Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 238, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

COEFFICIENTS OF SINGULARITIES FOR A SIMPLY SUPPORTED PLATE PROBLEMS IN PLANE SECTORS

BOUBAKEUR MEROUANI, RAZIKA BOUFENOUCHE

Abstract

This article represents the solution to a plate problem in a plane sector that is simple supported, as a series. By using appropriate Green's functions, we establish a biorthogonality relation between the terms of the series, which allows us to calculate the coefficients.

1. Introduction

Let S be the truncated plane sector of angle $\omega \leq 2 \pi$, and radius ρ (ρ is positive and fixed) defined by:

$$
\begin{equation*}
S=\left\{(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2}, 0<r<\rho, 0<\theta<\omega\right\} \tag{1.1}
\end{equation*}
$$

and Σ the circular boundary part

$$
\begin{equation*}
\Sigma=\left\{(\rho \cos \theta, \rho \sin \theta) \in \mathbb{R}^{2}, 0<\theta<\omega\right\} \tag{1.2}
\end{equation*}
$$

We are interested in the study of a function u, belonging to the Sobolev space $H^{2}(S)$, and being the solution of

$$
\begin{gather*}
\Delta^{2} u=0, \quad \text { in } S \\
u=M u=0, \quad \text { for } \theta=0, \omega \tag{1.3}
\end{gather*}
$$

where the operator M represents the bending moment and is defined as

$$
\begin{equation*}
M u=\nu \Delta u+(1-\nu)\left(\partial_{1}^{2} u n_{1}^{2}+2 \partial_{12}^{2} u n_{1} n_{2}+\partial_{2}^{2} u n_{2}^{2}\right) \tag{1.4}
\end{equation*}
$$

Here ν is a real number $(0<\nu<1 / 2)$ called Poisson coefficient and $n=\left(n_{1}, n_{2}\right)$ is the unit outward normal vector to Γ_{0} and Γ_{1} (See Figure 1).

The boundary conditions $u=0$ and $M u=0$, for $\theta=0, \theta=\omega$ mean that the plate is simply supported.

This type of boundary conditions arises in problems of linear or non linear vibrations of thin imperfect plates. See for example [2, pages 5,6] and the references therein.

[^0]

Figure 1.

We show that the solutions u of this problems can be written as a series of the form

$$
\begin{equation*}
u(r, \theta)=\sum_{\alpha \in E} c_{\alpha} r^{\alpha} \phi_{\alpha}(\theta) \tag{1.5}
\end{equation*}
$$

Here E stands for the set of solutions of the equation in a complex variable α :

$$
\begin{equation*}
\sin ^{2}(\alpha-1) \omega=\sin ^{2} \omega, \quad \operatorname{Re} \alpha>1 \tag{1.6}
\end{equation*}
$$

For further studies of the set E, see for example Blum and Rannacher [1], and Grisvard 4].

We will compute the coefficients c_{α} in 1.5 . This sort of calculations have already been done by Tcha-Kondor [5] for the Dirichlet's boundary conditions, and by Chikouche-Aibeche [3] for the Neumann's boundary conditions. These authors have established, thanks to the Green's formula, a relation of biorthorgonality between any two functions ϕ_{α}, which allows them to calculate the coefficients c_{α}. We follow the same approach. Thus we need to write the appropriate Green formula for the domain S. Using this formula, we establish a relation of biorthorgonality between the functions ϕ_{α}.

In the case of a crack domain $(\omega=2 \pi)$ this relation reduces to the simple one obtained by Tcha-Kondor. This enables us, in this particular situation, to find an explicit formula for the coefficients c_{β}.

2. Separation of variables

Replacing u by $r^{\alpha} \phi_{\alpha}(\theta)$ in problem 1.3 leads us to the boundary value problem

$$
\begin{gather*}
\phi_{\alpha}^{(4)}(\theta)+\left(2 \alpha^{2}-4 \alpha+4\right) \phi_{\alpha}^{(2)}(\theta)+\alpha^{2}(\alpha-2)^{2} \phi_{\alpha}(\theta)=0 \tag{2.1}\\
\phi_{\alpha}^{(2)}(\theta)+\left[\nu \alpha^{2}+(1-\nu) \alpha\right] \phi_{\alpha}(\theta)=0, \quad \theta=0, \quad \theta=\omega \tag{2.2}\\
\phi_{\alpha}(\theta)=0, \quad \theta=0, \quad \theta=\omega \tag{2.3}
\end{gather*}
$$

