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SELFADJOINT EXTENSIONS OF MULTIPOINT SINGULAR
DIFFERENTIAL OPERATORS

ZAMEDDIN I. ISMAILOV

Abstract. This article describes all selfadjoint extensions of the minimal op-
erator generated by a linear singular multipoint symmetric differential-operator

expression for first order in the direct sum of Hilbert spaces of vector-functions.

This description is done in terms of the boundary values, and it uses the
Everitt-Zettl and the Calkin-Gorbachuk methods. Also the structure of the

spectrum of these extensions is studied.

1. Introduction

The general theory of selfadjoint extensions of symmetric operators in Hilbert
spaces and their spectral theory have deeply been investigated by many mathe-
maticians; see for example [2, 4, 5, 7, 8, 9]. Applications of this theory to two
point differential operators in Hilbert spaces of functions have been even continued
up to date. It is well-known that for the existence of selfadjoint extension of any
linear closed densely defined symmetric operator in a Hilbert space, a necessary
and sufficient condition is an equality of deficiency indices [9]. However multipoint
situations may occur in different tables in the following sense: Let L1 and L2 be
minimal operators generated by the linear differential expression l(u) = i ddt in the
Hilbert space of functions L2(−∞, a1) and L2(a2,+∞), a1, a2 ∈ R, respectively.
In this case, it is known that deficiency indices of these minimal operators are in
form (m(L1), n(L1)) = (0, 1), (m(L2), n(L2)) = (1, 0). Consequently, L1 and L2 are
maximal symmetric operators, but they have no selfadjoint extensions. However,
direct sum L = L1 ⊕ L2 of operators in the direct sum L2(−∞, a1) ⊕ L2(a2,+∞)
of Hilbert spaces have equal defect numbers (1,1). Then by the general theory [9]
it has a selfadjoint extension. On the other hand, it can be easily shown [1] that
all selfadjoint extensions of L are in the form

u2(a2) = eiϕu1(a1), ϕ ∈ [0, 2π), u = (u1, u2), u1 ∈ D(L∗1), u2 ∈ D(L∗2).

Note that in the multiinterval linear ordinary differential expression case the
deficiency indices may be different for each interval, but equal in the direct sum
Hilbert spaces from the different intervals. The selfadjoint extension theory of
linear ordinary differential expression of any order is known from famous work of
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Everitt and Zettl [3] for any number of intervals, finite or infinite, of real-axis.
This theory is based on the Glassman-Krein-Naimark Theorem. Information on
the selfadjoint extensions, the direct and complete characterizations for the Sturm-
Liouville differential expression in finite or infinite interval with interior points or
endpoints singularities can be found in the significant monograph of Zettl [10].
Special cases of problems considered in this paper has been investigated in [1, 6].

Lastly, note that many problems arising in the modeling processes, multi-particle
quantum mechanics, quantum field theory, the physics of rigid bodies and etc sup-
port to study selfadjoint extension of symmetric differential operators in direct sum
of Hilbert spaces (see [10] and references in it).

In section 2 in this work, by the method of Calkin-Gorbachuk Theory, all self-
adjoint extensions of the minimal operator generated by linear multipoint singular
symmetric differential-operator expression of first order in the direct sum of Hilbert
spaces L2(H1, (−∞, a1))⊕L2(H2, (a2,+∞))⊕L2(H3, (a3,+∞)), where H1, H2, H3

are a separable Hilbert spaces with condition 0 < dimH1 = dimH2 + dimH3 ≤ ∞
and a1, a2, a3 ∈ R, in terms of boundary values are described. In section 3, the
spectrum of such extensions is investigated.

In this article, let

∆1 = (−∞, a1), ∆2 = (a2,+∞), ∆3 = (a3,+∞) for ak ∈ R, k = 1, 2, 3,

L(k) = L2(Hk,∆k), k = 1, 2, 3; L = L(1)⊕ L(2)⊕ L(3).

