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EXISTENCE OF SOLUTION FOR ASYMPTOTICALLY
LINEAR SYSTEMS IN RN

RAQUEL LEHRER

Abstract. We show the existence of solution for a strongly coupled elliptic
system under three different conditions, namely: the autonomous case, the

radial case, and a general case. For the autonomous case, we present a char-

acterization of the solution.

1. Introduction

Over the previous years, nonlinear optic has attracted much attention from physi-
cists and mathematicians, due to its applicability on the knowledge of how the light
transmission behaves on high velocity. More precisely, we call attention for spa-
tial optical solitons, which have the interesting property of maintaining their shape
during propagation (see [1] for more details).

The Schrödinger equation, even though it represents well the auto-interaction
of the light beam, does not consider a possible interaction with the material, and
the passage of a ray along different materials can produce several nonlinear effects,
such as the birefringence effect, when the ray is decomposed in two. To study this
situation, in [40] the authors considered a weakly coupled system of Schrödinger
equations. As observed by Manakov in [32], vector solitons were generated; i.e.,
solitary waves with multiple components coupled together, but still with the good
properties of the scalar ones. Crystals photorefractive are the material usually
used for these experiments because, among other features, their refractive index
change when light goes through them, and because of this the wave does not change
its shape during propagation. However, it is necessary to take into account the
saturation effect of the material, when the refractive index reaches an upper bound
and thus ceases to increase [28, 37, 40].

The nonlinear weakly coupled system of Schrödinger equations

iϕt + ∆ϕ+
α(|ϕ|2 + |ψ|2)

1 + (|ϕ|2 + |ψ|2)/I0
ϕ = 0

iψt + ∆ψ +
α(|ϕ|2 + |ψ|2)

1 + (|ϕ|2 + |ψ|2)/I0
ψ = 0

(1.1)
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represents the propagation of a beam with two mutually incoherent components in
a bulk saturable medium in the isotropic approximation, where ϕ and ψ represent
the amplitudes of the components of the beam, α is the strength of the nonlinearity,
I0 is the saturation parameter and the expression (|ϕ|2 + |ψ|2) represents the total
intensity created by all the incoherent components of the beam. If we consider
standing wave solutions ϕ(x, t) =

√
αu(x)eiλ1t and ψ(x, t) =

√
αv(x)eiλ2t, for u

and v real functions and λ1 and λ2 propagation constants, we obtain the following
weakly coupled elliptic system

−∆u+ λ1u =
u2 + v2

1 + s(u2 + v2)
u

−∆v + λ2v =
u2 + v2

1 + s(u2 + v2)
v,

(1.2)

where s = α/I0, N ≥ 2, and u and v belong to the Sobolev space H1(RN ).
When s = 0 in (1.2), it is known that under suitable parameter conditions,

there exist minimal energy vector solutions [5, 8, 22, 29, 36]. In [30], the authors
studied the existence of minimal energy vector solutions for such system with s > 0.
Numerical analysis for the system (1.2) was made in [13, 19, 28, 33] for N = 1 and
s > 0, while the discrete case was considered in [34].

Motivated by the work in [4] from Ambrosetti, Cerami and Ruiz, where a cou-
pled system of nonautonomous equations with sub-critical nonlinearity was studied
under several conditions, we decided here to consider the following strongly coupled
system, with nonlinearity asymptotically linear at infinity, in RN for N ≥ 3:

−∆u+ u =
u2 + v2

1 + (s+ a(x))(u2 + v2)
u+ λv

−∆v + v =
u2 + v2

1 + (s+ a(x))(u2 + v2)
v + λu.

(1.3)

Because of the coupling constant λ, if one of the entries of the vector solution
(u, v) is trivial, then necessarily the other entry is also trivial. Therefore, if u0 is a
nontrivial solution for the equation

−∆u+ u =
u3

1 + (s+ a(x))u2
,

the vectors (u0, 0) and (0, u0) will not be solutions for the system (1.3).
The problem of finding solutions for the general equation in RN

−∆u+ V (x)u = K(x)f(u), (1.4)

with lim|x|→∞ u(x) = 0, has been extensively studied, under several conditions on
the potential V and the weight K. In 1983, in a pioneer work, Berestycki and
Lions [9] considered the autonomous equation −∆u + mu = f(u), in RN . They
showed the existence of a nontrivial solution for such equation, using constrained
minimization, when f has sub-critical growth at infinity.

In [39], Stuart and Zhou proved the existence of a positive radial solution for the
equation −∆u+λu = f(|x|, u(x))u(x), where the nonlinearity f was asymptotically
linear.

Considering V and K periodic, we recall the works of Alama and Li [2] and
Coti-Zelati and Rabinowitz [18]. We also cite the work of Bartolo, Benci and
Fortunato [7], where nonlinear problems with ‘strong resonance’ at infinity were
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considered. Also, we cite the works of Costa and Tehrani [17] and Li and Zhou,
[26] where the equation −∆u+ λu = f(x, u)u was considered, with the function f
being asymptotically linear, and the work [6] of Bahri and Li, where the equation
−∆u+ u− q(x)|u|p−1u = 0, for 0 < p < N+2

N−2 , N ≥ 3 was considered.
As the equation (1.4), the system (1.3) and its related problems were studied in

several works in the past years. In 1984, Brezis and Lieb [11], applying constrained
minimization methods, proved the existence of a solution (u, v) 6= (0, 0) for a class
of autonomous systems, including ours when a(x) ≡ 0. For bounded domains,
Costa and Magalhães considered sub-quadratical elliptic systems and noncooper-
ative systems ([15, 16], respectively). In [23], Furtado, Maia and Silva considered
a system similar to (1.3), noncoupled and with a superlinear nonlinearity, while
our nonlinearity is asymptotically linear. We also mentioned the work [3] from A.
Ambrosetti, where it was showed the existence of a solution for an elliptic system
in RN , by perturbation methods.

Instead of the usual Palais-Smale condition, we will use the Cerami condition:
a functional I ∈ C1(X,R) satisfies the Cerami condition (Ce) if ev-
ery sequence (zn) ⊂ X with |I(zn)| < M and ‖I ′(zn)‖(1 + ‖zn‖)→
0 has a convergent subsequence znk → z ∈ X. A functional
I ∈ C1(X,R) satisfies the Cerami condition at level c, (Ce)c, if ev-
ery sequence (zn) ⊂ X with I(zn)→ c and ‖I ′(zn)‖(1 + ‖zn‖)→ 0
has a convergent subsequence znk → z ∈ X.

