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NON-EXISTENCE OF GLOBAL SOLUTIONS FOR A
DIFFERENTIAL EQUATION INVOLVING HILFER

FRACTIONAL DERIVATIVE

KHALED M. FURATI, MOHAMMED D. KASSIM, NASSER-EDDINE TATAR

Abstract. We consider a basic fractional differential inequality with a frac-
tional derivative named after Hilfer and a polynomial source. A non-existence

of global solutions result is proved in an appropriate space and the critical

exponent is shown to be optimal.

1. Introduction

We study the Cauchy problem of fractional order with a polynomial nonlinearity

(Dα,β
0+ u)(t) ≥ tδ|u(t)|m, t > 0, m > 1, δ ∈ R

(Dγ−1
0+ u)(0) = b > 0,

(1.1)

where
(Dα,β

0+ y)(x) =
(
I
β(1−α)
0+

d

dx
I

(1−β)(1−α)
0+ f

)
(x) (1.2)

is the Hilfer fractional derivative (HFD) of order 0 < α < 1 and type 0 ≤ β ≤ 1,
γ = α + β − αβ and Iσ0+ , σ > 0, is the usual Riemann-Liouville fractional integral
of order σ. This type of derivatives were introduced by Hilfer in [19, 20]. These
references provide information about the applications of this derivative and how
it arises. It is easy to see that this derivative interpolates the Riemann-Liouville
fractional derivative (β = 0) and the Caputo fractional derivative (β = 1) (see
[25, 33]). The special case β = 0 has been discussed in [29].

In this article we find the range of values of m for which solutions do not exist
globally and establish an optimal exponent (in some sense) by showing that solu-
tions do exist beyond this bound in a certain space. The existence and uniqueness
for the general problem

(Dα,β
a+ u)(t) = f(t, u), 0 < α < 1, 0 < β < 1, t > a,

(Dγ−1
a+ u)(a+) = c > 0,

has been established in [11] in the space

Cα,β1−γ [a, b] = {y ∈ C1−γ [a, b], Dα,β
a+ y ∈ C1−γ [a, b]}
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where C1−γ [a, b] is the weighted space of continuous functions on (a, b]

C1−γ [a, b] = {g : (a, b]→ R : (x− a)1−γg(x) ∈ C[a, b]}.
The special cases β = 0 and β = 1 may be found in [21, 22, 23, 24, 25]. These cases
correspond to the Riemann-Liouville derivative and the Caputo derivative cases,
respectively. Problems with such derivatives have been treated in many papers,
we cite a few of them [4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 27, 28, 29, 36], and refer
the reader to the books [25, 33, 35] for many other properties of such derivatives.
The applications of these types of derivatives are numerous. Some of them may be
found in [1, 2, 3, 18, 26, 30, 31, 33, 34, 35]. However, we cannot find much on Hilfer
type derivatives.

The next section contains some definitions, notation and some lemmas which
will be useful later in our proof. In Section 3 we state and prove our non-existence
result. Finally, in Section 4 we give an example showing the existence of solutions
in case the exponent is higher than the critical one found in the previous section.

2. Preliminaries

In this section we present some definitions, lemmas, properties and notation
which will be used in our results later.

Definition 2.1. Let Ω = [a, b] be a finite interval and 0 ≤ γ < 1, we introduce the
weighted space Cγ [a, b] of continuous functions f on (a, b]

Cγ [a, b] = {f : (a, b]→ R : (x− a)γf(x) ∈ C[a, b]}.
In the space Cγ [a, b], we define the norm

‖f‖Cγ = ‖(x− a)γf(x)‖C , C0[a, b] = C[a, b].

Definition 2.2. The Riemann-Liouville left-sided fractional integral Iαa+f of order
α > 0 is defined by

(Iαa+f)(x) :=
1

Γ(α)

∫ x

a

f(t)
(x− t)1−α dt, (a < x ≤ b, α > 0)

provided that the integral exists. Here Γ(α) is the Gamma function. When α = 0,
we define I0

a+f = f . In fact, one can prove that Iαa+f converges to f when α→ 0.

Definition 2.3. The Riemann-Liouville right-sided fractional integral Iαb f of order
α > 0 is defined by

(Iαb−f)(x) :=
1

Γ(α)

∫ b

x

f(t)
(t− x)1−α dt, (a ≤ x < b, α > 0)

provided that the integral exists. When α = 0, we define I0
b−f = f .