2. Description of selfadjoint extensions

In the Hilbert space L of vector-functions let us consider the linear multipoint
singular symmetric differential-operator expression

l(u) = (l1(u1), l2(u2), l3)(u3)),

where u = (u1, u2, u3), lk(uk) = iu′k(t) +Akuk(t), t ∈ ∆k, k = 1, 2, 3.
Ak : D(Ak) ⊂ Hk → Hk, k = 1, 2, 3 are linear selfadjoint operators in Hk. In

the linear manifold D(Ak) ⊂ Hk introduce the inner product

(f, g)k,+ = (Akf,Akg)Hk
+ (f, g)Hk

, f, g ∈ D(Ak), k = 1, 2, 3.

For k = 1, 2, 3, D(Ak) is a Hilbert space under the positive norm ‖ · ‖k,+ with
respect to the Hilbert space Hk. It is denoted by Hk,+, k = 1, 2, 3. Denote Hk,−,
k = 1, 2, 3 a Hilbert space with the negative norm (for information on Hilbert spaces
with positive and negative norms, see for example [5]). It is clear that an operator
Ak is continuous from Hk,+ to Hk and that its adjoint operator Ãk : Hk → Hk,− is
a extension of the operator Ak, k = 1, 2, 3. On the other hand, Ãk : Hk ⊂ Hk,− →
Hk,−, k = 1, 2, 3 is a linear selfadjoint operator.

In the direct sum L let us define

l̃(u) = (l̃1(u1), l̃2(u2), l̃3(u3)), (2.1)

where u = (u1, u2, u3) and l̃k(uk) = iu′k(t) + Ãkuk(t), t ∈ ∆k, k = 1, 2, 3.
The minimal operator L10 (L20, L30) and maximal operator L1 (L2, L3) gener-

ated by differential-operator expression l̃1(·) (l̃2(·), l̃3(·)) in L have been investigated
in [4] and here established that the minimal operator L10 (L20, L30) is not selfad-
joint in L. The operators L0 = L10 ⊕ L20 ⊕ L30 and L = L1 ⊕ L2 ⊕ L3 in the
space L are called minimal and maximal (multipoint) operators generated by the
differential expression (2.1), respectively. Note that the operator L0 is symmetric
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in L. On the other hand, it is clear that, deficiency indices m(L10) = dimH1,
n(L10) = 0, m(L20) = 0, n(L20) = dimH2. Consequently, m(L0) = dimH1,
n(L0) = dimH2 + dimH3. Hence, the minimal operator L0 in the direct sum L
has a selfadjoint extension [9].

In this section all selfadjoint extensions of the minimal operator L0 in L in terms
of the boundary values are described, using Calkin-Gorbachuk method. Note that
in this theory, the space of boundary values is important for the description of
selfadjoint extensions of linear symmetric differential operators [4, 5, 8]. Now give
their definition.

Definition 2.1. Let T : D(T ) ⊂ H → H be a closed densely defined symmetric
operator in the Hilbert space H, having equal finite or infinite deficiency indices.
A triplet (H, γ1, γ2), where H is a Hilbert space, γ1 and γ2 are linear mappings of
D(T ∗) into H, is called a space of boundary values for the operator T if for any
f, g ∈ D(T ∗)

(T ∗f, g)H − (f, T ∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H,

while for any F,G ∈ H, there exists an element f ∈ D(T ∗), such that γ1(f) = F and
γ2(f) = G.

Note that any symmetric operator with equal deficiency indices has at least one
space of boundary values [5].

Since H1, H2, H3 are separable Hilbert spaces and dimH1 = dimH2 + dimH3,
then it is known that there exist an isometric isomorphism V : H2⊕H3 → H1 such
that V (H2 ⊕H3) = H1. In this case the following statement is true.

Lemma 2.2. The triplet (H1, γ1, γ2), where

γ1 : D(L∗0)→ H1, γ1(u) =
1

i
√

2
(u1(a1) + V (u2(a2), u3(a3))), u ∈ D(L∗0),

γ2 : D(L∗0)→ H1, γ2(u) =
1√
2

(u1(a1)− V (u2(a2), u3(a3))), u ∈ D(L∗0)

is a space of boundary values of the minimal operator L0 in direct sum L.