This will be done since, by the structure of our system, with a nonlinearity that
satisfies the nonquadraticity condition stated by Costa and Magalhães in [14], we
can adapt for the system an argument presented by Stuart and Zhou in [39], in
order to show that any Cerami sequence has a bounded subsequence.

The paper is structured as follows: in the second section, we take the function a
identically 0 in the system (1.3). We prove the existence of a radial positive ground
state solution for this autonomous system, and we make a characterization of such
solution. In section 3, we consider the system (1.3) assuming that a is a radial
function and we prove the existence of a radial nontrivial solution for the system.
Finally, in section 4, we consider general conditions on the function a and again are
able to prove, under these conditions, the existence of a nontrivial solution for the
system.

2. The Autonomous System

In this section, we will study the following autonomous system in RN for N ≥ 3,

−∆u+ u =
u2 + v2

1 + s(u2 + v2)
u+ λv

−∆v + v =
u2 + v2

1 + s(u2 + v2)
v + λu.

(2.1)

where we are assuming that s and λ are constants satisfying 0 < s < 1 and 0 < λ <
1. First, working only on the subspace of radial functions H1

rad(RN ) ⊂ H1(RN ),
we will show that this system has a nontrivial radial solution, by the Mountain
Pass Theorem (see [7]). Then, we will obtain a ground state solution (possibly
nonradial), by constrained minimization and, following the ideas of Jeanjean and
Tanaka [25], we will make a characterization of this ground state solution. We will
conclude this section by proving the following theorem.
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Theorem 2.1. The system (2.1) has a positive radial ground state solution, ob-
tained by the Mountain Pass Theorem.

We will work on the space E = H1(RN )×H1(RN ) with the norm

‖(u, v)‖2 =
∫

RN
|∇u|2 + |∇v|2 + u2 + v2dx.

We will also use the notation

‖(u, v)‖p =
(∫

RN
|u|p + |v|pdx

)1/p

,∀p ∈ [1,∞)

for the usual norm on Lp(RN )× Lp(RN ).
The following functional is associated with the system (2.1):

I∞(u, v) =
1
2

∫
RN
|∇u|2 + |∇v|2 +u2 + v2dx−

∫
RN

H∞(u, v)dx−λ
∫

RN
uvdx (2.2)

where

H∞(u, v) =
u2 + v2

2s
− 1

2s2
ln(1 + s(u2 + v2)), (2.3)

and the derivative of the functional I∞ is given by

∇I∞(u, v)(ϕ,ψ) =
∫

RN
∇u∇ϕ+∇v∇ψ + uϕ+ vψdx

−
∫

RN

u2 + v2

1 + s(u2 + v2)
(uϕ+ vψ)− λ(vϕ+ uψ)dx.

We will look for critical points of I∞, which will be solutions to (2.1).

Remark 2.2. First, we observe that if there exists a positive solution (u, v) of (2.1),
then this solution is radial. This result follows from Theorem 2, [12]. Therefore,
we are motivated to search for solutions to (2.1) on Erad = H1

rad(RN )×H1
rad(RN )

and we will consider on Erad the norm

‖(u, v)‖2 =
∫

RN
|∇u|2 + |∇v|2 + u2 + v2dx.

We also define the function F∞ on E by

F∞(u, v) := H∞(u, v) + λuv. (2.4)

Lemma 2.3. The function F∞ satisfies the nonquadraticity condition (NQ); i.e.,

lim
|(u,v)|→∞

1
2
∇F∞(u, v)(u, v)− F∞(u, v) = +∞,

and
1
2
∇F∞(u(x), v(x))(u(x), v(x))− F∞(u(x), v(x)) ≥ 0,∀x ∈ RN .

This condition was first given by Costa and Magalhães in [14] and the proof of
this lemma can be found in [31], Lemma 2.1.

In this article, we will use of a version of the Mountain Pass Theorem for Cerami
sequences, whose proof can be found in [7]. In what follows, Bρ represents an open
ball in RN , centered at the origin, with radius ρ.

Theorem 2.4 (Mountain Pass Theorem). Let X be a real Banach space and I ∈
C1(X,R) be a functional satisfying (Ce) with I(0) = 0. Suppose that:



EJDE-2013/236 EXISTENCE OF SOLUTION 5

(I1) there exist constants α, ρ > 0 such that I
∣∣
∂Bρ
≥ α,

(I2) there exists e ∈ X \ ∂Bρ such that I(e) ≤ 0.
Also, consider the set Γ = {γ ∈ C([0, 1], X); γ(0) = 0 and I(γ(1)) < 0}. Then

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t))

is a critical value of I.

Lemma 2.5. The functional I∞ satisfies the geometric conditions of Theorem 2.4.

Proof. By the structure of the function H∞, given any ε > 0 we can obtain a
constant M(ε) > 0 such that for any 2 < p < 2∗ and any (u, v) ∈ E we have

|H∞(u, v)| ≤ ε

2
(u2 + v2) +M(ε)(u2 + v2)p/2. (2.5)

With this estimate, we can verify that (I1) is satisfied. For (I2), we take a constant
R > 0 and consider the function ϕR, a solution for the eigenvalue problem

−∆ϕ = αϕ on BR

ϕ ≡ 0 on ∂BR.

where α = α(R) is a real constant. Given ε > 0 there exists R0(ε) such that if
R > R0(ε) then α < ε, since α goes to zero when R approaches infinity. We also
have that ϕR belongs to H1

rad(RN ). We consider now the function ϕ̄R, defined by

ϕ̄R =

{
ϕR on B̄R

0 on RN \ B̄R
Hence, for t > 0, we consider uR := tϕ̄R and we can verify that I(uR, 0) < 0, with
‖(uR, 0)‖ = t‖ϕ̄R‖ > ρ. Taking e = (uR, 0), we obtain (I2). �

With this at hand, we will work with the energy level cr, given by

cr = inf
γ∈Γr

max
0≤t≤1

I∞(γ(t)),

where Γr := {γ ∈ C([0, 1], Erad); γ(0) = 0 and I∞(γ(1)) < 0}.
Now, we begin to prove that the functional I∞ satisfies the Cerami condition

(Ce). This proof will be presented in the following two lemmas:

Lemma 2.6. Let (zn) = (un, vn) ⊂ Erad be a bounded sequence such that

|I∞(zn)| ≤M and ‖I ′∞(zn)‖(1 + ‖zn‖)→ 0.

