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CONTINUOUS DEPENDENCE OF SOLUTIONS FOR
INDEFINITE SEMILINEAR ELLIPTIC PROBLEMS

ELVES A. B. SILVA, MAXWELL L. SILVA

Abstract. We consider the superlinear elliptic problem

−∆u+m(x)u = a(x)up

in a bounded smooth domain under Neumann boundary conditions, where

m ∈ Lσ(Ω), σ ≥ N/2 and a ∈ C(Ω) is a sign changing function. Assuming
that the associated first eigenvalue of the operator −∆ + m is zero, we use

constrained minimization methods to study the existence of a positive solution

when bm is a suitable perturbation of m.

1. Introduction

In this article, we consider the continuous dependence of positive solution for
the semilinear elliptic problem

−∆u+m(x)u = a(x)up in Ω,
∂u

∂η
= 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, η is the outward unit normal,
1 < p < N+2

N−2 , m ∈ Lσ(Ω) for some σ ≥ N/2, and a ∈ C(Ω) is a sign changing
function, more specifically, a satisfies

(A1) Ω+ := {x ∈ Ω : a(x) > 0} 6= ∅ and Ω− := {x ∈ Ω : a(x) < 0} 6= ∅.
The existence of solutions for indefinite semilinear elliptic problems has been

intensively studied in the literature; see for example [1, 3, 4, 5, 6, 11, 12] and
references therein. As it has been established in several articles [1, 5, 12], the
existence of solution for (1.1) depends on the interaction between the nonlinear
term and the eigenfunctions corresponding to the associated eigenvalue problem

−∆u+m(x)u = λu in Ω,
∂u

∂η
= 0 on ∂Ω.

(1.2)

Noting that the first eigenvalue of (1.2) is simple, isolated and that the associated
eigenfunction does not change sign in Ω (see Section 3), we assume:
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(A2) the first eigenvalue for (1.2) is zero, λ1(−∆ +m) = 0,
(A3)

∫
Ω
a(x)ϕp+1

1 < 0,
where ϕ1 is the first eigenfunction for (1.2) which is positive in Ω and normalized
in L2(Ω).

Our main interest in this article is to establish the existence of a positive solution
for (1.1) with m̂ instead of m, when m̂ ∈ Lσ(Ω) is a suitable perturbation of the
function m. More specifically, throughout this paper we will consider {mj}j ⊂
Lσ(Ω) satisfying

(M1) mj ⇀ m weakly in Lσ(Ω), σ ≥ N/2. If σ = N/2 we suppose in addition
that |mj | ≤ f a.e. in Ω for some f ∈ LN/2(Ω).

It is worthwhile mentioning that the hypothesis (M1) has been motivated by the
works of Tehrani [12] and Afrouzi [1] that studied the existence of positive solutions
for (1.1) with mj instead of m, supposing m, {mj}j ⊂ C(Ω̄) and mj → m uniformly
in Ω̄. We should emphasize that when the linear operator −∆+mj is coercive; i.e.,
when the associated first eigenvalue, λ1(−∆ + mj), is positive, it may be proved
that Problem (1.1) with mj instead of m always has a positive solution (see e.g.
[4, 5]). The key point in this paper is that, under our hypotheses, the operator
−∆ +mj is not necessarily coercive, and the eigenvalue λ1(−∆ +mj) may even be
strictly negative. Now we may state our main results:

Theorem 1.1. Suppose (A1)–(A3), (M1). Then there exists j1 ∈ N such that (1.1)
with mj instead of m possesses a positive solution wj for all j ≥ j1.

Theorem 1.2. Suppose (A1)–(A3), (M1). Let {wj}j be the sequence of solutions
given by Theorem 1.1. Then {wj}j has a subsequence which converges strongly in
H1(Ω) to a solution of (1.1).

As a direct consequence of Theorem 1.1, the perturbed problem (1.1) with m̂
instead of m has a positive solution if m̂ is close to m in Lσ(Ω).

Corollary 1.3. Assume (A1)–(A3). Then there exists R > 0 such that (1.1) with
m̂ instead of m possesses a positive solution whenever ‖m− m̂‖Lσ(Ω) < R.

Our next result establishes the existence of a positive solution for (1.1) with m̂
instead of m, when the first eigenvalue λ1(−∆+m̂) is near to λ1(−∆+m), without
supposing that m̂ is close to m in Lσ(Ω):

Theorem 1.4. Assume (A1)–(A3). Given R > 0 (or f ∈ LN/2(Ω) when σ = N/2),
then there exists µ > 0 such that the Problem (1.1) with m̂ instead of m, possesses
a positive solution for all m̂ ∈ Lσ(Ω) satisfying

(i) ‖m− m̂‖Lσ(Ω) ≤ R, (|m̂| ≤ f a.e in Ω if σ = N
2 ),

(ii)
∫

Ω
|∇ϕ1|2 + m̂(x)ϕ2

1 ≤ µ,
(iii) −µ < λ1(−∆ + m̂) < 0.

Afrouzi [1] proved Theorem 1.1, considering the Dirichlet boundary conditions,
under the assumptions m ∈ C(Ω) and ‖m−mj‖C(Ω) → 0. In [12], also considering
the norm ‖ · ‖C(Ω̄), Tehrani established Corollary 1.3 for m ∈ C(Ω) and Theorem
1.4 for m ∈ C0,α(Ω) supposing the additional hypothesis

∫
Ω
a(x)ϕp+1bm < 0, where

ϕbm > 0 is the eigenfunction associated with the first eigenvalue λ1(−∆ + m̂). It
is worthwhile mentioning that the condition (A3) is a necessary condition for the
existence of positive solution for the Problem (1.1) in the Theorem 1.1 (see [12]).
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Finally we observe that Beresticky, Capuzzo-Dolcetta and Nirenberg [5] proved
the existence of a positive solution for (1.1) with m−τ instead of m, when m ∈ C(Ω)
satisfies (A2) and τ ≥ 0 is sufficiently small. We observe that, as a consequence
of Theorem 1.1, we may assert the existence of a positive solution for (1.1) with
mj−τ instead of m, under the hypothesis (M1) whenever τ ≥ 0 is sufficiently small
(see Remark 4.4).

