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NONLINEAR PERTURBATIONS OF PIECEWISE-LINEAR
SYSTEMS WITH DELAY AND APPLICATIONS TO GENE

REGULATORY NETWORKS

VALERIYA TAFINTSEVA, ARCADY PONOSOV

Abstract. We study piecewise-linear delay differential systems which de-

scribe gene regulatory networks with Boolean interactions. Under very general
assumptions put on the regulatory functions it is shown how to construct the

limit dynamics of the systems by applying singular perturbation analysis. The

obtained results are compared with those based on the multilinear represen-
tation of the regulatory functions usually considered in the literature. It is

shown that sliding modes may be quite different in the multilinear and gen-

eral case. Polynomial representations of the systems are proposed to describe
generic cases of the dynamics. The results presented in this paper may give

the insight into the theory of gene regulatory networks.

1. Introduction

One of the most widespread formalisms [6] used to model gene regulatory net-
works is based on the system of ordinary differential equations of the form

dxi
dt

= Fi(z1, . . . , zn)−Gi(z1, . . . , zn)xi, i = 1, . . . , n, (1.1)

where xi(t) denotes the product concentration of gene i at time t, the regulatory
functions Fi (the production rate) and Gi (the degradation rate) depend on the
Boolean response functions zk = zk(xk) indicating the state of the gene k: either
active (“1”) or inactive (“0”). Therefore, functions zk may be approximated by step
functions [6]. Obviously, no processes in real life occur instantly. Such processes
as transcription, translation, transportation take time in real biological networks.
That is why introducing time delays into dynamical systems may have a great
effect when predicting the actual dynamics of the network [9, 10, 20, 21, 24]. The
time delay can be discrete or distributed [3]. In the models with discrete delays
each variable, e.g. gene product concentration, depends on a function of delayed
variables with time delay of the same length. In the models with distributed delays
derivative of a variable depends on an integral of a function of delayed variables
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over a specified range of previous time. The general expression of the distributed
delay system is the following

dxi
dt

= F(xi(t), z(xdel
i )), i = 1, . . . , n,

where

xdel
i =

∫ 0

−∞
xi(t− τ)ρi(xi(t− τ))dτ,

∫ 0

−∞
ρi(xi(t− τ))dτ = 1.

The last equation is a normalization condition arising from biological realism [8].
In our paper we will be focused on gene regulatory network (1.1) with distributed

delay. In the considered framework, since the response functions zk are assumed to
be step functions, systems of differential equation become piecewise-linear systems.
Therefore, their dynamics are easy to find in regular domains (continuity regions),
but not in singular domains (discontinuity sets). To detect trajectories belonging
to singular domains - “sliding modes” - singular perturbation analysis [12, 18, 19]
can be employed. In order to do that, the step functions are replaced by steep
sigmoid functions. The solutions of the resulting systems are proved to approach
the limit solution uniformly in any time interval, when sigmoids approach the step
functions [12].

This paper is a continuation of the work initiated in [22]. As it was discovered
in [22], introducing nonlinear regulatory functions (instead of commonly used mul-
tilinear functions) into the model (1.1) may lead to considerable changes in the
dynamics’ behavior. Here we introduce nonlinearities into time delay models. The
justification of the nonlinearity assumption put on the response functions can be
found in [22, Section 1,9] and Section 8 below.

The present paper is organized in the following way.
In Section 2 we formulate the problem and prove that for the system with smooth

response functions there exists a solution defined on (0,∞). In Section 3 we derive
a non-delay representation of the delay differential system using Modified Linear
Chain Trick (see Appendix for details) and introduce definitions and notations re-
lated to geometrical properties of the model. The singular perturbation analysis
method, which allows to construct the trajectories in the singular domains, is pre-
sented in Section 4. In Section 5,6 we compare the dynamics of the multilinear
and nonlinear systems and show that, in general, the dynamics of the systems are
different when discontinuity sets are included in the analysis. In Section 7 we show
that polynomial representation of the response functions is generic for the systems
considered in the article. We also find the minimum degree of the representing
polynomial for some particular types of domains. Finally, the main results of the
paper are discussed in Section 8.