Then there exists z ∈ Erad such that ‖zn − z‖ → 0.

Proof. In these conditions, we have I ′∞(zn)→ 0 and, up to subsequences:
(a) un ⇀ u, vn ⇀ v on H1

rad(RN ) and H1(RN );
(b) un → u, vn → v on Lp(RN );
(c) un → u, vn → v on Lqloc(RN );

by the compact immersions H1
rad(RN ) ↪→ Lp(RN ) for 2 < p < 2∗ and H1(RN ) ↪→

Lqloc(RN ), for 1 ≤ q < 2∗. We have that

I ′∞(zn)zn → 0, (2.6)

since |I ′∞(zn)zn| ≤ ‖I ′∞(zn)‖‖zn‖ → 0, and by hypotheses (zn) is a bounded se-
quence which satisfies I ′∞(zn)→ 0. Also, since (zn) is a bounded sequence, it has a
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weak limit, indicated here by z. As t
1+st <

1
s , (a) and (c) immediately imply that

z is a critical point of I∞.
We observe that

‖zn − z‖2 = 〈zn − z, zn − z〉 = ‖zn‖2 − 2〈zn, z〉+ ‖z‖2. (2.7)

From (2.6) it follows that

on(1) = I ′∞(zn)(zn − z)
= I ′∞(zn)zn − I ′∞(zn)z

=
∫

RN
∇zn∇zn + znzndx−

∫
RN
∇F∞(zn)zndx

−
∫

RN
∇zn∇z + znzdx+

∫
RN
∇F∞(zn)zdx

= ‖zn‖2 − 〈zn, z〉 −
∫

RN
∇F∞(zn)(zn − z)dx,

and hence

‖zn‖2 = on(1) + 〈zn, z〉+
∫

RN
∇F∞(zn)(zn − z)dx. (2.8)

Since I ′∞(z) = 0, we obtain

on(1) = I ′∞(z)(zn − z)

=
∫

RN
∇z∇zn + zzndx−

∫
RN
∇F∞(z)(zn − z)dx−

∫
RN
∇z∇z + zzdx

= 〈zn, z〉 − ‖z‖2 −
∫

RN
∇F∞(z)(zn − z)dx

and therefore

‖z‖2 = 〈zn, z〉 −
∫

RN
∇F∞(z)(zn − z)dx− on(1). (2.9)

Replacing the expressions (2.8) and (2.9) into (2.7), we obtain

‖zn − z‖2 =
[
on(1) + 〈zn, z〉+

∫
RN
∇F∞(zn)(zn − z)dx

]
− 2〈zn, z〉

+
[
〈zn, z〉 −

∫
RN
∇F∞(z)(zn − z)dx− on(1)

]
= on(1) +

∫
RN
∇F∞(zn)(zn − z)dx−

∫
RN
∇F∞(z)(zn − z)dx.

Therefore,

‖zn − z‖2 = on(1) +
∫

RN
∇F∞(zn)(zn − z)dx−

∫
RN
∇F∞(z)(zn − z)dx. (2.10)

Since ∇F∞(z) ∈ L2(RN )× L2(RN ) and zn ⇀ z, it follows that∫
RN
∇F∞(z)(zn − z)dx→ 0. (2.11)

From (2.10) and (2.11), we obtain

‖zn − z‖2 = on(1) +
∫

RN
∇F∞(zn)(zn − z)dx. (2.12)
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On the other hand,∣∣∣ ∫
RN
∇F∞(zn)(zn − z)dx

∣∣∣ ≤ ∫
RN

∣∣∣∇F∞(zn)(zn − z)
∣∣∣dx

=
∫

RN

∣∣∣ un
2 + vn

2

1 + s(un2 + vn2)
un + λvn

∣∣∣|un − u|dx
+
∫

RN

∣∣∣ un
2 + vn

2

1 + s(un2 + vn2)
vn + λun

∣∣|vn − v‖dx
≤
∫

RN

∣∣∣ un
2 + vn

2

1 + s(un2 + vn2)

∣∣∣|un| |un − u|dx
+
∫

RN

∣∣∣ un
2 + vn

2

1 + s(un2 + vn2)

∣∣∣|vn| |vn − v|dx
+ λ

∫
RN
|un| |vn − v|+ |vn| |un − u|dx

≤
∫

RN

( u2
n

1 + su2
n

+
v2
n

1 + svn2

)
|un| |un − u|dx

+
∫

RN

( v2
n

1 + svn2
+

u2
n

1 + sun2

)
|vn||vn − v|dx

+ λ

∫
RN

(
|un||vn − v|+ |vn||un − u|

)
dx.

We will use [31, Lemma 2.2], which states that for any q such that 0 ≤ q ≤ 2
there exists C = C(q) such that w2

1+sw2 ≤ C(q)|w|q, for all w ∈ R. Hence, taking
0 < q < 2, we obtain∣∣∣ ∫

RN
∇F∞(zn)(zn − z)dx

∣∣∣ ≤ ∫
RN

(C|un|q + C|vn|q) |un||un − u|dx

+
∫

RN
(C|vn|q + C|un|q) |vn||vn − v|dx

+ λ

∫
RN

(|un||vn − v|+ |vn||un − u|) dx.

Considering the first integral on the right hand side

C

∫
RN
|un|q|un||un − u|+ |vn|q|un||un − u|dx,

we can apply Hölder’s inequality with p′ = q + 2 and p = p′

1+q in the first term to
obtain ∫

RN
|un|1+q|un − u|dx ≤

[ ∫
RN
|un|p

′
dx
] 1+q
p′
[ ∫

RN
|un − u|p

′
dx
]1/p′

= ‖un − u‖p′‖un‖1+q
p′ ,

which converges to zero since un → u on Lp(RN ), 2 < p < 2∗ and ‖un‖p′ ≤
C̃‖un‖ < M . For the other term, we obtain∫

RN
|vn|q|un||un − u|dx

≤
[ ∫

RN
|vn|p

′
dx
]q/p′[ ∫

RN
|un|p

′
dx
]1/p′[ ∫

RN
|un − u|p

′
dx
]1/p′
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= C‖vn‖qp′‖un‖p′‖un − u‖p′

which, by the same argument, converges to zero, but here, we used Hölder’s in-
equality with 1/p′+1/p′+ q/p′ = 1, since p′ = q+2. In the same way, we can show
that ∫

RN
(|vn|q + |un|q) |vn||vn − v|dx→ 0.