The method employed in this article is variational, more specifically, we use a
constrained minimization method. In order to prove our main results, we establish
continuity results for the first and the second eigenvalues and their associated eigen-
functions for (1.2) with mj instead of m under the condition (M1), generalizing a
version for the uniform convergence provided by [1]. We also verify an uniform
equivalence result between the H1(Ω)-norm and a norm, depending on mj , for the
orthogonal space to the first eigenfunction of (1.2) with mj instead of m.

The organization of this paper is as follows: in Section 2 we introduce some
notation and preliminary results. In Section 3, based on the arguments used by
Manes-Micheletti [10] and deFigueiredo [7] for Dirichlet boundary conditions, we
present the technical properties and a convergence result, under the condition (M1),
for the eigenvalues and eigenfunctions of (1.2) with mj instead of m. The proofs
of Theorems 1.1, 1.2 and 1.4 are presented in Section 4. In this section we also
present an example that illustrate the application of Theorems 1.1 and 1.2 on a
setting where the condition (M1) is satisfied. In the Appendix we establish the
regularity results for the solutions of (1.1) and (1.2) and we prove Theorems 3.2
and 3.3 from Section 3.

2. Preliminaries

In this section we introduce the definitions and the technical results that will be
used throughout the text. First we recall the strong unique continuation property
(SUCP for short) due to Jerison and Kenig [9] which guarantees that the solutions
and the first eigenfunction that we find are positive. Next, in the main result
of this section, we establish the convergence

∫
Ω
mj(x)v2

j →
∫

Ω
m(x)v2

o , under the
hypothesis (M1), when vj ⇀ vo weakly in H1(Ω).

We use ‖ · ‖s to denote the norm in Ls(Ω). If E ⊂ Ω is a proper subset, the
norm in Ls(E) is represented by ‖ · ‖Ls(E). |A| denotes the Lebesgue’s measure of
A ⊂ RN . Bρ(xo) denotes the open ball of radius ρ > 0 centered in xo. The symbol
⇀ denotes the weakly convergence.

Definition 2.1. (i) We say that f possesses a zero of infinite order if there exists
xo ∈ Ω such that

∫
|x−xo|<ε f

2(x)dx = O(εk) for every k ∈ N.
(ii) Let c : Ω→ R be a function. We say that the differential inequality

|∆f(x)| ≤ |c(x)f(x)|, x ∈ Ω (2.1)

has the SUCP in the Sobolev space W 2,q
loc (Ω), if f ≡ 0 whenever f belongs to

W 2,q
loc (Ω), satisfies (2.1) almost everywhere in Ω, f ∈ L2

loc(Ω) and has a zero of
infinite order.

Theorem 2.2 ([9]). Let Ω ⊂ RN be a domain, N ≥ 3, and c ∈ LN/2loc (Ω). Then the

differential inequality (2.1) has the SUCP in W
2, 2N
N+2

loc (Ω).

To employ the SUCP we may use the following result.
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Theorem 2.3 ([8]). Let Ω ⊂ RN , be a bounded domain, N ≥ 3 and c ∈ LN/2loc (Ω).
Suppose that u ∈ H1

loc(Ω) is such that
∫

Ω
∇u∇v + c(x)uv = 0, for all v ∈ C∞o (Ω).

If u = 0 on a set E of positive measure, then u possesses a zero of infinite order in
almost everywhere point of E.

Remark 2.4. If u ≥ 0 is a weak solution for (1.1), after regularization (see Appen-
dix A) u ∈W 2, 2N

N+2 (Ω) ∩ Lt(Ω) for all t ≥ 1. So, taking c(x) := a(x)up−1 −m(x),

|∆u(x)| = |c(x)u(x)|

for almost everywhere x ∈ Ω, and c ∈ LN/2(Ω). If |{x ∈ Ω : u(x) = 0}| > 0, by
Theorems 2.3 and 2.2, u ≡ 0 in Ω. Therefore, if u ≥ 0 is a nontrivial solution for
(1.1), then u > 0 almost everywhere in Ω. The same conclusion is valid if ϕ ≥ 0 is
the first eigenfunction for (1.2).

As a direct consequence of the Sobolev imbedding theorem, we have the following
result.

Lemma 2.5. Suppose (A3) is satisfied. Then there exists β > 0 such that∫
Ω

a(x)|ϕ1 + w|p+1 <
1
2

∫
Ω

a(x)ϕp+1
1 , ∀‖w‖H1(Ω) < β.

The next result is standard and it is also based on the Sobolev imbedding theo-
rem.

Lemma 2.6 ([14]). Assume m ∈ LN/2(Ω) and {ωj}j ⊂ H1(Ω). If ωj ⇀ ωo weakly
in H1(Ω), then ∫

Ω

|m(x)(ω2
j − ω2

o)| → 0.

Now we present a version of Lemma 2.6 when the sequence {mj} satisfies the
hypothesis (M1).

Lemma 2.7. Assume (M1) is satisfied. If ωj⇀ωo weakly in H1(Ω), then∫
Ω

mj(x)ω2
j →

∫
Ω

m(x)ω2
o .

Proof. Given arbitrary subsequences of {mj} and {ωj}, (still denoted by {mj} and
{ωj}), we may write∫

Ω

mj(x)ω2
j −

∫
Ω

m(x)ω2
o =

∫
Ω

mj(x)(ω2
j − ω2

o) +
∫

Ω

ω2
o(mj(x)−m(x)).

Since mj −m⇀ 0 weakly in Lσ(Ω), σ ≥ N/2, and ωo ∈ H1(Ω), we have∫
Ω

ω2
o [mj(x)−m(x)]→ 0.

Therefore, to prove Lemma 2.7, it suffices to verify that∣∣ ∫
Ω

mj(x)(ω2
j − ω2

o)
∣∣→ 0.

If σ = N/2, by (M1) and Lemma 2.6, we obtain∫
Ω

|mj(x)(ω2
j − ω2

o)| ≤
∫

Ω

|f(x)| |ω2
j − ω2

o | → 0.
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On the other hand, if σ > N/2, taking a subsequence if necessary, we may suppose
that ‖ω2

j − ω2
o‖ σ

σ−1
→ 0 since 2σ/(σ − 1) < 2∗. Hence, by Hölder’s inequality,∫

Ω

|mj(x)(ω2
j − ω2

o)| ≤ ‖mj‖r‖ω2
j − ω2

o‖ σ
σ−1
→ 0.

The proof of Lemma 2.7 is complete. �

Remark 2.8. Applying the same argument used in the proof of the above lemma,
we have ∫

Ω

mj(x)ωjz →
∫

Ω

m(x)woz, ∀z ∈ H1(Ω).