2. Well-posedness of the problem

In this section we study the delay system

ẋi(t) = Fi(z1, . . . , zn)−Gi(z1, . . . , zn)xi(t),

zi = H(yi, θi, qi),

yi(t) = (Rixi)(t), t > 0, i = 1, . . . , n.
(2.1)

This system describes a gene regulatory network with autoregulation [6, 17], where
changes in one or more genes happen slower than in the others, which may lead to
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considerable delays in the variables. Such a delay effect may be caused by the time
required to complete transcription, translation and diffusion to the place of action
of a protein [6]. The delays can be described by linear Volterra operators Ri, each
of them depending on the single variable xi. If Ri is the identity operator for some
i, then xi = yi, so that system (2.1) contains no delay in the variable xi.

The following assumptions will be put on system (2.1).
(A1) The functions Fi and Gi, i = 1, . . . , n, are continuously differentiable.
(A2) Fi(z1, . . . , zn) ≥ 0 and Gi(z1, . . . , zn) > 0 for all zk satisfying 0 ≤ zk ≤ 1,

k = 1, . . . , n.
(A3) The functions H(yi, θi, qi), i = 1, . . . , n are given by

H(u, θ, q) =

{
0, u < 0,

u1/q

u1/q+θ1/q , u > 0,
(2.2)

where q ≥ 0, θ > 0.
The response functions zi = H(yi, θi, qi) in the gene regulatory system (2.1)

describe a delayed or non-delayed activity of gene i. In addition to the gene con-
centration xi, the response functions depend on two other parameters: the threshold
value θi and the steepness parameter qi ≥ 0. The latter shows how close the sigmoid
function is to the unit step function: if qi > 0 gets smaller, then the corresponding
response function becomes steeper around the threshold θi, and in the limit (i.e.
for qi = 0) the response function coincides with the unit step function. The graph
of the Hill function is depicted in Figure 1.
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Figure 1. The Hill function z = H(u, θ, q), q ≥ 0

The Hill function (2.2) satisfies the following properties (see [17]):
(1) H(u, θ, q) is continuous in (u, q) ∈ R×(0, 1) for all θ > 0, continuously differ-

entiable with respect to u > 0 for all θ > 0, 0 < q < 1, and ∂
∂uH(u, θ, q) > 0

on the set {u > 0 : 0 < H(u, θ, q) < 1};
(2) H(u, θ, q) satisfies

H(θ, θ, q) = 0.5, H(0, θ, q) = 0, H(+∞, θ, q) = 1
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for all θ > 0, 0 < q < 1;
(3) For all θ > 0, ∂

∂zH
−1(z, θ, q) → 0 uniformly on compact subsets of the

interval z ∈ (0, 1) as q → 0;
(4) If q → 0, then H−1(z, θ, q) → θ uniformly on all compact subsets of the

interval z ∈ (0, 1) and for every θ > 0;
(5) If q → 0, then H(u, θ, q) tends to 1 (∀u > θ), to 0 (∀u < θ) and is equal to

0.5 (if u = θ) for all θ > 0;
(6) For any sequence (un, θ, qn) such that qn → 0 and H(un, θ, qn) → z∗ for

some 0 < z∗ < 1 we have ∂
∂uH(un, θ, qn)→ +∞.

To simplify the notation, let us rewrite system (2.1) as

ẋ(t) = F((Rx)(t), x(t)), t > 0, (2.3)

where
x = (x1, . . . , xn)], F = (F1, . . . ,Fn)]

(] stands for the transpose of a matrix (vector)),

Fi(y1, . . . , yn, xi)

= Fi(H(y1, θ1, q1), . . . ,H(yn, θn, qn))−Gi(H(y1, θ1, q1), . . . ,H(yn, θn, qn))xi,

R = diag[R1, . . . ,Rn], yi(t) = (Rixi)(t) =
∫ t

−∞
ds ri(t, s)xi(s).