Definition 2.4. The Riemann-Liouville left-sided fractional derivative Dα
a+f of

order α (0 ≤ α < 1) is defined by

(Dα
a+f)(x) =

d

dx
(I1−α
a+ f)(x);

that is,

(Dα
a+f) =

1
Γ(1− α)

d

dx

∫ x

a

f(t)
(x− t)α

dt (x > a, 0 < α < 1),

when α = 1 we have Dα
a+f = Df . In particular, when α = 0, D0

a+f = f .
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Definition 2.5. The Riemann-Liouville right-sided fractional derivative Dα
b−f of

order α (0 ≤ α < 1) is defined by

(Dα
b−f)(x) = − d

dx
(I1−α
a+ f)(x);

that is,

(Dα
b−f) = − 1

Γ(1− α)
d

dx

∫ b

x

f(t)
(t− x)α

dt (a ≤ x < b, 0 < α < 1).

In particular, when α = 0, D0
b−f = f .

Definition 2.6. We define the space

Cγ1−γ [a, b] = {y ∈ C1−γ [a, b], Dγ
a+y ∈ C1−γ [a, b]}.

Lemma 2.7 ([25, 35]). Let 0 < α < 1 and 0 ≤ γ < 1. If f ∈ C1
γ , the space

of continuous functions on [a, b] such that their derivatives are in Cγ , then the
fractional derivatives Dα

a+ and Dα
b− exist on (a, b] and [a, b) respectively, and can

be represented in the forms

(Dα
a+f)(x) =

1
Γ(1− α)

[ f(a)
(x− a)α

+
∫ x

a

f ′(t)dt
(x− t)α

]
and

(Dα
b−f)(x) =

1
Γ(1− α)

[ f(b)
(b− x)α

−
∫ b

x

f ′(t)dt
(t− x)α

]
.

Next, we have the Semigroup property of the fractional integration operator Iαa+.

Lemma 2.8 ([25, 35]). Let α > 0, β > 0 and 0 ≤ γ < 1. If f ∈ Lp(a, b), 1 ≤ p ≤ ∞
then the equation

Iαa+I
β
a+f = Iα+β

a+ f

holds at almost every point x ∈ [a, b)]. When α + β > 1, this relation is valid at
any point x ∈ [a, b].

Next is the fractional integration by parts.

Lemma 2.9 ([25, 35]). Let α > 0, p ≥ 1, q ≥ 1 and 1
p + 1

q ≤ 1 + α (p 6= 1 and
q 6= 1 in the case when 1

p + 1
q = 1 + α). If ϕ ∈ Lp(a, b) and ψ ∈ Lq(a, b), then∫ b

a

ϕ(x)(Iαa+ψ)(x)dx =
∫ b

a

ψ(x)(Iαb−ϕ)(x)dx.

Definition 2.10. The fractional derivative cDα
a+f of order α ∈ R (0 < α < 1) on

[a, b] defined by
cDα

a+f = I1−α
a+ Df,

where D = d
dx , is called the Caputo fractional derivative of f of order α ∈ R.

Theorem 2.11 (Young’s inequality). If a and b are nonnegative real numbers and
p and q are positive real numbers such that 1/p+ 1/q = 1 then we have

ab ≤ ap

p
+
bq

q
.
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3. Non-existence result

In this section we establish sufficient conditions ensuring non-existence of global
solutions. In particular we find a range of values for the exponent m for which
solutions cannot be continued for all time. The proof is based mainly on the test
function method developed by Mitidieri and Pohozaev [32] and some adequate
manipulations of the fractional derivatives and integrals. In addition to the results
stated in the Preliminaries Section we need the following lemma.

Lemma 3.1. If α > 0 and f ∈ C[a, b], then

(Iαa+f)(a) = lim
t→a

(Iαa+f)(t) = 0

and
(Iαb−f)(b) = lim

t→b
(Iαb−f)(t) = 0.

Proof. Since f ∈ C[a, b], on [a, b], we have |f(t)| < M for some positive constant
M . Therefore

|(Iαa+f)(t)| ≤ 1
Γ(α)

∫ t

a

(t− s)α−1|f(s)|ds

≤ M

Γ(α)

∫ t

a

(t− s)α−1ds

≤ M

αΓ(α)
[−(t− s)α]ts=a =

M

Γ(α+ 1)
(t− a)α.

As α > 0 we see that
(Iαa+f)(a) = lim

t→a
(Iαa+f)(t) = 0.