Furthermore, as a direct consequence of Lemma 2.7, we have the following result.

Corollary 2.9. Assume (M1). Then, for any given ε > 0, there exists jε > 0 such
that

|
∫

Ω

[mj(x)−m(x)]ω2| ≤ ε‖ω‖2H1(Ω) ∀ω ∈ H1(Ω), j ≥ jε.

3. The eigenvalue problem

In this section we establish some basic properties for the eigenvalue problem
(1.2). We start by observing that its first eigenvalue is simple, isolated and the
associated eigenfunction does not change sign. After that we establish a continuity
result for the first and the second eigenvalues and their corresponding eigenfunctions
for (1.2) with mj instead of m under the condition (M1). We finalize this section
by proving the uniform equivalence between the standard H1(Ω) norm and a norm
associated with the sequence {mj} on the subspace of H1(Ω) orthogonal to the first
eigenfunction of (1.2) with mj instead of m.

Setting Qm(u) :=
∫

Ω
|∇u|2 +m(x)u2, we say that a function ϕ is associated with

λ if
∫

Ω
ϕ2 = 1 and Qm(ϕ) = λ. We define

λ1 := λ1(−∆ +m) = inf
{
Qm(u) : u ∈ H1(Ω), ‖u‖2 = 1

}
. (3.1)

Remark 3.1. If ϕ ∈ H1(Ω) is a (normalized) solution for (1.2), then∫
Ω

∇ϕ∇u+m(x)ϕu = λ

∫
Ω

ϕu, ∀u ∈ H1(Ω). (3.2)

Using ϕ as test function in (3.2), we obtain

λ = λ

∫
Ω

ϕ2 = Qm(ϕ) ≥ λ1. (3.3)

Thus, any eigenvalue for (1.2) is greater than λ1. Moreover, if there exists a non-
trivial solution ϕ for (1.2) with λ1 instead of λ, then λ1 is the smallest eigenvalue
for (1.2).

Theorem 3.2. Suppose m ∈ LN/2(Ω). Then the Problem (1.2) has its first eigen-
value given by (3.1). Moreover this first eigenvalue is simple and we may suppose
that the associated eigenfunction, ϕ1, is positive.

To state our second result, we define

λ2 := λ2(−∆ +m) = inf{Qm(v) : v ∈ V , ‖v‖2 = 1}, (3.4)

where V := {v ∈ H1(Ω) :
∫

Ω
ϕ1v = 0}. The next theorem shows that λ2 is the

second eigenvalue for (1.2).
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Theorem 3.3. Suppose m ∈ LN/2(Ω). Then the second eigenvalue for (1.2) is
given by (3.4). Moreover λ1 < λ2 and any eigenfunction associated with λ2 changes
sign in Ω.

The arguments used in the proofs of the above theorems are due to Manes and
Micheletti [10](see also [7]). In order to verify the simplicity of the first eigenvalue,
including the case σ = N/2, we apply Theorems 2.2 and 2.3 (see Remark 2.4). For
the sake of completeness we present the proofs in the appendix.

Now let {mj}j ⊂ LN/2(Ω) be the sequence satisfying (M1). Replacing m by
mj in Definition (3.1), we obtain the first eigenvalue λj1 := λ1(−∆ +mj) for (1.2)
with mj instead of m and its positive first eigenfunction ϕ1,j . In a similar way, the
second eigenvalue for (1.2) with mj instead of m is given by

λj2 := λ2(−∆ +mj) = inf{Qmj (v) : v ∈ Vj , ‖v‖2 = 1},
where Vj = {v ∈ H1(Ω) :

∫
Ω
ϕ1,jv = 0}. We denote by ϕ2,j the eigenfunctions

associated with λj2. Hereafter we will always suppose that the given eigenfunctions
are eigenfunctions normalized in L2(Ω). Hence Qmj (ϕ1,j) = λj1 and Qmj (ϕ2,j) =
λj2. The main result of this section is the following continuity result.

Theorem 3.4. Assume (M1) is satisfied. Then
(i) limj→∞ λj1 = λ1 and ϕ1,j → ϕ1 strongly in H1(Ω);
(ii) limj→∞ λj2 = λ2 and ϕ2,j → ϕ strongly in H1(Ω), where ϕ is an eigenfunc-

tion associated with λ2.

Proof. First note that, by (M1),
∫

Ω
mj(x)ϕ2

1 →
∫

Ω
m(x)ϕ2

1. Therefore, in view of
(3.1),

lim sup
j→∞

λj1 ≤ lim sup
j→∞

Qmj (ϕ1) = λ1. (3.5)

Next we claim that there exists M > 0 such that ‖ϕ1,j‖H1(Ω) < M , for all j ∈ N.
Indeed, otherwise we may suppose that ‖∇ϕ1,j‖2 → ∞. Defining ωj := ϕ1,j

‖∇ϕ1,j‖2
and taking a subsequence if necessary, we have that ωj ⇀ 0 weakly in H1(Ω) since
‖ϕ1,j‖2 ≡ 1. Applying Lemma 2.7,

∫
Ω
mj(x)ω2

j → 0. Thus, using the characteriza-
tion for the first eigenvalue given by (3.1), we have

λj1
‖∇ϕ1,j‖22

= 1 +
∫

Ω

mj(x)ω2
j → 1.

Consequently λj1 → ∞. However this contradicts (3.5). The claim is proved.
Invoking the above claim, we may suppose ϕ1,j ⇀ z weakly in H1(Ω) and ϕ1,j → z
strongly in L2(Ω). From Lemma 2.7,∫

Ω

mj(x)ϕ2
1,j →

∫
Ω

m(x)z2. (3.6)

Therefore, since lim infj→∞ ‖∇ϕ1,j‖22 ≥ ‖∇z‖22,

lim inf
j→∞

λj1 = lim inf
j→∞

Qmj (ϕ1,j) ≥ Qm(z) ≥ λ1. (3.7)

By (3.5) and (3.7), Qm(z) = limj→∞ λj1 = λ1. Hence, from Theorem 3.2, z = ϕ1.
Moreover, by (3.6), we have∫

Ω

|∇ϕ1,j |2 = λj1 −
∫

Ω

mj(x)ϕ2
1,j → λ1 −

∫
Ω

m(x)ϕ2
1 =

∫
Ω

|∇ϕ1|2
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and, consequently, ϕ1,j → ϕ1 strongly in H1(Ω). This concludes the proof of part
(i).