Therefore, we are left with∣∣∣ ∫
RN
∇F∞(zn)(zn − z)

∣∣∣dx ≤ λ ∫
RN
|un||vn − v|+ |vn||un − u|dx+ on(1).

Now, in the expression (2.12), we have

‖zn − z‖2 ≤ on(1) + λ

∫
RN
|un||vn − v|+ |vn||un − u|dx

≤ on(1) + λ

∫
RN
|un − u||vn − v|+ |u||vn − v|dx

+ λ

∫
RN
|vn − v||un − u|+ |v||un − u|dx

Since |
∫

RN u(vn − v)dx| and |
∫

RN v(un − u)dx| converge to zero, we are left with

‖zn − z‖2 ≤ on(1) + 2λ
∫

RN
|un − u||vn − v|dx

≤ on(1) + λ

∫
RN
|un − u|2 + |vn − v|2dx

= on(1) + λ‖un − u‖22 + λ‖vn − v‖22
= on(1) + λ‖zn − z‖22
≤ on(1) + λ‖zn − z‖2.

Therefore,
‖zn − z‖2(1− λ) ≤ on(1),

and zn → z on Erad, since 0 < λ < 1. �

Remark 2.7. We observe that such argument is only true on Erad, by the use of
the compact immersions.

Lemma 2.8. Suppose (zn) ⊂ Erad is such that I∞(zn) → cr and ‖I ′∞(zn)‖(1 +
‖zn‖)→ 0. Then (zn) has a bounded subsequence.

Proof. By contradiction, we suppose that ‖zn‖ → ∞. We define ẑn := zn
‖zn‖ . Hence

(ẑn) is a bounded sequence with ‖ẑn‖ = 1 and, up to subsequences, ẑn ⇀ ẑ.
Therefore, one of the cases below must happen:
case 1:

lim sup
n→∞

sup
y∈RN

∫
B1(y)

|ẑn|2dx > 0,

case 2:
lim sup
n→∞

sup
y∈RN

∫
B1(y)

|ẑn|2dx = 0.

We will show that none of these cases can occur, obtaining a contradiction for each
one. We will start from case 2, adapting for the system the ideas presented in [39]
for the scalar case.
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In the same way as presented in [30, Lemma 3.30], we obtain the following
inequality, that holds for n sufficiently large and t > 0,

I∞(tzn) ≤ 1 + t2

2n
+ I∞(zn),

which can be rewritten as
t2

2
‖zn‖2 ≤

1 + t2

2n
+ cr + on(1) +

∫
RN

F∞(tzn)dx (2.13)

since I∞(zn) = cr + on(1). We define tn := 2√
1−λ

√
cr
‖zn‖ . We have that tn → 0 when

n→∞ and, replacing tn on (2.13), we obtain

2cr
1− λ

≤ cr + on(1) +
∫

RN
H∞(tnzn)dx+

λ

2
t2n

∫
RN

z2
ndx. (2.14)

Considering the estimate (2.5) with ε = 1−λ
4 , we obtain

|H∞(z)| ≤ z2
(1− λ

8
)

+M(ε)zp, 2 < p < 2∗.

Replacing this into (2.14), we obtain

2cr
1− λ

≤ on(1) + cr +
cr(1 + 3λ)
2(1− λ)

∫
RN

ẑn
2dx+M

( 2
√
cr√

1− λ

)p ∫
RN
|ẑn|pdx.

However, if case 2 occurs, by Lions Lemma (Lemma 1.21 in [41]), we would have
ẑn → 0 on Lp(RN ), 2 < p < 2∗, and hence∫

RN
|ẑn|pdx→ 0.

Besides, since ∫
RN

ẑ2
ndx ≤ ‖ẑn‖2 ≤ 1,

we would have
2cr

1− λ
≤ on(1) +

3cr + crλ

2(1− λ)
,

and therefore cr
2 ≤ on(1), which is a contradiction, since cr > 0. Therefore, case 2

cannot occur.
Now, we suppose that case 1 occurs. Hence, there exists a sequence nj → ∞

such that ∫
B1(y)

|ûnj |2dx >
δ

2
or

∫
B1(y)

|v̂nj |2dx >
δ

2
.

Indeed, otherwise, it would exists an n0 ∈ N such that if n ≥ n0, then∫
B1(y)

|ûnj |2dx <
δ

2
and

∫
B1(y)

|ûnj |2dx <
δ

2
,∀n ≥ n0.

Therefore, we would have ∫
B1(y)

|ẑnj |2dx < δ,

which contradicts the hypotheses. Therefore, we will assume

lim sup
n→∞

sup
y∈RN

∫
B1(y)

|ûn|2dx =
δ

2
> 0.
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The argument would be the same in case we assume the similar hypotheses for the
sequence (v̂n).

Hence, if (yn) is a sequence such that |yn| → ∞ and∫
B1(yn)

|ûn|2dx > δ/2,

considering that ûn(x+ yn) ⇀ ū(x), we obtain∫
B1(0)

|ûn(x+ yn)|2dx > δ/2,

and hence ∫
B1(0)

|ū(x)|2dx > δ/2;

i.e., ū 6≡ 0. Hence, there exists Ω ⊂ B1(0), with |Ω| > 0, where |Ω| denotes the
Lebesgue measure of the set Ω, such that

0 < |ū(x)| = lim
n→∞

|ûn(x+ yn)| = lim
n→∞

|un(x+ yn)|
‖zn‖

,∀ x ∈ Ω.

Since we have that ‖zn‖ → ∞, then necessarily

un(x+ yn)→∞, ∀x ∈ Ω ⊂ B1(0).