The second part is proved similarly. �

Theorem 3.2. Assume that δ > −α and 1 < m ≤ δ+1
1−α . Then, Problem (1.1) does

not admit global nontrivial solutions in Cγ1−γ , when b > 0.

Proof. Assume, on the contrary, that a nontrivial solution u exists for all time t > 0.
Let ϕ ∈ C1([0,∞)) be a test function satisfying: ϕ(t) ≥ 0 and ϕ is non-increasing
such that

ϕ(t) :=

{
1, t ∈ [0, T/2],
0, t ∈ [T,∞),

for some T > 0. Multiplying the inequality in (1.1) by ϕ(t) and integrating we
obtain ∫ T

0

(Dα,β
0+ u)(t)ϕ(t)dt ≥

∫ T

0

tδ|u(t)|mϕ(t)dt (3.1)

and from the definition of (Dα,β
0+ u)(t) (see (1.2)) we can write∫ T

0

I
β(1−α)
0+

d

dt
(I1−γ

0+ u)(t)ϕ(t)dt ≥
∫ T

0

tδ|u(t)|mϕ(t)dt. (3.2)

By Lemma 2.9, we may deduce from (3.2) that∫ T

0

d

dt

(
I1−γ
0+ u

)
(t)
(
I
β(1−α)
T− ϕ

)
(t)dt ≥

∫ T

0

tδ|u(t)|mϕ(t)dt. (3.3)
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An integration by parts yields

[(I1−γ
0+ u)(t)(Iβ(1−α)

T− ϕ)(t)]Tt=0 −
∫ T

0

(I1−γ
0+ u)(t)

d

dt
(Iβ(1−α)
T− ϕ)(t)dt

≥
∫ T

0

tδ|u(t)|mϕ(t)dt.

Using Lemma 3.1 we see that (Iβ(1−α)
T− ϕ)(T ) = 0 and (I1−γ

0+ u)(0) = (Dγ−1
0+ u)(0) = b,

so

−b(Iβ(1−α)
T− ϕ)(0)−

∫ T

0

(I1−γ
0+ u)(t)

d

dt
(Iβ(1−α)
T− ϕ)(t)dt ≥

∫ T

0

tδ|u(t)|mϕ(t)dt.

From Definition 2.5, it follows that

−b(Iβ(1−α)
T− ϕ)(0) +

∫ T

0

(I1−γ
0+ u)(t)(D1−β(1−α)

T− ϕ)(t)dt ≥
∫ T

0

tδ|u(t)|mϕ(t)dt

and from Lemma 2.7 we see that

− b(Iβ(1−α)
T− ϕ)(0)

+
∫ T

0

(I1−γ
0+ u)(t)

[ 1
Γ[β(1− α)]

( ϕ(T )
(T − t)1−β(1−α)

−
∫ T

t

ϕ′(s)ds
(s− t)1−β(1−α)

)]
≥
∫ T

0

tδ|u(t)|mϕ(t)dt.

(3.4)

Since ϕ(T ) = 0, relation (6) becomes

−b(Iβ(1−α)
T− ϕ)(0)−

∫ T

0

(I1−γ
0+ u)(t)(Iβ(1−α)

T− ϕ′)(t)dt ≥
∫ T

0

tδ|u(t)|mϕ(t)dt.

Lemma 2.9 allows us to write

−b(Iβ(1−α)
T− ϕ)(0)−

∫ T

0

ϕ′(t)(Iβ(1−α)
0+ I1−γ

0+ u)(t)dt ≥
∫ T

0

tδ|u(t)|mϕ(t)dt,

and by Lemma 2.8

− b(Iβ(1−α)
T− ϕ)(0)−

∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt ≥

∫ T

0

tδ|u(t)|mϕ(t)dt. (3.5)

Notice that

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt =

−1
Γ(1− α)

∫ T

0

ϕ′(t)
∫ t

0

u(s)
(t− s)α

ds dt

≤ 1
Γ(1− α)

∫ T

0

|ϕ′(t)|
∫ t

0

|u(s)|
(t− s)α

dsdt.

Since ϕ(t) is nonincreasing, ϕ(s) ≥ ϕ(t) for all t ≥ s, and
1

ϕ(s)1/m
≤ 1
ϕ(t)1/m

, 0 ≤ s ≤ t < T, m > 1.

Also we have
ϕ′(t) = 0, t ∈ [0, T/2].