The following assumptions will be put on the delay kernels:
(A4) The functions ri(·, 0) and Vars∈(−∞,A] ri(·, s) are Lebesgue integrable on

each compact subinterval of (0,∞) for any A > 0 and i = 1, . . . , n.
The initial condition for system (2.3) is defined as

x(τ) = ϕ(τ), τ ≤ 0, (2.4)

where ϕ should satisfy
(A5) The function

ϕR(t) :=
∫

[−∞,0]

ds r(t, s)ϕ(s)

is locally Lebesgue-integrable on the interval (0,∞). Here

r(·, s) = (r1(·, s), . . . , rn(·, s)) .

The following existence and uniqueness result is valid for system (2.1).

Theorem 2.1. Under assumptions (A1)–(A5), system (2.1) with positive steepness
parameters qi, i = 1, . . . , n has a unique absolutely continuous solution x(t) (t > 0)
and satisfying the initial condition (2.4).

Proof. We split the delay operator R as follows:

R = R− + R+,

where

(R+x)(t) =
∫ t

0

ds r(t, s)x(s), t > 0,

(R−ϕ)(t) =
∫

(−∞,0]

ds r(t, s)ϕ(s), t > 0.
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We first prove local existence and uniqueness. Let A be a positive number. As
the solution x(t) of equation (2.3) must be absolutely continuous and satisfy the
initial condition (2.4), it can be represented in the form

x(t) = ϕ(0) +
∫ t

0

ξ(s)ds (2.5)

for some ξ ∈ L1([0, A]; Rn). Inserting (2.5) into (2.3) yields an equation in the
space L1([0, A]; Rn)

ξ(t) = (T ξ)(t), (2.6)

where

(T ξ)(t) := F
(
ϕR(t) +

(
R+(ϕ(0) +

∫ ·
0

ξ(s)ds)
)

(t), ϕ(0) +
∫ ·

0

ξ(s)ds
)
.

It is straightforward to check that the imbedding of the space D1 = D1([0, A]; Rn)
(of all absolutely continuous functions from [0, A] to Rn) into the Lebesgue space
L1 = L1([0, A]; Rn) has the norm A. Similarly (see e.g. [2]), the operator R+ is
bounded as a linear operator from D1 to L1, and its norm RA satisfies

RT ≤ RA (T ≤ A) and lim
A→+0

RA = 0. (2.7)

The assumptions of the theorem imply that |F(y, x)−F(y′, x′)| ≤ L(|y−y′|+|x−x′|)
and |F(y, x)| ≤M(1+ |x|) for all y, y′, x, x′ ∈ Rn. We then notice that the operator
T acts in the space L1:

|ξ(t)| = |F(ϕR(t) + (R+x)(t), x(t))| ≤ 1 + |x(t)|.

Hence, ξ ∈ L1 if x ∈ D1. As |(T ξ)(t)| ≤M(1 + |x(t)|), then

‖(T ξ)‖L1 ≤MA+M‖x‖L1 ≤MA+MA‖x‖D1

≤MA+MA(|ϕ(0)|+ ‖ξ‖L1).

On the other hand, as

|T ξ1(t)− T ξ2(t)| ≤ L
(
|
(
R+(x1 − x2)

)
(t)|+ |x1(t)− x2(t)|

)
,

we obtain

‖T ξ1 − T ξ2‖L1 ≤ LRA‖x1 − x2‖D1 + L‖x1 − x2‖L1 ≤ L(RA +A)‖ξ1 − ξ2‖L1

where RA is the norm of the operator R+. Due to (2.7), one has L(RA+A) < 1 for
sufficiently small A. Then the operator T becomes a contraction in the space L1,
so that equation (2.6) has the only solution ξ(t), defined on [0, A] and satisfying
the initial condition (2.4).