Hence, by condition (NQ) and Fatou’s Lemma, we obtain

lim inf
n→∞

∫
RN

1
2
∇F∞(zn(x+ yn))(zn(x+ yn))− F∞(zn(x+ yn))dx

≥ lim inf
n→∞

∫
Ω

1
2
∇F∞(zn(x+ yn))(zn(x+ yn))− F∞(zn(x+ yn))dx

≥
∫

Ω

lim inf
n→∞

1
2
∇F∞(zn(x+ yn))(zn(x+ yn))− F (zn(x+ yn))dx

= +∞.

(2.15)

On the other hand, we know that |I ′∞(zn)zn| ≤ ‖I ′∞(zn)‖‖zn‖ → 0, if n→∞ and
hence, I ′∞(zn)zn = on(1). Therefore,∫

RN

1
2
∇F∞(zn)(zn)− F∞(zn)dx = I∞(zn)− 1

2
I ′∞(zn)zn ≤ cr + 1,

contradicting (2.15).
If |yn| ≤ R, R > 1, we obtain

δ

2
≤
∫
B1(0)

|ûn(x+ yn)|2dx ≤
∫
B2R(0)

|ûn(x+ yn)|2dx,

and since ûn(x+ yn)→ ū on B2R(0), it follows that
δ

2
≤
∫
B1(0)

|ū(x)|2dx.

As in the previous case, there exists Ω ⊂ B1(0), |Ω| > 0 such that

lim
n→∞

|un(x+ yn)|
‖zn‖

= lim
n→∞

|ûn(x+ yn)| = |ū(x)| 6= 0, ∀x ∈ Ω.

Therefore, the argument follows analogously to the case when |yn| → ∞. Hence,
case 1 cannot occurs as well and the existence of bounded subsequences is guaran-
teed. �
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Remark 2.9. We observe that on the proof of the previous lemma is it not neces-
sary that (zn) is a sequence of radial functions.

Remark 2.10. We can show that the functional I∞ satisfies the Principle of sym-
metric criticality, found as [41, Theorem 1.28]; i.e., if (u, v) is a critical point of I∞
in Erad, then (u, v) is a critical point of I∞ in E.

Now, we can prove the following result.

Lemma 2.11. The system (2.1) has a nontrivial solution (u, v) ∈ Erad.

Proof. By Lemma 2.5, the functional I∞, defined on Erad, satisfies the geometric
conditions of Theorem 2.4. Hence, by Ekeland’s Variational Principle [20], it is
guaranteed the existence of a Cerami sequence at level cr. In Lemmas 2.6 and 2.8
we showed that the Cerami condition is satisfied at level cr on Erad. Then, by
Theorem 2.4, we obtain that cr is a critical value of I∞ and therefore the strong
limit z of the Cerami sequence (zn) is a critical point of I∞ on Erad. Therefore,
since cr > 0, z = (u, v) is a nontrivial solution of (2.1) and this solution is radial,
because it belongs to Erad. By Remark 2.10, this solution (u, v) found in Erad is
also a solution for (2.1) on E. �

Now, we consider the functional I∞ written as

I∞(u, v) =
1
2
‖(∇u,∇v)‖2 −

∫
RN

G∞(u, v)dx,

with

G∞(u, v) = −u
2 + v2

2
+
u2 + v2

2s
− 1

2s2
ln(1 + s(u2 + v2)) + λuv. (2.16)

Lemma 2.12. System (2.1) has a ground state solution.

Proof. The proof is presented in [11], and we sketch it here for the sake of clearness.
The function G∞ satisfies the hypotheses of Theorem 2.1 of [11], and therefore there
exists (û, v̂) ∈ E such that

1
2

∫
RN
|∇û|2 + |∇v̂|2dx = m and

∫
RN

G∞(û, v̂)dx = 1,

where m is defined by

m := inf
(u,v)∈E

{1
2

∫
RN
|∇u|2 + |∇v|2dx,

∫
RN

G∞(u, v)dx ≥ 1
}
.

Also, Theorem 2.2 of [11] states that after some appropriate scaling with θ > 0, the
functions ū(x) := û(xθ ) and v̄(x) := v̂(xθ ) are solutions of (2.1), with

0 < I∞(ū, v̄) ≤ I∞(u, v),∀ (u, v) ∈ E.

Therefore, we have a ground state solution of (2.1); i.e.,

I∞(ū, v̄) = m := inf
{
I∞(u, v); (u, v) ∈ E \ {(0, 0)} and (u, v) solves (2.1)

}
.

�

Remark 2.13. We do not know if this solution is radial, neither have information
about its sign.



12 R. LEHRER EJDE-2013/236

Remark 2.14. By Lemma 2.4 of [11], any solution of (2.1) on E belongs to the
Pohozaev manifold:

P :=
{

(u, v) ∈ E \ {(0, 0)}; N − 2
2

∫
RN
|∇u|2 + |∇v|2dx = N

∫
RN

G∞(u, v)dx
}

(2.17)

Our next step will be to show that this solution (ū, v̄) obtained in Lemma 2.12
coincides with the solution belonging to Erad obtained by the Mountain Pass The-
orem, in Lemma 2.11. First, we will show that the solution (ū, v̄) coincides with a
solution obtained by the Mountain Pass Theorem applied on the whole space E,
not just on Erad. After this, we will prove that these solutions obtained by the
Mountain Pass Theorem coincide.

For this, we will make use of these symbols:

c∞ := inf
γ∈Γ

max
0≤t≤1

I∞(γ(t)),

where Γ := {γ ∈ C([0, 1], E); γ(0) = 0, I∞(γ(1)) < 0};

cr := inf
γ∈Γr

max
0≤t≤1

I∞(γ(t)),

where Γr := {γ ∈ C([0, 1], Erad); γ(0) = 0, I∞(γ(1)) < 0}. We observe that the
level c∞ exists, by the geometry of the functional I∞, but we cannot verify the
Cerami condition for this level on E, only on Erad.

Lemma 2.15. m = c∞.

Proof. As presented in [25, Lemma 2.1], there exists a path γ ∈ Γ such that the
ground state solution z̄ = (ū, v̄) belongs to γ([0, 1]) and

max
t∈[0,1]

I∞(γ(t)) = I∞(z̄) = m.