Now we prove (ii): since Qmj (ϕ2,j) = λj2, ϕ1,j → ϕ1 strongly in H1(Ω) and
{mj}j satisfies (M1), we have∫

Ω

ϕ2ϕ1,j →
∫

Ω

ϕ2ϕ1 = 0; (3.8)

Qmj (ϕ2)→ Qm(ϕ2) = λ2; (3.9)∫
Ω

∇ϕ1,j∇ϕ2 +mj(x)ϕ1,jϕ2 →
∫

Ω

∇ϕ1∇ϕ2 +m(x)ϕ1ϕ2; (3.10)

where ϕ2 is an eigenfunction associated with λ2. Defining vj := ϕ2 − tjϕ1,j with
tj :=

∫
Ω
ϕ2ϕ1,j and using (3.8),

‖vj‖22 =
∫

Ω

ϕ2
2 dx− t2j → 1. (3.11)

Setting wj := vj
‖vj‖2 , we obtain ‖wj‖L2(Ω) = 1 and

∫
Ω
ϕ1,jwj = 0, for all j ∈ N.

Hence wj ∈ Vj and, by (3.11) and the definition of λj2,

Qmj (ϕ2,j) ≤ Qmj (wj)

=
Qmj (ϕ2)− 2tj

∫
Ω

(∇ϕ2∇ϕ1,j +mj(x)ϕ2ϕ1,j) + t2jλ
j
1

‖vj‖22
.

Consequently, from (3.8)–(3.11) and the item (i),

lim sup
j→∞

λj2 = lim sup
j→∞

Qmj (ϕ2,j) ≤ lim sup
j→∞

Qmj (wj) = λ2. (3.12)

Arguing as in the item (i), we may suppose that the sequence {ϕ2,j}j is bounded in
H1(Ω), ϕ2,j ⇀ ϕ weakly in H1(Ω), with

∫
Ω
ϕ2 = 1 and ϕ ∈ V . We assert that ϕ is

an eigenfunction associated with λ2. Indeed, invoking Lemma 2.7 one more time,∫
Ω

mj(x)ϕ2
2,j →

∫
Ω

m(x)ϕ2. (3.13)

Therefore
lim inf
j→∞

Qmj (ϕ2,j) ≥ Qm(ϕ) ≥ λ2. (3.14)

Hence, from (3.12),
λj2 → λ2, Qm(ϕ) = λ2. (3.15)

Since ϕ ∈ V and
∫

Ω
ϕ2 = 1, we may apply Theorem 3.3 to conclude that ϕ is an

eigenfunction associated with λ2 as asserted. Finally, by (3.13) and (3.15),∫
Ω

|∇ϕ2,j |2 = λj2 −
∫

Ω

mjϕ
2
2,j → λ2 −

∫
Ω

mϕ2 =
∫

Ω

|∇ϕ|2.

Consequently ϕ2,j → ϕ strongly in H1(Ω). The proof of Theorem 3.4 is complete.
�

Remark 3.5. (i) Afrouzi [1] proved Theorem 3.4 for the Dirichlet boundary con-
ditions supposing {mj}j ⊂ C(Ω) and mj → m uniformly in Ω.

(ii) Note that Theorem 3.4 holds if mj → m strongly in LN/2(Ω) since in this
case the condition (M1) is satisfied.
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Given u ∈ H1(Ω), we may write u = tjϕ1,j + vj , where tj =
∫

Ω
uϕ1,j ∈ R and

vj = u− tjϕ1,j ∈ Vj . Defining

‖v‖2Vj =
∫

Ω

|∇v|2 +mj(x)v2 (3.16)

and recalling that λ2,j → λ2 > 0, it is not hard to see that ‖ · ‖Vj is an equivalent
norm to ‖ ·‖H1(Ω) in Vj if j is large enough. Actually we have the following uniform
equivalence result between the H1(Ω)-norm and the norm given by (3.16) on Vj .

Lemma 3.6. Assume (M1), (A2) are satisfied. Then there exist jo ∈ N and con-
stants A,B > 0 such that

A‖v‖2H1(Ω) ≤ ‖v‖
2
Vj ≤ B‖v‖

2
H1(Ω), ∀v ∈ Vj , ∀j ≥ jo. (3.17)

Proof. The existence of B > 0 follows from Hölder’s inequality and the Sobolev
Imbedding Theorem. Thus it suffices to show the existence of A > 0 in (3.17).
Arguing by contradiction, we suppose that there exists a sequence {vj}j , with
vj ∈ Vj for each j, such that ‖vj‖2H1(Ω) ≡ 1 and ‖vj‖2Vj < 1/j. Hence

0 = lim
j→∞

∫
Ω

|∇vj |2 +mj(x)v2
j ≥ lim

j→∞
λ2,j

∫
Ω

v2
j .

By [(A2)] and Theorems 3.3 and 3.4, λ2,j → λ2 > 0. Up to a subsequence,
vj ⇀ 0 weakly in H1(Ω). Applying Lemma 2.7,

∫
Ω
mj(x)v2

j → 0. Consequently∫
Ω
|∇vj |2 → 0 and ‖vj‖H1(Ω) → 0. This contradicts ‖vj‖H1(Ω) ≡ 1. The lemma is

proved. �

Remark 3.7. For further reference we remark that, since λ2 > 0,

‖v‖Vo :=
(∫

Ω

|∇v|2 +m(x)v2
)1/2

is a norm equivalent to the norm ‖ · ‖H1(Ω) in Vo := V . Moreover,

‖u‖ :=
(
t2 + ‖v‖2Vo

)1/2

, u = tϕ1 + v, t ∈ R, v ∈ Vo,

is a norm equivalent to the standard norm in H1(Ω).

4. Proofs of Theorems

In this section, using a constrained minimization method, we present the proof
of Theorem 1.1. After that we prove Theorems 1.2 and 1.4. To prove Theorem 1.1,
we define J(u) =

∫
Ω
a(x)|u|p+1 and set

Sg := {u ∈ H1(Ω) : Qg(u) = 1},

for every g ∈ LN/2(Ω), where Qg(u) =
∫

Ω
|∇u|2 + g(x)u2. Consider the maximiza-

tion problem:
αg := sup

u∈Sg
J(u).