To prove global existence we observe that we can replace the initial time t = 0
with an arbitrary time t = t0 ≥ 0, guaranteeing local continuation of any solution.
It remains therefore to show that the solution cannot explode until +∞. But

|ẋ(t)| = |F(ϕR(t) + (R+x)(t), x(t))| ≤M(1 + |x(t)|),

so that |x(t)| ≤ |x̂(t)| for each t > 0, for which x̂(t) satisfies the equation ẋ =
M(1 + |x(t)|). As x̂(t) is defined on the whole [0,∞), the function x(t) is also
defined for all t ≥ 0. �
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3. Representation as a non-delay system

In the rest of the paper we study the delay systems, where only one variable is
“delayed”. This assumption will help us to simplify the notation and the proofs.
We stress that our main results are also valid (requiring only a few notational
adjustments in the proofs) when the other variables are delayed as well, provided
that only one variable may assume its threshold value at a time, which is the case
of discontinuity sets of codimension 1. In some sense, this may be regarded as a
“generic” situation, in spite of the fact that discontinuity sets of higher codimension
sometimes play a crucial role in the analysis of gene regulatory networks as well
(see e.g. [12], [19]).

Without loss of generality we can then assume that the only delayed variable is
x1, so that y1 6= x1, while xi = yi for 2 ≤ i ≤ n, and the main system (2.1) becomes

ẋi(t) = Fi(z1, . . . , zn)−Gi(z1, . . . , zn)xi(t),

zi = H(yi, θi, qi), i = 1, . . . , n,

xi(t) = yi(t), 2 ≤ i ≤ n,
y1(t) = (Rx1)(t), t > 0.

(3.1)

We specify now the assumptions on the delay operator.
(A6) The operator R is given by

(Rx1)(t) = c0x1(t) +
∫ t

−∞
K(t− s)x1(s)ds, t > 0, (3.2)

K(w) =
p∑
j=1

cj Kj(w), Kj(w) =
αjwj−1

(j − 1)!
e−αw. (3.3)

The coefficients cj are real nonnegative numbers satisfying
∑p
j=0 cj = 1,

α > 0.
Clearly, this is a particular case of the general delay operator studied in the

previous section, so that the existence and uniqueness result holds true for system
(3.1). On the other hand, the special shape of the delay operator allows for applying
a special method to study system (3.1). The method, which is called “the modified
linear chain trick” (MLCT), helps to reduce the delay system (3.1) to a finite
dimensional system of ordinary differential equations. Note that the standard linear
chain trick [7] is not useful in our case, since we want the output variable z1 to be
dependent on the single input variable y1. MLCT is described in [15] and [19] in
detail. In Appendix we offer a short description of the method in the scalar case.
A similar method was suggested in [5].

To apply MLCT to system (3.1), we let assumptions (A1)–(A3), (A5), (A6) be
fulfilled. Let system (3.1) be supplied with the initial conditions

x1(τ) = ϕ(τ), τ ≤ 0,

xi(0) = x0
i , 2 ≤ i ≤ n,

(3.4)

where ϕ(τ) is bounded and measurable.
We use the vector substitution

ν(t) = α

∫ t

−∞
eA(t−s)πx1(s)ds+ c0x1(t)e1,
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where

ν(t) = (ν1(t), . . . , νp(t))], π = (c1, . . . , cp)], e1 = (1, 0, . . . , 0)],

A =


−α α 0 . . . 0
0 −α α . . . 0
0 0 −α . . . 0
...

...
...

. . .
...

0 0 0 . . . −α

 .