Proof. For arbitrary u = (u1, u2, u3), v = (v1, v2, v3) ∈ D(L0) the validity of the
equality

(Lu, v)L − (u, Lv)L = (γ1(u), γ2(v))H1
− (γ2(u), γ1(v))H1

can be easily verified. Now for any given elements F,G ∈ H1, we will find the
function u = (u1, u2, u3) ∈ D(L0) such that

γ1(u) =
1

i
√

2
(u1(a1) + V (u2(a2), u3(a3))) = F,

γ2(u) =
1√
2

(u1(a1)− V (u2(a2), u3(a3))) = G.

Indeed, in this case

V (u2(a2), u3(a3)) = (iF −G)/
√

2, u1(a1) = (iF +G)/
√

2

and from this, since V is the isometric mapping from H2 ⊕ H3 onto H1, then it
implies that there exists unique elements v1(F,G) ∈ H2 and v2(F,G) ∈ H3 such
that

(u2(a2), u3(a3)) =
1√
2
V −1(iF −G) = (v1(F,G), v2(F,G)) ∈ H2 ⊕H3,
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u1(a1) =
1√
2

(iF +G) ∈ H1.

If we choose the functions u(t) = (u1(t), u2(t), u3(t)) in the form

u1(t) = e
t−a1

2
1√
2

(iF +G), t ∈ ∆1,

u2(t) = e
a2−t

2 v1(F,G), t ∈ ∆2,

u3(t) = e
a3−t

2 v2(F,G), t ∈ ∆3,

then it is clear that u(t) = (u1(t), u2(t), u3(t)) ∈ D(L0) and γ1(u) = F , γ2(u) =
G. �

Using the method in [5] the following result can be deduced.

Theorem 2.3. If L̃ is a selfadjoint extension of the minimal operator L0 in direct
sum L, then it is generated by differential-operator expression (2.1) and boundary
condition

u1(a1) = WV (u2(a2), u3(a3)),

where W : H1 → H1 is a unitary operator. Moreover, the unitary operator W is
determined uniquely by extension L̃, i.e. L̃ = LW and vice versa.

Remark 2.4. In a similar way, the selfadjoint extensions can be described of
minimal operator generated by multipoint differential-operator expression

l(u) = (l1(u1), l2(u2), . . . , ln(un);m1(v1),m2(v2), . . . ,mk(vk)),

where u = (u1, u2, . . . , un; v1, v2, . . . , vk),

lp(up) = iu′p(t) +Apup(t), t ∈ (−∞, ap), p = 1, 2, . . . , n;

mj(vj) = iu′j(t) +Bjuj(t), t ∈ (bj ,+∞), j = 1, 2, . . . , k,

Ap : D(Ap) ⊂ Hp → Hp and Bj : D(Bj) ⊂ Gj → Gj are linear selfadjoint operators
in Hilbert spaces Hp, p = 1, 2, . . . , n and Gj , j = 1, 2, . . . , k respectively, in direct
sum spaces

⊕n
p=1 L

2(Hp, (−∞, ap)) ⊕
⊕k

j=1 L
2(Gj , (bj ,+∞)) with condition 0 <∑n

p=1 dimHp =
∑k
j=1 dimGj ≤ ∞.

3. Spectrum of the selfadjoint extensions

In this section, we study the structure of the spectrum of the selfadjoint extension
LW in a direct sum L. First, we have to prove the following result.

Theorem 3.1. The point spectrum of any selfadjoint extension LW is empty; i.e.,

σp(LW ) = ∅.