Lemma 4.1. Given g ∈ LN/2(Ω), then Sg 6= ∅. Furthermore, if (A1) holds, then
αg > 0.
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Proof. Given an arbitrary subdomain Ω̂ of Ω, we let {ωj} be a sequence in H1
0 (Ω̂)

such that

ωj ⇀ 0 weakly in H1
0 (Ω̂) and

∫
Ω

|∇ωj |2 = 1 for every j.

Noting that H1
0 (Ω̂) is a closed subspace of H1(Ω), we also have that ωj ⇀ 0 weakly

in H1(Ω). Therefore, invoking Lemma 2.6 and the fact that g ∈ LN/2(Ω), we obtain

Qg(ωj) =
∫

Ω

|∇ωj |2 +
∫

Ω

g(x)ωj2 → 1.

Hence, for j sufficiently large, we may find tg = tg(j) > 0 such that Qg(tgωj) =
t2gQg(ωj) = 1. This implies that Sg 6= ∅.

When (A1) holds, taking Ω̂ ⊂ Ω+, the above argument may be used to conclude
that αg > 0. Indeed by construction ωj ∈ H1

0 (Ω̂)\{0} and, consequently, J(tgwj) =
tp+1
g

∫
Ω+ a(x)|wj |p+1 > 0. The proof of Lemma 4.1 is complete. �

Considering the sequence {mj}j , given by (M1), we set Sj := Smj 6= ∅ and
αj := αmj > 0. Moreover, as in Section 3, we set mo := m. In the next results
we verify the existence of a nonnegative function uj ∈ Sj such that J(uj) = αj .
After that we prove Theorem 1.1 by rescaling uj and using Lagrange’s Theorem
and Theorems 2.2 and 2.3.

Applying Lemmas 2.5 and 3.6, we may find δ > 0 such that, for every j ≥ jo,
‖ · ‖Vj satisfies (3.17) and∫

Ω

a(x)|ϕ1,j + v|p+1 <
1
2

∫
Ω

a(x)ϕp+1
1 < 0, ∀v ∈ Vj , ‖v‖2Vj < δ. (4.1)

Lemma 4.2. Assume (A1)–(A3), (M1). Then there exists j1 ∈ N such that, for
every j ≥ j1, we may find u = uj ∈ Sj, u ≥ 0 and J(u) = αj > 0.

Proof. Considering j ≥ jo, where jo is given by (4.1), from (A2), (M1) and Theorem
3.4, we may find j1 ≥ jo such that |λ1,j | < δ/2 for every j ≥ j1. For the rest of this
article, we fix j ≥ j1. Let {uk}k ⊂ Sj be sequence such that

J(uk)→ αj > 0 as k →∞. (4.2)

Using the decomposition H1(Ω) = Rϕ1,j ⊕Vj , we may write uk = tkϕ1,j + vk, with
tk =

∫
Ω
ukϕ1,j ∈ R and vk = uk − tkϕ1,j ∈ Vj . By Theorem 3.4 and Lemma 3.6,

there is C > 0 such that,

‖uk‖2H1(Ω) ≤ 2[t2k‖ϕ1,j‖2H1(Ω) + ‖vk‖2H1(Ω)] ≤ C[t2k + ‖vk‖2Vj ]. (4.3)

Furthermore,
1 = Qmj (uk) = ‖vk‖2Vj + λ1,j t

2
k. (4.4)

We assert that {uk}k is a bounded sequence in H1(Ω). Since |λ1,j | < δ/2, in view
of (4.4) and (4.3), it suffices to show that {tk}k ⊂ R is bounded. Arguing by
contradiction and taking a subsequence if necessary, we suppose that |tk| → ∞.
Consequently, from (4.4),

lim sup
k→∞

‖vk
tk
‖2Vj ≤ lim sup

k→∞
{ 1
t2k

+ |λ1,j |} = |λ1,j | ≤
δ

2
.

Hence, using (4.1) one more time,

lim
k→∞

J(uk) = lim
k→∞

|tk|p+1

∫
Ω

a(x)|ϕ1,j +
vk
tk
|p+1 = −∞.
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This contradicts (4.2). The sequence {uk}k ⊂ H1(Ω) is bounded as asserted. Using
this assertion, we may suppose that tk → t ∈ R, vk ⇀ v weakly in Vj . Consequently
uk ⇀ u = tϕ1,j + v weakly in H1(Ω) and

0 < αj = lim
k→∞

∫
Ω

a(x)|uk|p+1 =
∫

Ω

a(x)|u|p+1. (4.5)

It remains to show that u ∈ Sj . Applying Lemma 2.6, we have

1 = lim inf
k→∞

Qmj (uk) ≥
∫
|∇u|2 +mj(x)u2 = Qmj (u).

Actually Qmj (u) = 1. Indeed, if Qmj (u) = ‖v‖2Vj + λ1,jt
2 ≤ 0, then ‖v‖2Vj = 0 for

t = 0, or ‖v/t‖2Vj ≤ |λ1,j | < δ/2 if t 6= 0. In both cases, by (4.1), J(u) ≤ 0. This
contradicts (4.5). Therefore we may suppose that 0 < Qmj (u) ≤ 1 and that there
exists ρ ≥ 1 such that Qmj (ρu) = 1. Since J(ρu) = ρp+1J(u) = ρp+1αj , we obtain
ρ = 1, Qmj (u) = 1 and u ∈ Sj . Finally, observing that J and Qmj are even, we
may suppose u ≥ 0. The proof of Lemma 4.2 is complete. �

Proof of Theorem 1.1. By Lemmas 4.1, 4.2 and Lagrange’s Theorem, there exist
j1 ∈ N and uj ∈ Sj , uj ≥ 0, for every j ≥ j1, such that∫

Ω

∇uj∇w +mj(x)ujw =
1
αj

∫
Ω

a(x)|uj |p−1ujw, ∀w ∈ H1(Ω). (4.6)

That is, uj is a nonnegative weak solution for the problem

−∆u+mj(x)u =
1
αj
a(x)up, x ∈ Ω, u ∈ H1(Ω),

under the Neumann boundary conditions. Applying Theorems 2.2 and 2.3, we
obtain uj > 0. Setting ωj := (1/αj)1/(p−1)uj , we have that ωj > 0 is a weak
solution for (1.1) with mj instead of m for all j ≥ j1. The proof of Theorem 1.1 is
complete. �

Before proving Theorem 1.2, we consider the following lemma.