A relation similar to the orthogonality obtained for the biharmonic operator is given, in the following theorem.
Theorem 2.1. Let ϕ_{α} and ϕ_{β} be solutions of (2.1) with α and β solutions of (1.6). Then, for $\alpha \neq \beta$, one has

$$
\begin{align*}
{\left[\phi_{\alpha}, \phi_{\beta}\right]=} & \int_{0}^{\omega}\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}-\frac{\nu(\alpha+\bar{\beta})+(3-\nu)-2 \alpha}{\alpha-\bar{\beta}} \phi_{\alpha}^{\prime \prime}\right] \overline{\phi_{\beta}} \tag{2.4}\\
& +\left[\left(\bar{\beta}^{2}-2 \bar{\beta}\right) \overline{\phi_{\beta}}-\frac{\nu(\alpha+\bar{\beta})+(3-\nu)-2 \bar{\beta}}{\alpha-\bar{\beta}} \overline{\phi_{\beta}^{\prime \prime}}\right] \phi_{\alpha} d \theta=0 .
\end{align*}
$$

Proof. We use the Green formula

$$
\begin{equation*}
\int_{S}\left(v \Delta^{2} u-u \Delta^{2} v\right) d x=\int_{\Gamma}\left[\left(u N v+\frac{\partial u}{\partial n} M v\right)-\left(v N u+\frac{\partial v}{\partial n} M u\right)\right] d \sigma, \tag{2.5}
\end{equation*}
$$

where

$$
N u=-\frac{\partial \Delta u}{\partial n}+(1-\nu)\left(\partial_{1}^{2} u n_{1} n_{2}-\partial_{12}^{2} u\left(n_{1}^{2}-n_{2}^{2}\right)+\partial_{2}^{2} u n_{1} n_{2}\right)
$$

and Γ is the boundary of S. For two functions u, v which are solutions of (1.3), using the Green's formula we obtain

$$
\begin{equation*}
\int_{\Sigma}\left[\left(u N v+\frac{\partial u}{\partial n} M v\right)-\left(v N u+\frac{\partial v}{\partial n} M u\right) d \sigma\right]=0 \tag{2.6}
\end{equation*}
$$

On Σ, for the function $u_{\alpha}=r^{\alpha} \phi_{\alpha}$, we have

$$
\begin{gather*}
\frac{\partial u_{\alpha}}{\partial n}=\frac{\partial u_{\alpha}}{\partial r}=\alpha r^{\alpha-1} \phi_{\alpha} \\
M u_{\alpha}=r^{\alpha-2}\left\{\left[\alpha^{2}-(1-\nu) \alpha\right] \phi_{\alpha}+\nu \phi_{\alpha}^{\prime \prime}\right\} \tag{2.7}\\
N u_{\alpha}=r^{\alpha-3}\left\{-\alpha^{2}(\alpha-2) \phi_{\alpha}+[(\nu-2) \alpha+(3-\nu)] \phi_{\alpha}^{\prime \prime}\right\} .
\end{gather*}
$$

The results follow from the application of formula 2.6 to the biharmonic functions $u_{\alpha}=r^{\alpha} \phi_{\alpha}$ and $u_{\beta}=r^{\bar{\beta}} \overline{\phi_{\beta}}$, and by using relations 2.7.

Remark 2.2. The relation (2.4) between the functions ϕ_{α} and ϕ_{β} is similar to the relation of biorthorgonality obtained when the functions ϕ_{α} and ϕ_{β} satisfying 2.1) with the Dirichlet boundary conditions $\phi_{\alpha}=\phi_{\alpha}^{\prime}=\phi_{\beta}=\phi_{\beta}^{\prime}=0$ for $\theta=0$ and $\theta=\omega$. In this latter case, the relation is given by

$$
\begin{equation*}
\int_{0}^{\omega} \phi_{\alpha} \phi_{\beta}^{\prime \prime} d \theta=\int_{0}^{\omega} \phi_{\alpha}^{\prime \prime} \phi_{\beta} d \theta \tag{2.8}
\end{equation*}
$$

which is obtained by a double integration by parts:

$$
\begin{equation*}
\int_{0}^{\omega} \phi_{\alpha} \phi_{\beta}^{\prime \prime} d \theta=\int_{0}^{\omega} \phi_{\alpha}^{\prime \prime} \phi_{\beta} d \theta+\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}-\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega} \tag{2.9}
\end{equation*}
$$