Hence, we have that c∞ ≤ m. On the other hand, given any γ ∈ Γ, we have that
γ([0, 1]) ∩ P 6= ∅ [25, Lemma 4.1]; i.e., there exists t0 ∈ (0, 1] such that γ(t0) ∈ P.
But, since m = infz∈P I∞(z) [25, Lemma 3.1], we obtain

max
t∈[0,1]

I∞(γ(t)) ≥ I∞(γ(t0)) ≥ inf
z∈P

I∞(z) = m,

and hence c∞ ≥ m. Therefore, m = c∞. �

Remark 2.16. The ground state solution is the solution obtained by the Mountain
Pass Theorem, if this solution exists.

Now we are ready to present the proof of Theorem 2.1:

Proof. By Lemmas 2.12 and 2.15 and Remark 2.14, we can guarantee the existence
of a pair (ū, v̄) ∈ P satisfying ∫

RN
G∞(ū, v̄)dx > 0

and
I∞(ū, v̄) = c∞ = m = inf

(u,v)∈P
I∞(u, v).

Since ūv̄ ≤ |ū||v̄|, we obtain

G∞(|ū|, |v̄|) ≥ G∞(ū, v̄) > 0.
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Hence, by [31, Lemma 3.1], we can project (|ū|, |v̄|) onto P; i.e., there exists t0 > 0
such that (

|ū(
·
t0

)|, |v̄(
·
t0

)|
)
∈ P.

Hence,

I∞

(
|ū(
·
t0

)|, |v̄(
·
t0

)|
)

=
tN−2
0

2
‖(∇|ū|,∇|v̄|)‖22 − tN0

∫
RN

G∞(|ū|, |v̄|)dx

≤ tN−2
0

2
‖(∇ū,∇v̄)‖22 − tN0

∫
RN

G∞(ū, v̄)dx

=
1
2
‖(∇ū(

·
t0

),∇v̄(
·
t0

))‖22 −
∫

RN
G∞(ū(

·
t0

), v̄(
·
t0

))dx

= I∞

(
ū(
·
t0

), v̄(
·
t0

)
)

≤ I∞(ū, v̄)

since (ū, v̄) ∈ P and I∞(ū, v̄) = maxt>0 I∞

(
ū( ·t ), v̄( ·t )

)
.

Also, since the infimum over P is attained, we have

I∞(ū, v̄) = min
z∈P

I∞(z) ≤ I∞
(
|ū(
·
t0

)|, |v̄(
·
t0

)|
)
≤ I∞(ū, v̄).

Hence, I∞
(
|(ū ·t0 )|, |v̄( ·t0 )|

)
= m; i.e.,

(
|ū( ·t0 )|, |v̄( ·t0 )|

)
is a critical point of I∞ onto

P. Since the Pohozaev manifold P is a natural constraint for the problem, (see
[35]), we have that

(
|ū( ·t0 )|, |v̄( ·t0 )|

)
is also a critical point over E, and therefore

a non-negative solution of (2.1). Applying the Maximum Principle [24, Theorem
3.5], for each entry u and v separately, we conclude that they are positive, and by
Theorem 2 of [12], radial.

On Remark 2.16, we did not know if there exits a solution by the Mountain Pass
Theorem but, since the positive ground state solution is radial, with m = c∞, and
in Lemma 2.11 we obtained a radial solution for the problem on E, by the Mountain
Pass Theorem, it follows that c∞ = cr and the solutions are the same. �

3. The Radial System

Now we will modify the autonomous system in order to obtain a radial system,
which still has the problem (2.1) as its limit problem. We will consider the following
system in RN , for N ≥ 3 and 0 < λ < 1:

−∆u+ u =
u2 + v2

1 + (s+ a(|x|))(u2 + v2)
u+ λv

−∆v + v =
u2 + v2

1 + (s+ a(|x|))(u2 + v2)
v + λu.

(3.1)

where a is a function satisfying the following conditions:
(R1) a : RN → R, with a(x) = a(|x|), i.e., a is a radial function;
(R2) lim|x|→∞ a(x) = 0;
(R3) there exist constants a0, a1 > 0 such that −a0 < a(x) < a1 for all x ∈ RN ,

but still satisfying

0 < s− a0 < s+ a(x) < s+ a1 < 1.
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Associated with this system is the functional

Ir(u, v) =
1
2
‖(u, v)‖2 −

∫
RN

Hr(x, u, v)dx− λ
∫

RN
uvdx,

where

Hr(x, u, v) =
u2 + v2

2(s+ a(x))
− 1

2(s+ a(x))2
ln(1 + (s+ a(x))(u2 + v2)),

and we define
Fr(x, u, v) := Hr(x, u, v) + λuv.

Remark 3.1. By condition (R3), there is not a clear relation between the function-
als I∞ and Ir, i.e., given any pair (u, v) ∈ E, we may have either I∞(u, v) ≤ Ir(u, v)
or Ir(u, v) ≤ I∞(u, v), or even an oscillation between the previous two cases, when
we change the pair (u, v). We will show in the next section that when the function
a is no longer radial, we need to impose new conditions in order to have a fixed re-
lation between the functionals related to the general problem and the autonomous
limit problem and hence be able to obtain a solution.

Remark 3.2. We will work on Erad again since by the Principle of symmetric
criticality, any solution (u, v) in Erad is a solution in E.

The proof of the following proposition is straightforward.

Proposition 3.3. Consider the function

L(t) :=
z

2t
− 1

2t2
ln(1 + tz),

where z is a positive constant and t ∈ (0,∞). Then L is a strictly decreasing
function.

Lemma 3.4. The functional Ir satisfies the geometric conditions of Theorem 2.4.

Proof. The proof that (I1) holds is similar to the autonomous case, made in Lemma
2.5, since in this case we can obtain an estimate similar to (2.5). For (I2), we observe
that from (R3) and Proposition 3.3, we have Ir(u, v) ≤ I1(u, v), where I1 is the
functional associated with the autonomous problem obtained by replacing s by
s+a1 in (2.1). As made in Lemma 2.5, we can find e ∈ Erad such that I1(e, 0) < 0,
and therefore, Ir(e, 0) < 0. �

The next proposition, which can be easily proved, states how the function a
affects the nonquadraticity condition (NQ):

Proposition 3.5. Consider the function Q(t) := 1
2∇Fr(t, z)z − Fr(t, z), for t > 0

and a given z = (u, v) ∈ E. Then Q(t) is a decreasing function.