Proof. Let us consider the problem for the spectrum of the selfadjoint extension
LW ,

l̃(u) = λu(t), λ ∈ R,
u1(a1) = WV (u2(a2), u3(a3)),

where W : H1 → H1 is a unitary operator. Then

(l̃1(u1), l̃2(u2), l̃3(u3)) = λ(u1, u2, u3), u1(a1) = WV (u2(a2), u3(a3))
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and from this we have

l̃k(uk) = iu′k(t) + Ãkuk(t) = λuk(t), t ∈ ∆1, k = 1, 2, 3;

u1(a1) = WV (u2(a2), u3(a3)), λ ∈ R.

The general solution of the this problem is

uk(λ; t) = ei(Ãk−λ)(t−ak)fk,λ, fk,λ ∈ Hk, t ∈ ∆k, k = 1, 2, 3.

The boundary condition is in form f1,λ = WV (f2,λ, f3,λ). In order for u1(λ; t) ∈
L(1), u2(λ; t) ∈ L(2), u3(λ; t) ∈ L(3), necessary and sufficient conditions are fk,λ =
0, k = 1, 2, 3. So for every operator W we have σp(LW ) = ∅. �

Since the residual spectrum of any selfadjoint operator in any Hilbert space
is empty, it is sufficient to investigate the continuous spectrum of the selfadjoint
extensions LW of the minimal operator L0 in the Hilbert space L. First of all, we
prove the following result.

Theorem 3.2. For the resolvent set ρ(LW ) it holds

ρ(LW ) ⊃ {λ ∈ C : Imλ 6= 0}.

Proof. For this, we research the existence of the resolvent operator of LW gener-
ated by the differential-operator expression l̃(·) and boundary condition u1(a1) =
WV (u2(a2), u3(a3)) in L, in case when λ ∈ C, Imλ 6= 0. Firstly, consider the
spectral problem in form

l̃(u) = λu(t) + f(t), f = (f1, f2, f3) λ ∈ C, λi = Imλ > 0

u1(a1) = WV (u2(a2), u3(a3))
(3.1)

Now, we will show that the function

u(λ; t) = (u1(λ; t), u2(λ; t), u3(λ; t)),

where

u1(λ; t) = ei(Ã1−λ)(t−a1)fλ + i

∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds, t ∈ ∆1,

u2(λ; t) = i

∫ ∞
t

ei(Ã2−λ)(t−s)f2(s)ds, t ∈ ∆2,

u3(λ; t) = i

∫ ∞
t

ei(Ã3−λ)(t−s)f3(s)ds, t ∈ ∆3,

fλ = WV
(
i

∫ ∞
a2

ei(Ã2−λ)(a2−s)f2(s)ds, i
∫ ∞
a3

ei(Ã3−λ)(a3−s)f3(s)ds
)
,

is a solution of boundary value problem (3.1) in L. It is sufficient to show that
u1(λ; t) ∈ L(1), u2(λ; t) ∈ L(2), u3(λ; t) ∈ L(3), for λi > 0. Indeed, in this case

‖fλ‖2H1
=
∥∥∫ ∞

a2

ei(Ã2−λ)(a2−s)f2(s)ds
∥∥2

H2
+
∥∥∫ ∞

a3

ei(Ã3−λ)(a3−s)f3(s)ds
∥∥2

H3

≤
(∫ ∞

a2

eλi(a2−s)‖f2(s)‖H2ds
)2

+
(∫ ∞

a3

eλi(a3−s)‖f3(s)‖H3ds
)2

≤
(∫ ∞

a2

e2λi(a2−s)ds
)(∫ ∞

a2

‖f2(s)‖2H2
ds
)
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+
(∫ ∞

a3

e2λi(a3−s)ds
)(∫ ∞

a3

‖f3(s)‖2H3
ds
)

=
1

2λi
(‖f2‖2L(2) + ‖f3‖2L(3)) <∞,

‖ei(Ã1−λ)(t−a1)fλ‖2L(1) = ‖e−iλ(t−a1)fλ‖2L(1) =
∫ a1

−∞
‖e−iλ(t−a1)fλ‖2H1

dt

=
∫ a1

−∞
e2λi(t−a1)dt‖fλ‖2H1

=
1

2λi
‖fλ‖2H1

<∞

and∥∥i∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds
∥∥2

L(1)