Lemma 4.3. Assume (A1)–(A3), (M1). Then there exists M > 0 and j2 ∈ N,
such that ‖uj‖H1(Ω) ≤M for each uj ∈ Sj satisfying J(uj) = αj, for all j ≥ j2.

Proof. Writing uj = sϕ1 + v ∈ Rϕ1 ⊕ V , if s 6= 0,

0 < αj = J(uj) = |s|p+1

∫
Ω

a(x)|ϕ1 +
v

s
|p+1.

By Lemma 2.5, ‖v‖H1(Ω) > β|s|. From Remark 3.7, there exists C > 1 such that

‖uj‖H1(Ω) ≤
( 1
β
‖ϕ1‖H1(Ω) + 1

)
‖v‖H1(Ω) ≤ C‖v‖V . (4.7)

Note that (4.7) is trivially true when s = 0. Hence, by Corollary 2.9, given 0 < ε <
1/C, there exists j2 ∈ N such that

1 = Qmj (uj) = ‖v‖2V +
∫

Ω

[mj(x)−m(x)]u2
j

≥ ‖v‖2V − ε‖uj‖2H1(Ω)

≥
( 1
C
− ε
)
‖uj‖2H1(Ω), ∀j ≥ j2.

The proof of Lemma 4.3 is complete. �
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Proof of Theorem 1.2. Defining uj := (αj)1/(p−1)wj , where {wj}j is the sequence
of solutions from Theorem 1.1, we obtain uj > 0, uj ∈ Sj and J(uj) = αj . Moreover
uj satisfies (4.6). From (M1), Lemma 4.3, Lemma 2.6, Corollary 2.9 and taking a
subsequence if necessary, we may suppose that

uj ⇀ u weakly in H1(Ω), (4.8)

uj → u strongly in Lτ (Ω), 1 ≤ τ < 2∗, (4.9)∫
Ω

mj(x)u2
j →

∫
Ω

m(x)u2, (4.10)∫
Ω

mj(x)ujφ→
∫

Ω

m(x)uφ, ∀φ ∈ H1(Ω), (4.11)∫
Ω

[mj(x)−m(x)]u2
j → 0. (4.12)

Applying the same arguments used in the proof of Lemma 4.2, we find a positive
solution uo ∈ H1(Ω) for the maximization problem

0 < αo := sup
Qm(u)=1

J(u) =
∫

Ω

a(x)|uo|p+1 <∞.

We claim that αj → αo. Indeed, by (M1), Qmj (uo) → 1. Thus there exist jo and
{θj}j ⊂ (0,∞) such that Qmj (θjuo) ≡ 1 for all j ≥ jo. Since θ2

jQmj (uo) ≡ 1,

lim
j→∞

θj = 1.

Using this and the fact that θjuo ∈ Sj ,

lim inf
j→∞

αj ≥ lim inf
j→∞

∫
Ω

a(x)|θjuo|p+1 = lim inf
j→∞

|θj |p+1αo = αo > 0. (4.13)

On the other hand, from (4.12),

Qm(uj) = Qmj (uj) +
∫

Ω

[m(x)−mj(x)]u2
j = 1 +

∫
Ω

[m(x)−mj(x)]u2
j → 1.

Thus, taking βj > 0 such that Qm(βjuj) ≡ 1, we have that βj → 1. Hence, from
the definition of αo,

αo ≥ J(βjuj) = βp+1
j αj ,

lim sup
j→∞

αj ≤ lim sup
j→∞

αo

βp+1
j

= αo. (4.14)

We conclude from (4.13) and (4.14) that αj → αo > 0. The claim is proved.
By the above claim and (4.9),

αo = lim
j→∞

αj = lim
j→∞

∫
Ω

a(x)|uj |p+1 =
∫

Ω

a(x)|u|p+1. (4.15)

Hence u 6= 0. Since uj > 0 satisfies (4.6) for each j ≥ j1, using (4.8), (4.9),(4.10)
and (4.11), we obtain∫

Ω

∇u∇ϕ+m(x)uϕ =
1
αo

∫
Ω

a(x)|u|p−1uϕ ∀ ϕ ∈ H1(Ω).
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In particular wo := α
−1/(p−1)
o u is a solution for (1.1). A similar argument shows

that

lim
j→∞

∫
Ω

|∇uj |2 = lim
j→∞

{ 1
αj

∫
Ω

a(x)|uj |p+1 −
∫

Ω

mj(x)u2
j

}
=

1
αo

∫
Ω

a(x)|u|p+1 −
∫

Ω

m(x)u2 =
∫

Ω

|∇u|2.

Consequently, we have that uj → u strongly in H1(Ω) and Qm(u) = 1. Thus
u ∈ So = Sm and, by (4.15), J(u) = αo. As before by Theorems 2.2 and 2.3, u > 0.
Moreover

wj :=
( 1
αj

) 1
p−1uj → wo in H1(Ω).

The proof of Theorem 1.2 is complete. �

Remark 4.4. Note that under the hypotheses (A1)–(A3) and (M1), there exist
r0 > 0 and j = j0 such that (1.1), with mjn − τn instead of m, possesses a positive
solution whenever τ ∈ [0, r0) and j ≥ j0. Indeed, arguing by contradiction, we find
sequences {τn} ∈ [0,∞) and {jn} such that (1.1), with mjn − τn instead of m, has
no positive solution and τn → 0, jn → ∞ as n → ∞. However, by Theorem 1.1,
for every n sufficiently large, (1.1), with mjn − τn instead of m, possesses a positive
solution since mjn−τn ⇀m weakly in Lσ(Ω) as n→∞. This contradiction implies
that the result holds.

It is worthwhile mentioning that, by Theorem 3.4, λ1(−∆+mj−τ)→ λ1(−∆+
m − τ) = −τ < 0 for every τ > 0. We also note that the existence of positive
solutions for (1.1), with m− τ instead of m, was considered in [5].

Proof of Theorem 1.4. Arguing by contradiction, we suppose that there exist R >
0 (or f ∈ LN/2(Ω) if σ = N/2) and a sequence {mj}j ⊂ Lr(Ω) such that (i)
‖m −mj‖Lσ(Ω) ≤ R (or |mj | ≤ f a.e. in Ω, if σ = N/2), (ii) Qmj (ϕ1) ≤ 1/j, (iii)
−1/j < λ1(−∆ + mj) < 0, and (1.1) with mj instead of m has no solution for all
j ∈ N. Taking a subsequence if necessary, mj ⇀ m̂ weakly in Lσ(Ω). Then, from
(A2), Theorem 3.4 and (ii) and (iii) above,

λ1(−∆ + m̂) = lim
j→∞

λ1(−∆ +mj) = 0,

0 ≤
∫

Ω

|∇ϕ1|2 + m̂(x)ϕ2
1 = lim

j→∞

∫
Ω

|∇ϕ1|2 +mj(x)ϕ2
1 ≤ 0.