Remark 3.6. By the above proposition, the function Fr(x, u, v) satisfies the non-
quadraticity condition (NQ), since by (R3), we have s+a(x) < s+a1 and therefore
Q(s+a1) ≤ Q(s+a(x)), with Q(s+a1) satisfying (NQ) by the same argument for
the function F∞.

Remark 3.7. The Cerami condition is satisfied by the functional Ir at the min-max
level dr given by

dr := inf
γ∈Γr

max
0≤t≤1

Ir(γ(t)),
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where Γr := {γ ∈ C([0, 1], Erad); γ(0) = 0, Ir(γ(1)) < 0}. This is proved in the same
way as in the previous Lemmas 2.6 and 2.8, by the use of the compact immersions,
since we are working on Erad.

Theorem 3.8. System (3.1) has a nontrivial radial solution (u, v).

Proof. By Lemma 3.4, the functional Ir satisfies the geometric conditions of the
Mountain Pass Theorem. By Ekeland’s Variational Principle [20] the existence of
a Cerami sequence (zn) at level dr is guaranteed. By Remark 3.7, the functional
Ir satisfies the Cerami condition at this level. Therefore, the strong limit of this
sequence, z, is a critical point of Ir, belonging to Erad, and is a weak solution of
(3.1). Since dr > 0, this solution is nontrivial. Again, by the principle of symmetric
criticality [41], z is a critical point on E, and therefore (3.1) has a nontrivial solution
on E. �

4. The general system

Now we will consider the system (1.3) in RN , for N ≥ 3, with 0 < λ < 1,
0 < s < 1 and suppose the function a satisfies:

(A1) a : RN → R, with a(x) < 0 for all x ∈ RN ;
(A2) lim|x|→∞ a(x) = 0;
(A3) there exists a constant s0 > 0 such that 0 < s0 < s + a(x) < s for all

x ∈ RN .

The functional associated with this problem is

I(u, v) =
1
2

∫
RN
|∇u|2 + |∇v|2 + u2 + v2dx−

∫
RN

H(x, u, v)dx− λ
∫

RN
uv dx,

where

H(x, u, v) =
u2 + v2

2(s+ a(x))
− 1

2(s+ a(x))2
ln(1 + (s+ a(x))(u2 + v2)),

and we define
F (x, u, v) := H(x, u, v) + λuv.

Remark 4.1. We want to consider here the more general case for the function
a. Since the function a is no longer radial, we cannot make use of the Sobolev
immersions in order to obtain the strong convergence of the Cerami sequence. To
overcome this lack of compactness, we will use a concentration compactness re-
sult, introduced by Lions [27], in a better version known as ‘Splitting’, presented
by Struwe [38], which describes the behaviour of a Cerami sequence at a level c.
Therefore, on a specific interval (0, c∞), we will have compactness. For this, we
need condition (A2), which assures that problem (2.1) is the limit problem for
problem (1.3). We also need to impose that 0 < s0 < a(x)+s in (A3) to have some
integrability conditions during the proof of the ‘Splitting’. We will then show that
the min-max level c, from the Mountain Pass Theorem, belongs to this interval,
by the construction of a specific path, generated from the ground state solution of
the problem (2.1), and for this we need conditions (A1) and (A3), which together
guarantee the relation I(u, v) ≤ I∞(u, v) for all (u, v) ∈ E, which is essential for
the construction of the path.
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Remark 4.2. The functional I also satisfies the geometric conditions of the Moun-
tain Pass Theorem, since by the structure of the function H we have, for any
2 < p < 2∗, and any (u, v) ∈ E,

|H(x, u, v)| ≤ ε

2
(u2 + v2) +M(ε)(u2 + v2)p/2,

which proves that (I1) is satisfied. Now we consider z̄, the radial positive ground
state solution of (2.1). In the proof of Lemma 2.2 of [31], we see that there exists
a L > 0 such that I∞

(
z̄( xL )

)
< 0. We define z1(x) := z̄( xL ) and then we have

I(z1) < I∞(z1) < 0, which proves (I2).

We define z0 = (0, 0) and then the min-max level of the Mountain Pass Theorem
is given by

c := inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

where Γ := {γ ∈ C([0, 1], E) : γ(0) = z0; γ(1) = z1}. With this, we can prove the
following result.

Lemma 4.3. There exists a sequence (zn) = (un, vn) ⊂ E satisfying I(zn) → c
and ‖I ′(zn)‖(1 + ‖zn‖)→ 0.

Proof. The proof consists in applying the Ghoussoub-Preiss Theorem [21, Theorem
6] for the set F := {z ∈ E; I∞(z) ≥ 0}. �

Lemma 4.4. Suppose (zn) ⊂ E is a sequence such that I(zn)→ c and ‖I ′(zn)‖(1+
‖zn‖)→ 0. Then (zn) has a bounded subsequence.

The proof of this lemma follows the same ideas of the proof of Lemma 2.8; i.e.,
Lions Lemma [41], the nonquadraticity condition (NQ) and Fatou Lemma.

Lemma 4.5 (Splitting). Consider zn = (un, vn) ⊂ E a bounded sequence such that
I(zn) → c and ‖I ′(zn)‖(1 + ‖zn‖) → 0. Then, replacing (zn) by a subsequence, if
necessary, there exists a solution ẑ = (û, v̂) of (1.3), a number k ∈ N∪{0}, k pairs of
functions (u1, v1), . . . , (uk, vk) and k sequences of points {yjn}, yjn ∈ RN , 1 ≤ j ≤ k,
satisfying

(i) (un, vn)→ (û, v̂) on E or
(ii) |yjn| → ∞, |yjn − yin| → ∞, if j 6= i;
(iii) (un, vn)−

∑k
j=1

(
uj(x− yjn), vj(x− yjn)

)
→ (û, v̂) on E;

(iv) I(zn)→ I(ẑ) +
∑k
j=1 I∞(zj);

(v) zj = (uj , vj) are nontrivial weak solutions of (2.1).