and using the Dirichlet's boundary conditions.
The following corollary is an immediate consequence of remark 2.2 .
Corollary 2.3. Let ϕ_{α} and ϕ_{β} be solutions of (2.1 with α and β solutions of (2.6). Suppose in addition that

$$
\begin{equation*}
\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}-\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega}=0 \tag{2.10}
\end{equation*}
$$

and $\alpha \neq \beta$, then

$$
\begin{equation*}
\left[\phi_{\alpha}, \phi_{\beta}\right]=\int_{0}^{\omega}\left\{\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right] \overline{\phi_{\beta}}+\left[\left(\bar{\beta}^{2}-2 \bar{\beta}\right) \overline{\phi_{\beta}}+\overline{\phi_{\beta}^{\prime \prime}}\right] \phi_{\alpha}\right\} d \theta=0 \tag{2.11}
\end{equation*}
$$

Remark 2.4. For $u_{\alpha}=r^{\alpha} \phi_{\alpha}$ we have

$$
\begin{equation*}
\Delta u_{\alpha}-\frac{2}{r} \frac{\partial u_{\alpha}}{\partial r}=r^{\alpha-2}\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right] \tag{2.12}
\end{equation*}
$$

Let P be the operator $P=\Delta-\frac{2}{r} \frac{\partial}{\partial r}$. From the corollary 2.3 and Remark 2.4 . we deduce the following result.

Corollary 2.5. Under the hypotheses of corollary 2.3, if $\alpha \neq \beta$, we have

$$
\begin{equation*}
\int_{\Sigma}\left(P u_{\alpha} \cdot \overline{u_{\beta}}+u_{\alpha} \cdot P \overline{u_{\beta}}\right) d \sigma=0 \tag{2.13}
\end{equation*}
$$

3. Formula for the coefficients in the crack case

The crack case $(\omega=2 \pi)$ is an important one, among singular domains, in the applications. Moreover in this case the solutions of 2.6) are explicitly known and we have

$$
E=\left\{\frac{k}{2}, k \in \mathbb{N}, k>2\right\}
$$

and these roots are of multiplicity 2 .
In this framework we assume that the solution u admits the representation

$$
\begin{gather*}
u=\sum_{\alpha \in E}\left(c_{\alpha} u_{\alpha}+d_{\alpha} v_{\alpha}\right), \quad E=\left\{\frac{k}{2}, k \in \mathbb{N}, k>2\right\} \tag{3.1}\\
u_{\alpha}=r^{\alpha} \phi_{\alpha}(\theta), \quad v_{\alpha}=r^{\alpha} \psi_{\alpha}(\theta)
\end{gather*}
$$

the solutions ϕ_{α} and ψ_{α}, in terms of θ, are the odd functions:

$$
\begin{gather*}
\phi_{\alpha}(\theta)=\sin (\alpha-2) \theta \tag{3.2}\\
\psi_{\alpha}(\theta)=\sin \alpha \theta \tag{3.3}
\end{gather*}
$$

and since $\alpha=k / 2$, we obtain

$$
\begin{equation*}
\phi_{\alpha}(0)=\phi_{\alpha}(\omega)=\psi_{\alpha}(0)=\psi_{\alpha}(\omega)=0 \tag{3.4}
\end{equation*}
$$

and thus

$$
\begin{gathered}
{\left[\phi_{\alpha}, \phi_{\beta}^{\prime}\right]_{0}^{\omega}=\left[\phi_{\alpha}^{\prime}, \phi_{\beta}\right]_{0}^{\omega}=0, \quad\left[\psi_{\alpha}, \psi_{\beta}^{\prime}\right]_{0}^{\omega}=\left[\psi_{\alpha}^{\prime}, \psi_{\beta}\right]_{0}^{\omega}=0} \\
{\left[\phi_{\alpha}, \psi_{\beta}^{\prime}\right]_{0}^{\omega}=\left[\phi_{\alpha}^{\prime}, \psi_{\beta}\right]_{0}^{\omega}=0 .}
\end{gathered}
$$