Hence ϕ1 is an eigenfunction for (1.2), with m̂ instead of m, associated with
λ1(−∆ + m̂) = 0. Consequently∫

Ω

∇ϕ1∇ω + m̂(x)ϕ1ω = 0 =
∫

Ω

∇ϕ1∇ω +m(x)ϕ1ω, ∀ω ∈ H1(Ω),

and ∫
Ω

(m̂(x)−m(x))ϕ1ω = 0 ∀ω ∈ H1(Ω).

This implies that (m̂ − m)ϕ1 = 0 a.e. in Ω. Since ϕ1 > 0, m̂ ≡ m. Therefore,
mj ⇀ m weakly in Lσ(Ω) and {mj}j satisfies the condition (M1). From (A1),
(A2), (A3) and Theorem 1.1, (1.1) with mj instead of m possesses a solution for j
sufficiently large. This contradiction concludes the proof of Theorem 1.4. �
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We conclude this article by presenting an application of Theorems 1.1 and 1.2
to the problem

−∆u+ ϕ(x) cos (jxN )u = a(x)up, x ∈ Ω,
∂u

∂η
= 0 x ∈ ∂Ω,

where ϕ ∈ C∞o (Ω) is a nontrivial function, 1 < p < (N + 2)/(N − 2) and xN ∈ R
is the last component of x = (x1, . . . , xN ) ∈ Ω.

Assuming that a changes sign and satisfies
∫

Ω
a(x) < 0, we may assert that this

problem has a positive solution uj for every j ∈ N sufficiently large. Moreover,
up to a subsequence, uj → u in H1(Ω) where u > 0 is a solution of (1.1) with
0 instead of m. Indeed, to derive such result, it suffices to observe that mj :=
ϕ(x) cos (jxN ) ∈ L∞(Ω) and mj ⇀ 0 weakly in Ls(Ω), for all s > 1. We note
that mj does not converge strongly in any Ls(Ω). Hence, in particular, the results
from [1] and [12] may not be applied to this problem since {mj}j does not converge
uniformly to zero.

5. Appendix: Regularity of solutions

For the convenience of the reader, we present the argument necessary to establish
the regularity of the solutions for (1.2) and (1.1). First we recall the following
results.

Lemma 5.1 ([13]). Suppose ∂Ω ∈ C1, b ∈ LN/2(Ω) and α ∈ L∞(Ω). If u ∈ H1(Ω)
is a weak solution of

−∆u = b(x)u in Ω,
∂u

∂η
= α(x)u on ∂Ω,

then u ∈ Lt(Ω) for all 1 ≤ t <∞.

Lemma 5.2 ([2]). Suppose ∂Ω ∈ C2, h ∈ Ls(Ω) and g ∈ H1,s(Ω) for some
s ∈ (1,∞). If u ∈ H1(Ω) is a weak solution of

−∆u = h(x) in Ω
∂u

∂η
= g(x) on ∂Ω,

then u ∈W 2,s(Ω) and ‖u‖W 2,s(Ω) ≤ C(‖h‖Ls(Ω) +‖g‖W 1,s(∂Ω) +‖u‖Ls(Ω)) for some
C > 0.

The above lemma due to Agmon, Douglis and Nirenberg is also cited in [13].
Now, as an application of the above mentioned results, we sate the following result.

Lemma 5.3. Suppose m ∈ Lσ(Ω), σ ≥ N/2, ϕ is an eigenfunction for (1.2) and u
is a solution for (1.1). Then ϕ, u ∈ Lt(Ω), for 1 ≤ t <∞. Moreover ϕ, u ∈ C0,γ(Ω)
provided σ > N

2 . If σ = N
2 then ϕ, u ∈W 2,s(Ω) for all s ∈ [2N/(N + 2), N/2).

Proof. Defining the functions b1 := λ −m and b2 := aup−1 −m, from Lemma 5.1
we obtain ϕ, u ∈ Lt(Ω) for all 1 ≤ t < ∞. Next, considering σ > N/2 and setting
h1 := b1ϕ and h2 := b2u, it is easy to see that hi ∈ Ls(Ω) for all s ∈ (N/2, σ) , i =
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1, 2. Indeed, for each s ∈ (N/2, σ), choose α > σ/(σ − s) and take θ > 1 such that
1/θ + s/σ + 1/α = 1. Then, by Hölder inequality,

‖mu‖ss ≤ |Ω|1/θ‖m‖sσ‖u‖ssα <∞.

Since aup ∈ Ls(Ω) and s > N/2, we may apply the Lemma 5.2 and the Sobolev
Imbedding Theorem to conclude that

ϕ, u ∈W 2,s(Ω) ↪→ C0,γ(Ω) for some 0 < γ < 1.

In the case σ = N/2, given s ∈ [2N/(N + 2), N/2), we choose α > N/(N − 2s) and
take θ > 1 such that 1/θ + 2s/N + 1/α = 1. By Hölder inequality mu ∈ Ls(Ω).
Applying Lemma 5.2, we conclude that ϕ, u ∈ W 2,s(Ω) for all s ∈ [2N/(N +
2), N/2). �

Remark 5.4. If σ > N , then hi ∈ Ls(Ω) for all s ∈ (N, σ). Repeating the above
steps, ϕ, u ∈ C1,γ(Ω), i = 1, 2.

Proofs of Theorems 3.2 and 3.3

As observed in Section 3, the arguments employed in the proofs of Theorems
3.2 and 3.3 are due to Manes and Micheletti [10]. In order to verify that the
first eigenvalue is simple and that the first eigenfunction, ϕ1, is positive (almost
everywhere) in Ω, we apply Theorems 2.2 and 2.3 (see Remark 2.4).

Proof of Theorem 3.2. By Hölder’s inequality and Sobolev Imbedding Theorem,
there exists C > 0 such that

|Qm(u)| ≤ (1 + C‖m‖N/2)‖u‖2H1(Ω). (5.1)

As a direct consequence of (5.1), λ1 < ∞. Now let {uk}k ⊂ H1(Ω) be a sequence
such that

∫
u2
k = 1 and Qm(uk) → λ1. We claim that {‖uk‖H1(Ω)}k is bounded.

