u2−1)],
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z = u4 − 6u2 + 1, m = c(A1 +A2)−A2
1 −A1A2 −A2

2 + d+ 1, n = −d− 1,
s = 0, A1 = b+ g, A2 = [4c(u3 − u)− u4 + 14u2 − 1]/[4(u2 − 1)u].

If a 6= 1, then express c from U11 = 0 and U30 ≡ (2a+ f)(a− 1)(u8 + 1)− 4(u6 +
u2)(2a2 + 4af + f2 − 2f − 1) + 2u4(6a2 + 15af + 2a + 12f2 + 9f + 4) = 0. This
equation admits the following parametrization

a = [(u4 − 6u2 + 1)(w2 + 16u4) + w(u8 − 8u6 + 46u4 − 8u2 + 1)]/[w(u4 − 1)2],

f = [(u4 − 6u2 + 1)(4u2 − 2w)− 2w2]/[w(u2 + 1)2], w 6= 0.

In this case we obtain the following conditions for the existence of a center
(26) a = [(u4−6u2 +1)(w2 +16u4)+w(u8−8u6 +46u4−8u2 +1)]/[w(u4−1)2],

b = [2u(w − 4u2)(u4 + 10u2 − 2w + 1)]/[(u2 + 1)2(u2 − 1)w],

c = [2u10(u4 + 6u2 − 7w − 113) + u8(w2 + 88w + 552)− 2u2(4w2 + 7w − 1)

− 2u6(4w2 + 154w + 113) + 2u4(23w2 + 44w + 6) + w2]

÷ [uw(u2 − 1)(u4 − 6u2 + 1)(u2 + 1)2],

f = [(u4 − 6u2 + 1)(4u2 − 2w)− 2w2]/[w(u2 + 1)2],

g = [(u4(12u2 − w + 56) + u2(12− 10w)− w)(4u2 − w)]/[2(u2 + 1)2(u2 − 1)uw],

d = [(2a+ f)(u6 − 1) + 2(b− c+ 2g)(u5 + u) + (2a− 5f)(u2 − u4)

+ 4(3b+ c)u3]/[4u2(u2 − 1)],

q = (A1 +A2 − c)A1A2 − g, r = −(f + 1),

m = −A2
1 −A1A2 −A2

2 + c(A1 +A2)− a+ d+ 2, s = (1− a)A1A2,

l = −b, n = −(f + 2)A1A2 − (d+ 1), p = (f + 2)(A1 +A2) + b− c,
A1 = [2u((u2 + 1)2 − w)]/[(u2 − 1)w], k = (a− 1)(A1 +A2) + g,

A2 = [2cwu(u2 − 1)− 4u2(u2 + 1)2 − 8fwu2 − w2]/[2wu(u2 − 1)].

The case e2 = 0 can be reduced to e1 = 0 if we replace A2 by A1.

Remark 6.3. In each of the cases (14), (20), (21), (24) the system (1.1) has three
invariant straight lines. Thus, in conditions (14) besides the invariant straight lines
(3.4), the system (1.1) has one more invariant straight line L3 = 1 + (d + 1)y; in
conditions (20): L3 = 1 + gx; in conditions (21): L3 = 1− 2bx; in conditions (24):

L3 = (u8 + 1)(f + 1)x+ 4(u7 − u)(cx− fy − y + 1)− 4(u6 + u2)(4cy + 5fx+ 3x)

+ 4(u3 − u5)(7cx− 15fy − 7y − 1) + 2u4(16cy + 43fx+ 19x).

Remark 6.4. In each of the cases (12), (15), (16), (17), (18), (19), (25), (26) the
system (1.1) has four invariant straight lines. Thus, in conditions (12) besides the
invariant straight lines (3.4), the system (1.1) has two more invariant straight lines
L3,4 = 2+(g±

√
g2 + 4)x+2y = 0; in conditions (15): L3 = (u2−1)(bx−1)−2buy,

L4 = (u6−1)x−2(u5 +u)(cx+3y+1)+(u4−u2)(8cy−15x)+4u3(3cx+5y−1); in
conditions (16): L3 = [2(a−1)ux−(fy+y+1)(u2−1)](u2+1)2−(u2−1)(fz−8au2),

L4 = (u10 − 1)(f + 1)2x− 2(u9 + u)(f + 1)(fy + y + 1) + (u2 − u8)[4a(3f + 2)

+ (3f + 1)2]x+ 8(u7 + u3)(3afy + 2ay + 2a+ 2f2y + fy + 2f)

+ 2(u6 − u4)(16a2 + 26af − 4a+ 11f2 − 4f − 1)x+ 4u5(1− 16a2y

− 20afy + 8ay − 8a− 7f2y + 6fy − 7f + y);
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in conditions (17): L3,4 = fx(u8+1)−4(f+2)(u7+3u6x+3u2x−u)−4(f+10)(u5−
u3)− 2(13f + 24)u4x± ((u2 + 1)2x+ 4u(u2− 1))

√
A− 8(f + 1)u(u2 + 1)2(u2− 1)y,

A = f2(u2 + 1)4 + 48fu2(u2 + 1)2 + 64(u4 + 3u2 + 1)u2; in conditions (18): L3,4 =
(u3 − u)[(cx− 2)(u8 + 1) + 4(c− 2x)(u2 + 1)(u5 − u) + 4(cx− 6)(u6 + u2) + 6(cx+
14)u4]± ((u2 +1)2x+4u(u2−1))

√
A− (2u(u2−1)(u2 +1)4)y, A = u(u2−1)[c(u2 +

1)(u4− 1)− 4uz](cu(u2 + 1)2−u6− 9u4 + 9u2 + 1); in conditions (19): L3 = 1− 2y,
L4 = 1 + (c− a1 − a2)x− y; in conditions (25): L3 = 2ux+ (u2 − 1)(y − 1),

L4 = (u8 + 1)x+ 4(cx+ y + 1)(u− u7) + 4(4cy − 7x)(u6 + u2)

+ 4(7cx+ 23y − 1)(u5 − u3) + 2(67x− 16cy)u4;

in conditions (26): L3 = 2(2ux+u2y−y)(4u2−w)+w(u2−1), L4 = (8u2−w)[(4u2−
w)(u4 − 6u2 + 1)x+ 2u(u2 − 1)(u4 − 6u2 + 2w+ 1)y] + 2uw(u2 − 1)(u4 − 6u2 + 1).

In this way we have proved the following theorem.

Theorem 6.5. The cubic differential system (1.1) with at least two invariant
straight lines is rationally reversible if and only if one of the sets of conditions
(1)– (26) is satisfied.

The proof of the main result, Theorem 1.1, follows directly from Theorems 4.5
and 6.5.
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