Therefore,

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt ≤ 1

Γ(1− α)

∫ T

0

|ϕ′(t)|
∫ t

0

|u(s)|
(t− s)α

ϕ(s)1/m

ϕ(s)1/m
dsdt
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≤ 1
Γ(1− α)

∫ T

0

|ϕ′(t)|
ϕ(t)1/m

∫ t

0

|u(s)|
(t− s)α

ϕ(s)1/mdsdt

≤ 1
Γ(1− α)

∫ T

T/2

|ϕ′(t)|
ϕ(t)1/m

∫ t

0

|u(s)|
(t− s)α

ϕ(s)1/mdsdt.

Hence,

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt ≤

∫ T

T/2

|ϕ′(t)|
ϕ(t)1/m

(I1−α
0+ ϕ1/m|u|)(t)dt .

By Lemma 2.9,

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt ≤

∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)
(t)ϕ(t)1/m|u(t)|dt. (3.6)

(Note that we may assume that |ϕ′(t)|ϕ(t)−1/m is summable even though ϕ(t)→ 0
as t→ T , for otherwise we consider ϕλ(t) with sufficiently large exponent λ). Next,
we multiply by tδ/m.t−δ/m inside the integral in the right hand side of (8)

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt ≤

∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)
(t)ϕ(t)1/m t

δ/m

tδ/m
|u(t)|dt.

For −α < δ < 0 we have t−δ/m < T−δ/m (because t < T ) and for δ > 0 we obtain
t−δ/m < 2δ/mT−δ/m (because T/2 < t), that is

t−δ/m < max{1, 2δ/m}T−δ/m.
Therefore,

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt

≤ max{1, 2δ/m}T−δ/m
∫ T

T/2

(I1−α
T−

|ϕ′|
ϕ1/m

)(t)tδ/mϕ(t)1/m|u(t)|dt.
(3.7)

A simple application of the Young inequality (Theorem 2.11) with m and m′ such
that 1

m + 1
m′ = 1 gives

−
∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt

≤ 1
m

∫ T

T/2

tδϕ(t)|u(t)|mdt+
(max{1, 2δ/m})m′

m′
T−

δm′
m

∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)m′
(t)dt

≤ 1
m

∫ T

0

tδϕ(t)|u(t)|mdt+
(max{1, 2δ/m})m′

m′
T−

δm′
m

∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)m′
(t)dt.

or∫ T

0

ϕ′(t)(I1−α
0+ u)(t)dt

≥ − 1
m

∫ T

0

tδϕ(t)|u(t)|mdt− (max{1, 2δ/m})m′

m′
T−

δm′
m

∫ T

T/2

(I1−α
T−

|ϕ′|
ϕ1/m

)m
′
(t)dt.

(3.8)
Clearly from (3.5) and (3.8), we see that

− b(Iβ(1−α)
T− ϕ)(0) +

(max{1, 2δ/m})m′

m′
T−

δm′
m

∫ T

T/2

(I1−α
T−

|ϕ′|
ϕ1/m

)m
′
(t)dt
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≥ (1− 1
m

)
∫ T

0

tδ|u(t)|mϕ(t)dt,

or since b > 0,

1
m′

∫ T

0

tδ|u(t)|mϕ(t)dt ≤ (max{1, 2δ/m})m′

m′
T−

δm′
m

∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)m′
(t)dt.

Therefore, by Definition 2.3 we have∫ T

0

tδ|u(t)|mϕ(t)dt

≤ (max{1, 2δ/m})m
′
T−

δm′
m

∫ T

T/2

( 1
Γ(1− α)

∫ T

t

(s− t)−α |ϕ
′(s)|

ϕ(s)1/m
ds
)m′

dt.

The change of variable σT = t yields∫ T

0

tδ|u(t)|mϕ(t)dt

≤ (max{1, 2δ/m})m
′
T−

δm′
m

∫ 1

1/2

(
1

Γ(1− α)

∫ T

σT

(
s− σT

)−α |ϕ′(s)|
ϕ(s)1/m

ds)m
′
Tdσ.

Another change of variable s = rT gives∫ T

0

tδ|u(t)|mϕ(t)dt

≤ (max{1, 2δ/m})m
′
T−

δm′
m

∫ 1

1/2

( 1
Γ(1− α)

∫ 1

σ

(rT − σT )−α
|ϕ′(r)|
ϕ(r)1/m

dr
)m′

Tdσ,

or ∫ T

0

tδ|u(t)|mϕ(t)dt

≤ (max{1, 2δ/m})m′

Γm′(1− α)
T 1−αm′−δm′/m

∫ 1

1/2

(∫ 1

σ

(r − σ)−α
|ϕ′(r)|
ϕ(r)1/m

dr
)m′

dσ.