The proof of this lemma is standard nowadays and is a version (for systems) of the
concentration compactness of Lions [27] and presented in [38]. The main ingredients
are Brezis-Lieb Lemma [10] and Lions Lemma [41]. We refer to [4], where a similar
lemma was proved for a coupled system of nonautonomous equations, with sub-
critical nonlinearity.

Corollary 4.6. The functional I satisfies (Ce)c for all c such that 0 < c < c∞.

Proof. We have that I∞(uj , vj) ≥ c∞ for all pair (uj , vj) of nontrivial solution
of (2.1). Taking (un, vn) a Cerami sequence at level β > 0 such that β < c∞ and
applying it to Lemma 4.5, we obtain that k = 0, since I(un, vn) < c∞, and therefore
(un, vn)→ (û, v̂) on E. �
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Lemma 4.7. 0 < c < c∞.

Proof. Recall that

G(u, v) = −u
2 + v2

2
+

u2 + v2

2(s+ a(x))
− 1

2(s+ a(x))2
ln(1 + (s+ a(x))(u2 + v2)) +λuv,

and

G∞(u, v) = −u
2 + v2

2
+
u2 + v2

2s
− 1

2s2
ln(1 + s(u2 + v2)) + λuv.

Hence the functions G and G∞ differ by the function L(t) = z
2t −

1
2t2 ln(1 + tz),

with t > 0. But, by Proposition 3.3, L(t) is a strictly decreasing function, and since
s+ a(x) < s,∀x ∈ RN , we obtain L(s) < L(s+ a(x)), which implies

G∞(z) < G(z),∀z ∈ E \ {(0, 0)}.
Consider z̄, the radial positive ground state solution of (2.1), and define zy(x) :=

z̄(x− y), for some fix y ∈ RN . Then∫
RN

G(zy(x))dx >
∫

RN
G∞(zy(x))dx

=
∫

RN
G∞(z̄(x− y))dx

=
∫

RN
G∞(z̄(x))dx > 0,

where we used the translation invariance of integrals and the fact that, since z̄
is solution of (2.1), it follows that z̄ satisfies the Pohozaev identity and hence∫

RN G∞(z̄(x))dx > 0.
Since

∫
RN G(zy)dx > 0, it follows from the proof of [31, Lemma 3.1] that there

exists 0 ≤ ty ≤ 1 such that

max
0≤t≤1

I
(
zy
(x
t

))
= I
(
zy
( x
ty

))
= I
(
z̄
(x− y

ty

))
.

But

I
(
zy
( x
ty

))
< I∞

(
zy
( x
ty

))
= I∞

(
z̄
(x− y

ty

))
= I∞

(
z̄
( x
ty
− y

ty

))
= I∞

(
z̄
( x
ty

))
≤ I∞

(
z̄
(x

1
))

= c∞

where we used again the translation invariance of integrals and the fact that z̄ is the
ground state solution of (2.1), hence the maximum on the path z̄(x/t) is attained
on t = 1. We need to construct a path γ ∈ Γ such that

max
0≤t≤1

I(γ(t)) = I
(
zy
( x
ty

))
< c∞,

recalling that

Γ :=
{
γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = z1(x) = z̄

( x
L

)}
.
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We also have that, when t = L,

I
(
zy
( x
L

))
< I∞

(
zy
( x
L

))
= I∞

(
z̄
( x
L

))
= I∞(z1(x)) < 0.

Therefore
I
(
zy
( x
L

))
< 0, with L > ty.

Consider
β(t) := z̄

( x
L
t+ (1− t)

( x
L
− y

L

))
.

We have β(0) = zy
(
x
L

)
and

β(1) = z̄
( x
L

)
= z1(x).

Hence, β(t) is a path connecting zy
(
x
L

)
to z1(x). Besides

I(β(t)) = I
(
z̄
( x
L
t+ (1− t)

( x
L
− y

L

)))
< I∞

(
z̄
( x
L
t+ (1− t)

( x
L
− y

L

)))
= I∞

(
z̄
( x
L
− y

L
(1− t)

))
= I∞

(
z̄
( x
L

))
= I∞(z1) < 0.

Therefore, the functional I is always negative over the path β(t). Let α̃(t) be
the path

α̃(t) :=

{
0, t = 0
zy
(
x
t

)
, 0 < t ≤ L

and consider α(t) := α̃(Lt), a path connecting z0 = 0 to zy
(
x
L

)
, passing by zy

(
x
ty

)
,

since 0 < ty < L. Hence, considering γ(t) the composition between the paths α(t)
and β(t), we obtain γ(t) ∈ Γ and

max
0≤t≤1

I(γ(t)) = I
(
zy
( x
ty

))
< c∞,

and therefore c < c∞. �

Theorem 4.8. Suppose (A1)–(A3) are satisfied. Then the system (1.3) has a
nontrivial solution (u, v) ∈ E.

Proof. By the previous results, we have the existence and boundness of a Cerami
sequence at level c. By Corollary 4.6, the functional I satisfies the Cerami condition
at level c, since c < c∞, as proved in Lemma 4.7. Therefore, we can apply Theorem
2.4 and guarantee the existence of a nontrivial solution for problem (1.3). �

Remark 4.9. We believe the results presented here are also true for N = 2.
However, the proofs for some of the results used in this paper are different from
the N ≥ 3 case (see [11, 25]). We did not consider the N = 1 case. We also want
to observe that the condition 0 < λ < 1 is not needed in the proof of the geometric
conditions of Theorem 2.4. However, it is extremely necessary in other proofs, such
as Lemma 2.6 and in the use of [12, Theorem 2], for example. With the use of
the Pohozaev Identity, we can conclude that the autonomous system would have
a solution only if the inequality 0 < λ + 2

(
1
s − 1

)
is satisfied, which explains our
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choice for s. Further studies are required in order to find the optimal interval of
the parameters.
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dimensional scalar - and vector - solitons in saturable nonlinear media, Ann. Phys. (Leipzig)

11 (2002), 573-629.

[41] M. Willem; M inimax Theorems 24, Birkhauser, Boston, 1996.

Raquel Lehrer
Centro de Ciências Exatas e Tecnológicas - CCET, Unioeste, Cascavel PR, Brazil

E-mail address: rlehrer@gmail.com


	1. Introduction
	2. The Autonomous System
	3. The Radial System
	4. The general system
	Acknowledgments

	References