≤
∫ a1

−∞

(∫ a1

t

eλi(t−s)‖f1(s)‖H1ds
)2

dt

≤
∫ a1

−∞

(∫ a1

t

eλi(t−s)ds
)(∫ a1

t

eλi(t−s)‖f1(s)‖2H1
ds
)
dt

=
1
λi

∫ a1

−∞

∫ a1

t

eλi(t−s)‖f1(s)‖2H1
dsdt =

1
λi

∫ a1

−∞

(∫ s

−∞
eλi(t−s)‖f1(s)‖2H1

dt
)
ds

=
1
λi

∫ a1

−∞

(∫ s

−∞
eλi(t−s)dt

)
‖f1(s)‖2H1

ds

=
1
λ2
i

∫ a1

−∞
‖f1(s)‖2H1

ds =
1
λ2
i

‖f1‖2L(1) <∞.

Hence, ‖u1(λ; t)‖L(1) <∞. Furthermore,

‖u2(λ; t)‖2L(2) =
∥∥i∫ ∞

t

ei(Ã2−λ)(t−s)f2(s)ds
∥∥2

L(2)

≤
∫ ∞
a2

(∫ ∞
t

eλi(t−s)‖f2(s)‖H2ds
)2

dt

≤
∫ ∞
a2

(∫ ∞
t

eλi(t−s)ds
)(∫ ∞

t

eλi(t−s)‖f2(s)‖2H2
ds
)
dt

=
1
λi

∫ ∞
a2

(∫ ∞
t

eλi(t−s)‖f2(s)‖2H2
ds
)
dt

=
1
λi

∫ ∞
a2

(∫ s

a2

eλi(t−s)‖f2(s)‖2H2
dt
)
ds

=
1
λi

∫ ∞
a2

(∫ s

a2

eλi(t−s)dt
)
‖f2(s)‖2H2

ds

=
1
λ2
i

∫ ∞
a2

(1− eλi(a2−s))‖f2(s)‖2H2
ds

≤ 1
λ2
i

‖f2‖2L(2) <∞

and

‖u3(λ; t)‖2L(3) =
∥∥i∫ ∞

t

ei(Ã3−λ)(t−s)f3(s)ds
∥∥2

L(3)
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≤
∫ ∞
a3

(∫ ∞
t

eλi(t−s)‖f3(s)‖H3ds
)2

dt

≤
∫ ∞
a3

(∫ ∞
t

eλi(t−s)ds
)(∫ ∞

t

eλi(t−s)‖f3(s)‖2H3
ds
)
dt

=
1
λi

∫ ∞
a3

(∫ ∞
t

eλi(t−s)‖f3(s)‖2H3
ds
)
dt

=
1
λi

∫ ∞
a3

(∫ s

a3

eλi(t−s)‖f3(s)‖2H3
dt
)
ds

=
1
λi

∫ ∞
a3

(∫ s

a3

eλi(t−s)dt
)
‖f3(s)‖2H3

ds

=
1
λ2
i

∫ ∞
a3

(1− eλi(a3−s))‖f3(s)‖2H3
ds

≤ 1
λ2
i

‖f3‖2L(3) <∞.

The above calculations imply that u1(λ; t) ∈ L(1), u2(λ; t) ∈ L(2) and u3(λ; t) ∈
L(1) for λ ∈ C, λi = Imλ > 0. On the other hand, one can easily verify that
u(λ; t) = (u1(λ; t), u2(λ; t), u3(λ; t)) is a solution of boundary value problem (3.1).