Otherwise, from (5.1), up to a subsequence, ‖∇uk‖2 →∞. Defining wk := uk
‖∇uk‖2

and applying Sobolev Imbedding Theorem one more time, we may suppose wk ⇀ 0
weakly in H1(Ω) since ‖uk‖2 ≡ 1. By Lemma 2.6,

∫
m(x)w2

k → 0. Thus, since

Qm(uk)
‖∇uk‖22

= 1 +
∫
m(x)w2

k, (5.2)

Qm(uk) → ∞. This contradicts λ1 < ∞. Thus {uk}k ⊂ H1(Ω) is a bounded
sequence as claimed. Passing to a subsequence if necessary, uk ⇀ ϕ1 weakly in
H1(Ω), ‖ϕ1‖2 = 1 and, by Lemma 2.6,∫

m(x)u2
k →

∫
m(x)ϕ2

1.

Then, since lim infk→∞ ‖∇uk‖22 ≥ ‖∇ϕ‖22,

λ1 = lim inf
k→∞

Qm(uk) ≥ Qm(ϕ1).

This implies that Qm(ϕ1) = λ1. Now we show that ϕ1 solves (1.2) with λ1 instead
of λ. Given u ∈ H1(Ω), for every t ∈ R\{0} sufficiently small,

Qm(ϕ1 + tu)∫
(ϕ1 + tu)2

=
∫
|∇(ϕ1 + tu)|2 +m(x)(ϕ1 + tu)2∫

(ϕ1 + tu)2
≥ λ1.
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Consequently,

2t
∫
∇u∇ϕ1 +m(x)uϕ1 + t2Qm(u) ≥ 2tλ1

∫
uϕ1 + t2λ1

∫
u2. (5.3)

Dividing (5.3) by 2t and taking t→ 0 (t→ 0+ and t→ 0−), we obtain∫
∇u∇ϕ1 +m(x)uϕ1 = λ1

∫
uϕ1, ∀u ∈ H1(Ω). (5.4)

This shows that ϕ1 is a solution for (1.2) with λ1 instead of λ. As observed in
Remark 3.1, this also implies that λ1 is the first eigenvalue for (1.2). Notice that
we may suppose ϕ1 ≥ 0 since Qm(|u|) = Qm(u). By Remark 2.4, ϕ1 is positive in
Ω.

Finally we verify that λ1 is a simple eigenvalue and that any associated eigen-
function v ∈ H1(Ω)\{0} does not change sign. A simple arithmetic shows that: for
every A,B,X, Y ∈ R with X,Y > 0, we have either

A+B

X + Y
=
A

X
=
B

Y
or

min
{A
X
,
B

Y

}
<
A+B

X + Y
< max

{A
X
,
B

Y

}
.

Since

λ1 =
Qm(v)∫

v2
=
Qm(v+) +Qm(v−)∫

(v+)2 +
∫

(v−)2
,

if v+ := max{v, 0} ≥ 0 and v− := max{−v, 0} ≥ 0 are nontrivial functions, we
have

(I) λ1 =
Qm(v+)∫

(v+)2
=
Qm(v−)∫

(v−)2

or

(II) λ1 > min
{Qm(v+)∫

(v+)2
,
Qm(v−)∫

(v−)2
}.

In case I, we also have that v+ and v− are (after normalization) eigenfunctions
associated with λ1. Applying Theorems 2.2 and 2.3, with c(x) := m(x) − λ1, we
have simultaneously v+ > 0 and v− > 0 in Ω, which it is not possible. On the other
hand, case II contradicts the definition of λ1. This shows that v does not change
sign in Ω.

Now, given any α ∈ R, by the above claim the function ϕ1−αv does not change
sign in Ω. Defining

A := {α ∈ R : ϕ1 ≥ αv a.e.}, B := {α ∈ R : ϕ1 ≤ αv a.e.},
it is not difficult to verify that A and B are closed subsets of R. Since A and B are
nonempty and A∪B = R, there is αo ∈ A∩B and, consequently, ϕ1 = αov a.e. in
Ω. Therefore, λ1 is a simple eigenvalue. The verification that λ1 is isolated will be
made in the proof of Theorem 3.3. The proof of Theorem 3.2 is complete. �

Proof of Theorem 3.3. By definition 3.4, λ2 ≥ λ1. Similar argument to the one
used in the proof of Theorem 3.2 implies that there exists ϕ2 ∈ V associated with
λ2. In order to show that λ1 < λ2 we suppose by contradiction that λ1 = λ2. Then,
by Theorem 3.2, there exists α ∈ R\{0} such that ϕ1 = αϕ2. But this contradicts∫
ϕ1ϕ2 = 0. Moreover it is clear, from the definition of V , that ϕ2 changes sign in

Ω.
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Now we show that ϕ2 is a solution for (1.2): given u ∈ H1(Ω), we write u =
tϕ1 + v, with t =

∫
ϕ1u ∈ R and v = u− tϕ1 ∈ V . Arguing as in the verification

of (5.4), ∫
∇v∇ϕ2 +m(x)vϕ2 = λ2

∫
vϕ2, ∀v ∈ V. (5.5)

Noting that
∫
ϕ1(ϕ2 + sv) = 0 for each s ∈ R and v ∈ V and, in view of (5.4) and

(5.5)), we obtain∫
∇u∇ϕ2 +m(x)uϕ2 = t

∫
∇ϕ1∇ϕ2 +m(x)ϕ1ϕ2 +

∫
∇v∇ϕ2 +m(x)vϕ2

= λ2

∫
uϕ2, ∀u ∈ H1(Ω).

Thus ϕ2 is an eigenfunction for (1.2). Our final task is to verify that (1.2) has no
solution if λ ∈ (λ1, λ2). That is, λ1 is isolated. Otherwise, take ϕ a normalized
eigenfunction for (1.2) with λ ∈ (λ1, λ2). Hence

λ

∫
ϕϕ1 =

∫
∇ϕ1∇ϕ+m(x)ϕ1ϕ = λ1

∫
ϕϕ1.

Since (λ1−λ) 6= 0,
∫
ϕϕ1 = 0. Thus ϕ ∈ V . However this contradicts the definition

of λ2, since λ = λ
∫
ϕ2 = Qm(ϕ) < λ2. The proof of Theorem 3.3 is complete. �
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