(3.9)

It is clear that we may assume that the integral term in the right-hand side of (3.9)
is bounded; that is,∫ 1

1/2

(∫ 1

σ

(r − σ)−α
|ϕ′(r)|
ϕ(r)1/m

dr
)m′

dσ ≤ K1,

for some positive constant K1, otherwise we consider ϕλ(r) with some sufficiently
large λ. Therefore, ∫ T

0

tδ|u(t)|mϕ(t)dt ≤ K2T
1−αm′−δm′/m, (3.10)

with

K2 :=
(max{1, 2δ/m})m′

Γm′(1− α)
K1.

If m < δ+1
1−α we see that 1−αm′−δm′/m < 0 and consequently T 1−αm′−δm′/m → 0

as T →∞. Then from (3.10) we obtain

lim
T→∞

∫ T

0

tδ|u(t)|mϕ(t)dt = 0.
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This is a contradiction since the solution is supposed to be nontrivial.
In the case m = δ+1

1−α we have 1 − αm′ − δm′/m = 0 and the relation (3.10)
ensures that

lim
T→∞

∫ T

0

tδ|u(t)|mϕ(t)dt ≤ K2. (3.11)

Moreover, it is clear that∫ T

T/2

(I1−α
T−

|ϕ′|
ϕ1/m

)(t)tδ/mϕ(t)1/m|u(t)|dt

≤
[ ∫ T

T/2

(
I1−α
T−

|ϕ′|
ϕ1/m

)m′
(t)dt

]1/m′[ ∫ T

T/2

tδϕ(t)|u(t)|mdt
]1/m

.

This relation, together with (3.5) and (3.7), implies that∫ T

0

tδϕ(t)|u(t)|mdt ≤ K3

[ ∫ T

T/2

tδϕ(t)|u(t)|mdt
]1/m

for some positive constant K3, with

lim
T→∞

∫ T

T/2

tδϕ(t)|u(t)|mdt = 0

due to the convergence of the integral in (3.11). This leads again to a contradiction.
The proof is complete. �

4. Sharpness of the bound

In this section we want to prove that the exponent δ+1
1−α is sharp in some sense.

We will show that solutions exist for exponents strictly bigger than δ+1
1−α . For that

we need the following lemma

Lemma 4.1. The following identity holds

(Dα,β
a+ [(s− a)σ−1])(t) =

Γ(σ)
Γ(σ − α)

(t− a)σ−α−1, t > a, σ > 0,

where 0 < α < 1 and 0 ≤ β ≤ 1.

Example 4.2. Consider the following differential equation with Hilfer fractional
derivative of order 0 < α < 1 and 0 ≤ β ≤ 1,

(Dα,β
a+ y)(t) = λ(t− a)δ[y(t)]m, t > a, m > 1 (4.1)

with λ, δ ∈ R (λ 6= 0).
Look for a solution of the form y(t) = c(t− a)ν for some ν ∈ R. Let us find the

values of c and ν. By using Lemma 4.1 we have

(Dα,β
a+ [c(s− a)ν ])(t) =

cΓ(ν + 1)
Γ(ν − α+ 1)

(t− a)ν−α, ν > −1, t > a.

Plugging this expression in (4.1) yields

cΓ(ν + 1)
Γ(ν − α+ 1)

(t− a)ν−α = λ(t− a)δ[c(t− a)ν ]m.
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We obtain ν = α+δ
1−m and c = [

Γ( α+δ
1−m+1)

λΓ(mα+δ
1−m +1)

]1/(m−1). That is,

y(t) =
[ Γ( α+δ

1−m + 1)

λΓ(mα+δ
1−m + 1)

]1/(m−1)

(t− a)(α+δ)/(1−m)

is a solution of (4.1). One can easily check that y ∈ C1−γ with m = 1 + α+δ
1−γ which

is clearly bigger than the critical exponent δ+1
1−α if δ > −α. Moreover, the condition

(Dγ−1
a+ u)(0) = b is satisfied with

b =
[ Γ( α+δ

1−m + 1)

λΓ(mα+δ
1−m + 1)

]1/(m−1)

.
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