From here comes the idea of decomposing the solution u of 1.3 into two parts as follows:

$$
\begin{gather*}
u=w_{1}+w_{2} \\
w_{i}=\sum_{\alpha \in E_{i}}\left(c_{\alpha} u_{\alpha}+d_{\alpha} v_{\alpha}\right), \quad i=1,2, \tag{3.5}\\
E_{1}=\{2 m, m>1\}, \quad E_{2}=\{2 m+1,2 m>1\}
\end{gather*}
$$

Calculation of c_{β} and d_{β}. From the expressions of $\phi_{\alpha}, \psi_{\alpha}$ one easily sees that:

$$
\begin{align*}
\text { if } \alpha \in E_{1} \text {, then } \phi_{\alpha}^{\prime}(0)=\phi_{\alpha}^{\prime}(\omega) \text { and } \psi_{\alpha}^{\prime}(0) & =\psi_{\alpha}^{\prime}(\omega) \\
\text { if } \alpha \in E_{2}, \text { then } \phi_{\alpha}^{\prime}(0)=-\phi_{\alpha}^{\prime}(\omega) \text { and } \psi_{\alpha}^{\prime}(0) & =-\psi_{\alpha}^{\prime}(\omega) . \tag{3.6}
\end{align*}
$$

Equations (3.4 and (3.6) allow us to apply corollary 2.5 to functions u_{α} and u_{β} (resp. u_{α}, v_{β} and v_{α}, v_{β}) and get the relations:

$$
\begin{align*}
& \int_{\sigma}\left(P w_{i} \cdot u_{\beta}+w_{i} \cdot P u_{\beta}\right) d \sigma=2 c_{\beta} \int_{\sigma}\left(u_{\beta} \cdot P u_{\beta}\right) d \sigma+d_{\beta} \int_{\sigma}\left(P v_{\beta} \cdot u_{\beta}+v_{\beta} \cdot P u_{\beta}\right) d \sigma \\
& \int_{\sigma}\left(P w_{i} \cdot v_{\beta}+w_{i} \cdot P v_{\beta}\right) d \sigma=c_{\beta} \int_{\sigma}\left(P u_{\beta} \cdot v_{\beta}+u_{\beta} \cdot P v_{\beta}\right) d \sigma+2 d_{\beta} \int_{\sigma}\left(P v_{\beta} \cdot v_{\beta}\right) d \sigma \tag{3.7}
\end{align*}
$$

By direct calculations we obtain

$$
\begin{align*}
& \int_{\sigma}\left(P u_{\beta} \cdot v_{\beta}+u_{\beta} \cdot P v_{\beta}\right) d \sigma=0 \\
& \int_{\sigma}\left(u_{\beta} \cdot P u_{\beta}\right) d \sigma=(\beta-2) \omega \rho^{2 \beta-1} \tag{3.8}\\
& \quad \int_{\sigma}\left(P v_{\beta} \cdot v_{\beta}\right) d \sigma=-\beta \omega \rho^{2 \beta-1}
\end{align*}
$$

and from this we get our main the result.
Theorem 3.1. Let u be a the solution of (1.3) written in the form

$$
\begin{equation*}
u=w_{1}+w_{2} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}=\sum_{\alpha \in E_{i}}\left(c_{\alpha} u_{\alpha}+d_{\alpha} v_{\alpha}\right), i=1,2 \tag{3.10}
\end{equation*}
$$

Suppose that the series that gives w_{i} is uniformly convergent in S. Then for any $\alpha \in E_{i}, i=1,2$ we have

$$
\begin{align*}
c_{\alpha} & =\frac{\rho^{1-2 \alpha}}{2(\alpha-2) \omega} \int_{\sigma}\left(P w_{i} \cdot u_{\alpha}+w_{i} \cdot P u_{\alpha}\right) d \sigma \\
d_{\alpha} & =\frac{-\rho^{1-2 \alpha}}{2 \alpha \omega} \int_{\Sigma}\left(P u_{i} \cdot v_{\alpha}+w_{i} \cdot P v_{\alpha}\right) d \sigma \tag{3.11}
\end{align*}
$$

Remark 3.2. Let $\zeta \in H^{3 / 2}(\Sigma) \cap H_{0}^{1}(\Sigma)$ be the trace of u on Σ and $\chi \in H^{-1 / 2}(\Sigma)$ the trace of $P u$ on Σ.

If u is regular in order that $\zeta \in H^{4}(] 0,2 \pi[)$ and $\chi \in H^{2}(] 0,2 \pi[)$, then we have a uniform convergence of the series in $\overline{S_{\rho_{0}}}$ for all $\rho_{0}<\rho$, see [5].