When λ ∈ C, λi = Imλ < 0 is true solution of the boundary value problem (3.1)
is in the form u(λ; t) = (u1(λ; t), u2(λ; t), u3(λ; t)),

u1(λ; t) = −i
∫ t

−∞
ei(Ã1−λ)(t−s)f1(s)ds, t ∈ ∆1

u2(λ; t) = ei(Ã2−λ)(t−a2)gλ − i
∫ t

a2

ei(Ã2−λ)(t−s)f2(s)ds, t ∈ ∆2,

u3(λ; t) = ei(Ã3−λ)(t−a3)hλ − i
∫ t

a3

ei(Ã3−λ)(t−s)f3(s)ds, t ∈ ∆3,

where −i
∫ a1

−∞ ei(Ã1−λ)(a1−s)f1(s)ds = WV (gλ, hλ) and since∥∥− i ∫ a1

−∞
ei(Ã1−λ)(a1−s)f1(s)ds

∥∥2

H1
≤
(∫ a1

−∞
eλi(a1−s)‖f1(s)‖H1ds

)2

≤
(∫ a1

−∞
e2λi(a1−s)ds

)(∫ a1

−∞
‖f1(s)‖2H1

ds
)

≤ 1
2|λi|

‖f1‖2L(1) <∞,

we have

(gλ, hλ) = V −1W ∗
(
− i
∫ a1

−∞
ei(Ã1−λ)(a1−s)f1(s)ds

)
∈ H2 ⊕H3.

First, we prove that u(λ; t) ∈ L. In this case,

‖u1(λ; t)‖2L(1) =
∫ a1

−∞

∥∥− i ∫ t

−∞
ei(Ã1−λ)(t−s)f1(s)ds

∥∥2

H1
dt

≤
∫ a1

−∞

(∫ t

−∞
eλi(t−s)ds

)(∫ t

−∞
eλi(t−s)‖f1(s)‖2H1

ds
)
dt
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=
1
|λi|

∫ a1

−∞

∫ t

−∞
eλi(t−s)‖f1(s)‖2H1

ds dt

=
1
|λi|

∫ a1

−∞

(∫ a1

s

eλi(t−s)‖f1(s)‖2H1
dt
)
ds

=
1
|λi|

∫ a1

−∞

(∫ a1

s

eλi(t−s)dt
)
‖f1(s)‖2H1

ds

=
1
|λi|2

∫ a1

−∞
(1− eλi(a1−s))‖f1(s)‖2H1

ds

≤ 1
|λi|2

‖f1‖2L(1) <∞,

‖ei(Ã2−λ)(t−a2)gλ‖2L(2) ≤
∫ ∞
a2

e2λi(t−a2)dt‖gλ‖2H2
=

1
2|λi|

‖gλ‖2H2
<∞

and ∥∥− i ∫ t

a2

ei(Ã2−λ)(t−s)f2(s)ds
∥∥2

L(2)

≤
∫ ∞
a2

(∫ t

a2

eλi(t−s)‖f2(s)‖H2ds
)2

dt

≤
∫ ∞
a2

(∫ t

a2

eλi(t−s)ds
)(∫ t

a2

eλi(t−s)‖f2(s)‖2H2
ds
)
dt

=
∫ ∞
a2

( 1
λi

(1− eλi(t−a2))
)(∫ t

a2

eλi(t−s)‖f2(s)‖2H2
ds
)
dt

≤ 1
|λi|

∫ ∞
a2

(∫ t

a2

eλi(t−a2)‖f2(s)‖2H2
ds
)
dt

=
1
|λi|

∫ ∞
a2

(∫ ∞
s

eλi(t−s)‖f2(s)‖2H2
dt
)
ds

=
1
|λi|

∫ ∞
a2

(∫ a2

s

eλi(t−s)dt
)
‖f2(s)‖2H2

ds

=
1
|λi|2

‖f2‖2L(2) <∞.

In a similar way, it can be shown that

‖ei(Ã3−λ)(t−a3)hλ‖L(3) <∞, ‖ − i
∫ t

a3

ei(Ã3−λ)(t−s)f3(s)ds‖L(3) <∞.

The above calculations show that u1(λ; ·) ∈ L(1), u2(λ; ·) ∈ L(2) and that u3(λ; ·) ∈
L(3); i.e., u(λ; ·) = (u1(λ; ·), u2(λ; ·), u3(λ, ·)) ∈ L for λ ∈ C, λi = Imλ < 0. On
the other hand it can be verified that the function u(λ; ·) satisfies the equation and
boundary condition in (3.1). �

Now, we will study continuous spectrum σc(LW ) of the selfadjoint extension LW .

Theorem 3.3. The continuous spectrum of any selfadjoint extension LW is

σc(LW ) = R.
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Proof. For λ ∈ C, λi = Imλ > 0, norm of the resolvent operator Rλ(LW ) of the
LW is of the form

‖Rλ(LW )f(t)‖2L =
∥∥ei(Ã1−λ)(t−a1)fλ + i

∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds
∥∥2

L(1)

+
∥∥i ∫ ∞

t

ei(Ã2−λ)(t−s)f2(s)ds
∥∥2

L(2)

+
∥∥i∫ ∞

t

ei(Ã3−λ)(t−s)f3(s)ds
∥∥2

L(3)
,

where f = (f1, f2, f3) ∈ L,

fλ = WV
(
i

∫ ∞
a2

ei(Ã2−λ)(a2−s)f2(s)ds, i
∫ ∞
a3

ei(Ã3−λ)(a3−s)f3(s)ds
)
.

Then, it is clear that for any f = (f1, f2, f3) ∈ L,

‖Rλ(LW )f(t)‖2L ≥
∥∥i ∫ ∞

t

ei(Ã2−λ)(t−s)f2(s)ds
∥∥2

L(2)
.

The vector functions f∗(λ; t) which is of the form f∗(λ; t) = (0, e−i(λ̄−Ã2)tf, 0),
λ ∈ C, λi = Imλ > 0, f ∈ H2 belong to L. Indeed,

‖f∗(λ; t)‖2L =
∫ ∞
a2

‖e−i(λ̄−Ã2)tf‖2H2
dt =

∫ ∞
a2

e−2λitdt‖f‖2H2

=
1

2λi
e−2λia2‖f‖2H2

<∞.

For such functions f∗(λ; ·), we have

‖Rλ(LW )f∗(λ; t)‖2L(2) ≥
∥∥i∫ ∞

t

e−i(λ−Ã2)(t−s)e−i(λ̄−Ã2)sfds
∥∥2

L

=
∥∥∫ ∞

t

e−iλte−2λiseiÃ2tfds
∥∥2

L(2)

=
∥∥e−iλteiÃ2t

∫ ∞
t

e−2λisfds
∥∥2

L(2)

=
∥∥e−iλt ∫ ∞

t

e−2λisds
∥∥2

L(2)
‖f‖2H2

=
1

4λ2
i

∫ ∞
a2

e−2λitdt‖f‖2H2

=
1

8λ3
i

e−2λia2‖f‖2H2
.

From this we obtain

‖Rλ(LW )f∗(λ; ·)‖L ≥
e−λia2

2
√

2λi
√
λi
‖f‖H2 =

1
2λi
‖f∗(λ; ·)‖L;

i.e., for λi = Imλ > 0 and f 6= 0,
‖Rλ(LW )f∗(λ; ·)‖L
‖f∗(λ; ·)‖L

≥ 1
2λi

.

is valid. On the other hand, it is clear that

‖Rλ(LW )‖ ≥ ‖Rλ(LW )f∗(λ; ·)‖L
‖f∗(λ; ·)‖L

, f 6= 0.
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Consequently, we have

‖Rλ(LW )‖ ≥ 1
2λi

for λ ∈ C, λi = Imλ > 0.

The last relation implies the validity of assertion. �

Example 3.4. By the previous theorem, the spectrum of the boundary-value prob-
lem

i
∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= f(t, x), |t| > 1, x ∈ [0, 1],

u(1, x) = eiϕu(−1, x), ϕ ∈ [0, 2π),

u′x(t, 0) = u′x(t, 1) = 0, |t| > 1,

in the space L2((−∞,−1)×(0, 1))⊕L2((1,+∞)× (0, 1)) is continuous and coincides
with R. This corresponds to the case when H1 = H2 = C and H3 = {0}.
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