3.1. Independence of the coefficients.

Proposition 3.3. The coefficients $c_{\beta}\left(\right.$ resp $\left.d_{\beta}\right)$ are independent of ρ.
Proof. Let us prove that the derivative of c_{β} with respect to ρ is zero. Observing the expression of c_{β} in Theorem 3.1. we just have to prove that the derivative, with respect to ρ, of

$$
\begin{equation*}
\gamma_{\beta}=\rho^{1-2 \beta} \int_{\sigma}\left(P w_{i} \cdot u_{\beta}+w_{i} \cdot P u_{\beta}\right) d \sigma \tag{3.12}
\end{equation*}
$$

vanishes. By derivation with respect to r we have

$$
\begin{align*}
\gamma_{\beta}^{\prime}= & \int_{0}^{\omega}\left\{\frac{\partial}{\partial r}\left(\Delta w_{i}\right) r^{2-\beta} \phi_{\beta}+\left[(2-\beta) \Delta w_{i}-2 \frac{\partial^{2} w_{i}}{\partial r^{2}}+\left(\beta^{2}-2\right) \frac{1}{r} \frac{\partial w_{i}}{\partial r}\right] r^{1-\beta} \phi_{\beta}\right. \\
& \left.+\frac{\partial w_{i}}{\partial r} r^{-\beta} \phi_{\beta}^{\prime \prime}-\beta w_{i} r^{-1-\beta}\left[\left(\beta^{2}-2 \beta\right) \phi_{\beta}+\phi_{\beta}^{\prime \prime}\right]\right\} d \theta \tag{3.13}
\end{align*}
$$

On Σ, we have

$$
\frac{\partial}{\partial r}\left(\Delta w_{i}\right)=-N w_{i}+(1-v)\left[\frac{1}{r^{3}} \frac{\partial^{2} w_{i}}{\partial \theta^{2}}-\frac{1}{r^{2}} \frac{\partial^{3} w_{i}}{\partial r \partial \theta^{2}}\right]
$$

and

$$
\begin{equation*}
(2-\beta) \Delta w_{i}-2 \frac{\partial^{2} w_{i}}{\partial r^{2}}=-\beta M w_{i}+[2-(1-v) \beta]\left[\frac{1}{r} \frac{\partial w_{i}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w_{i}}{\partial \theta^{2}}\right] \tag{3.14}
\end{equation*}
$$

Using these formulas in the expression of γ_{β}^{\prime} we obtain

$$
\begin{align*}
& \gamma_{\beta}^{\prime} \\
&=-\int_{0}^{\omega}\left(\beta M w_{i} r^{1-\beta} \phi_{\beta}+N w_{i} r^{2-\beta} \phi_{\beta}\right) d \theta \\
&+\int_{0}^{\omega}\left\{\left[\left(\beta^{2}-(1-v) \beta\right) \phi_{\beta}+\phi_{\beta}^{\prime \prime}\right] \frac{\partial u_{i}}{\partial r}-(1-v) \frac{\partial^{3} u_{i}}{\partial r \partial \theta^{2}} \phi_{\beta}\right\} r^{-\beta} d \theta \tag{3.15}\\
&+\int_{0}^{\omega}\left\{[2-(1-v)(\beta-1)] \frac{\partial^{2} w_{i}}{\partial \theta^{2}} \phi_{\beta}-\beta w_{i}\left[\left(\beta^{2}-2 \beta\right) \phi_{\beta}+\phi_{\beta}^{\prime \prime}\right]\right\} r^{-1-\beta} d \theta
\end{align*}
$$

By a double integration by parts, we verify that

$$
\begin{align*}
\int_{0}^{\omega} \frac{\partial^{2} w_{i}}{\partial \theta^{2}} \phi_{\beta} d \theta & =\int_{0}^{\omega} w_{i} \phi_{\beta}^{\prime \prime} d \theta \tag{3.16}\\
\int_{0}^{\omega} \frac{\partial^{3} w_{i}}{\partial r \partial \theta^{2}} \phi_{\beta} d \theta & =\int_{0}^{\omega} \frac{\partial w_{i}}{\partial r} \phi_{\beta}^{\prime \prime} d \theta \tag{3.17}
\end{align*}
$$

Using (3.15-3.17) in the expression of γ_{β}^{\prime} and putting the $\rho^{1-2 \beta}$, we obtain

$$
\begin{align*}
\gamma_{\beta}^{\prime}= & -\rho^{1-2 \beta} \int_{0} \omega\left(\beta M w_{i} r^{\beta-1} \phi_{\beta}+N w_{i} r^{\beta} \phi_{\beta}\right) \rho d \theta \\
& +\rho^{1-2 \beta} \int_{0}^{\omega}\left[\left(\beta^{2}-(1-v) \beta\right) \phi_{\beta}+v \phi_{\beta}^{\prime \prime}\right] r^{\beta-2} \frac{\partial w_{i}}{\partial r} \rho d \theta \tag{3.18}\\
& +\rho^{1-2 \beta} \int_{0}^{\omega}\left\{\left[-\beta^{2}(\beta-2)\right] \phi_{\beta}+[-(2-v) \beta+(3-v)] \phi_{\beta}^{\prime \prime}\right\} r^{\beta-3} w_{i} \rho d \theta
\end{align*}
$$

Taking into account of 2.7, whose expressions appear explicitly in γ_{β}^{\prime}, we obtain

$$
\begin{equation*}
\gamma_{\beta}^{\prime}=\rho^{1-2 \beta} \int_{\Sigma}-\left[\left(u_{\beta} N w_{i}+\frac{\partial u_{\beta}}{\partial n} M w_{i}\right)-\left(u_{i} N u_{\beta}+\frac{\partial w_{i}}{\partial n} M u_{\beta}\right)\right] d \sigma=0 \tag{3.19}
\end{equation*}
$$

We follow the same analysis to prove the independence of d_{β} with respect to ρ.
3.2. Convergence of the series. We first write c_{α} and d_{α} in the form

$$
\begin{equation*}
c_{\alpha}=I_{i} \rho^{-\alpha}, \quad d_{\alpha}=J_{i} \rho^{-\alpha} \tag{3.20}
\end{equation*}
$$

with

$$
\begin{gather*}
I_{i}=\frac{\rho}{2 \omega(\alpha-2)} \int_{\sigma}\left(P w_{i} \phi_{\alpha}+w_{i} \rho^{-2}\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right]\right) d \sigma \tag{3.21}\\
J_{i}=\frac{-\rho}{2 \omega \alpha} \int_{\sigma}\left(P w_{i} \psi_{\alpha}+w_{i} \rho^{-2}\left[\left(\alpha^{2}-2 \alpha\right) \psi_{\alpha}+\psi_{\alpha}^{\prime \prime}\right]\right) d \sigma
\end{gather*}
$$

The solution u of 1.3 is then written as

$$
\begin{gather*}
u=w_{1}+w_{2} \tag{3.22}\\
w_{i}=\sum_{\alpha \in E_{i}}\left[\left(\frac{r}{\rho}\right)^{\alpha} I_{i} \phi_{\alpha}+\left(\frac{r}{\rho}\right)^{\alpha} J_{i} \psi_{\alpha}\right], \quad i=1,2 \tag{3.23}
\end{gather*}
$$

and we have the following result.
Theorem 3.4. The series (3.23) converges uniformly in $\overline{S_{\rho_{0}}}$ for all $\rho_{0}<\rho$.
Proof. Set

$$
\begin{align*}
H_{i, \alpha} & =\int_{0}^{\omega}\left(P u_{i} \phi_{\alpha}+u_{i} \rho^{-2}\left[\left(\alpha^{2}-2 \alpha\right) \phi_{\alpha}+\phi_{\alpha}^{\prime \prime}\right]\right) d \theta \\
& =\int_{0}^{\omega} P u_{i} \phi_{\alpha} d \theta+\left(\alpha^{2}-2 \alpha\right) \rho^{-2} \int_{0}^{\omega} u_{i} \phi_{\alpha} d \theta+\rho^{-2} \int_{0}^{\omega} u_{i} \phi_{\alpha}^{\prime \prime} d \theta \tag{3.24}
\end{align*}
$$

We show that $H_{i, \alpha}$ is $1 / \alpha$ times by bounded term, for α large enough. According to (3.17), we have

$$
\begin{equation*}
\int_{0}^{\omega} u_{i} \phi_{\alpha}^{\prime \prime} d \theta=\int_{0}^{\omega} u_{i}^{\prime \prime} \phi_{\alpha} d \theta \tag{3.25}
\end{equation*}
$$

Replacing ϕ_{α} by its expression and integrating by parts we obtain

$$
\begin{equation*}
\int_{0}^{\omega} u_{i}^{\prime \prime} \phi_{\alpha} d \theta=\frac{1}{\alpha}\left[\frac{-\alpha}{(\alpha-2)} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \cos (\alpha-2) \theta d \theta\right] \tag{3.26}
\end{equation*}
$$

On the other hand, by a triple integration by parts, we have

$$
\begin{equation*}
\left(\alpha^{2}-2 \alpha\right) \int_{0}^{\omega} u_{i} \phi_{\alpha} d \theta=\frac{1}{\alpha}\left[\frac{\alpha^{2}}{(\alpha-2)^{2}} \int_{0}^{\omega} u_{i}^{\prime \prime \prime} \cos (\alpha-2) \theta d \theta\right] \tag{3.27}
\end{equation*}
$$

Also, integrating by parts, we obtain

$$
\begin{equation*}
\int_{0}^{\omega}\left(\Delta u_{i}-\frac{2}{r} \frac{\partial u_{i}}{\partial r}\right) \phi_{\alpha} d \theta=\frac{1}{\alpha}\left[\frac{-\alpha}{(\alpha-2)} i n t_{0}^{\omega}\left(\frac{\partial}{\partial \theta}\left(\Delta u_{i}\right)-\frac{2}{r} \frac{\partial^{2} u_{i}}{\partial r \partial \theta}\right) \cos (\alpha-2) \theta d \theta\right] \tag{3.28}
\end{equation*}
$$

Then, we deduce the existence of a constant C_{0} such that:

$$
\begin{equation*}
\left|H_{i, \alpha}\right| \leq \frac{C_{0}}{\alpha} \tag{3.29}
\end{equation*}
$$

Using this last inequality and the fact that ϕ_{α} is bounded as well as the term $1 /(2 \omega(\alpha-2))$ for large α we deduce the existence of a constant C such that

$$
\begin{equation*}
\left|\sum_{\alpha \in E_{i}} c_{\alpha} r^{\alpha} \phi_{\alpha}\right| \leq \sum_{\alpha \in E_{i}} \frac{C}{\alpha}\left(\frac{r}{\rho}\right)^{\alpha} \tag{3.30}
\end{equation*}
$$

which converges uniformly in $\overline{S_{\rho_{0}}}$ for $\rho_{0}<\rho$. Convergence of $\sum_{\alpha \in E_{i}} d_{\alpha} r^{\alpha} \psi_{\alpha}$ is proved by the same way.

References

[1] H. Blum, R. Rannacher; On the boundary value problem of the biharmonic operator on domains with angular corners, Maths. Methods Appl. Sci. 2 (1980), no. 4, 556-581.
[2] Cédric Camier; Modélisation et étude numérique de vibrations non-linéaire de plaques circulaires minces imparfaites, Application aux cymbales. Thèse Présentée et soutenue publiquement le 2 février 2009 pour l'otention du Docteur de l'Ecole Polytechnique.
[3] W. Chikouche, A. Aibeche; Coefficients of singularities of the biharmonic problem of Neumann type: case of the crack. IJMMS 2003: 5, 305-313, Hindawi Publishing Corp.
[4] P. Grisvard; Singularities in boundary values problems, Recherches en Mathématiques Appliquées, Vol. 22, Masson, Paris, 1992 (in French).
[5] O. Tcha-Kondor; Nouvelles séries trigonométriques adapt ées à l'étude de problèmes aux limites pour l'équation biharmonique.Étude du cas de la fissure [New trigonometric series adapted to the study of boundary value problems for the biharmonic equation. The cas of the crack], C. R. Acad. Sci. Paris sér. I, Math. 315(1992), no. 5, 541-544 (in French).

Boubakeur Merouani
Department of Mathemaics, Univ. F. Abbas-Sétif 1, Algeria
E-mail address: mermathsb@hotmail.fr
Razika Boufenouche
Department of Mathemaics, Univ. Jijel, Algeria
E-mail address: r_boufenouche@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35B40, 35B65, 35C20.
 Key words and phrases. Crack sector; singularity; bilaplacian; solution series.
 (C) 2013 Texas State University - San Marcos.

 Submitted May 13, 2013. Published October 24, 2013.