Then we get [15], [19] the following system of ordinary differential equations, which
is equivalent to system (3.1):

ẋ(t) = F (z)−G(z)x(t),

ν̇(t) = Aν(t) + Π(z, x1(t)), t > 0,

zi = H(xi, θi, qi), 2 ≤ i ≤ n,
z1 = H(ν1, θ1, q1),

(3.5)

where

x = (x1, . . . , xn)], z = (z1, . . . , zn), F = (F1, . . . , Fn)],

G = diag (G1, . . . , Gn), Π(z, x1(t)) = αx1(t)π̃ + c0Λ(z, x1(t)),

π̃ = (c0 + c1, c2, . . . , cp)], Λ(z, x1(t)) = (F1(z)−G1(z)x1(t), 0, . . . , 0)].

Note that ν1 = y1 in system (3.5). The initial conditions (3.4) can be rewritten
as follows:

x1(0) = ϕ(0),

xi(0) = x0
i , i = 2, . . . , n,

ν(0) = α

∫ 0

−∞
eA(−τ)πϕ(τ)dτ.

Example 3.1. We consider the scalar differential equation
ẋ(t) = F (z)−G(z)x(t),

z = H(y, θ, q),

y(t) = (Rx)(t) (t ≥ 0)
(3.6)

supplied with the initial condition

x(τ) = ϕ(τ), τ ≤ 0. (3.7)

The integral operator is given by

(Rx)(t) = c0x(t) +
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0,

where K(w) = c1K1(w) + c2K2(w), cj ≥ 0 (j = 0, 1, 2), c0 + c1 + c2 = 1, and

K1(w) = αe−αw, α > 0 (the weak generic delay kernel), (3.8)

K2(w) = α2we−αw, α > 0 (the strong generic delay kernel). (3.9)

After applying MLCT, system (3.6) becomes

ẋ = F (z)−G(z)x,

ν̇1 = c0(F (z)−G(z)x) + αx(c0 + c1)− αν1 + αν2,
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ν̇2 = −αν2 + αxc2.

The initial conditions (3.7) can be rewritten in terms of new variables as follows:

x(0) = ϕ(0),

ν1(0) = c0ϕ(0) +
∫ 0

−∞
(c1αeατ − c2α2τeατ )ϕ(τ)dτ,

ν2(0) = c2α

∫ 0

−∞
eατϕ(τ)dτ,

where ν1 = y.

In the remaining part of the section we deal with the limit case of the mod-
ified system (3.5), where qi = 0 (i = 1, . . . , n), zi = H(xi, θi, 0) (i = 2, . . . , n),
z1 = H(ν1, θ1, 0). In this setting, the system becomes discontinuous along the hy-
perplanes xi = θi (i = 2, . . . , n) and ν1 = θ1, so that the existence and uniqueness
theorem 2.1 does not hold true any longer. Hence, a special analysis should be
provided to study the behavior of the solutions to such a system.

To simplify the definitions we introduce now a new notation. Let N = {1, . . . , n},
M = (1, . . . , n) t (1, . . . , p), u = (u1, . . . , un), where u1 = ν1, ui = xi, i = 2, . . . , n,
U = (x1, ν2, . . . , νp). Given j ∈ N , we put R(j) = N \ {j}. We call Boolean any
vector with the coordinates 0 or 1.

In the new notation the main system (3.5) becomes

u̇(t) = U(z, u(t), U(t)),

U̇(t) = U(z, u(t), U(t)), t > 0.
(3.10)

Definition 3.2. Given an n-dimensional Boolean vector B we denote by R(B) the
set consisting of all (u, U) ∈ RM such that H(ui, θi, 0) = Bi, i ∈ N and call it a
regular domain (or a box ).

Clearly, system (3.10) is smooth (in fact, affine) inside boxes, which immediately
gives a local existence and uniqueness of its solutions, provided that the initial
values belongs to a box. If such a solution hits a discontinuity set, then the situation
becomes more complicated. That is why we need more definitions covering such
singular cases.

Definition 3.3. Given a number j ∈ N and an (n−1)-dimensional Boolean vector
BR(j) : R(j) → {0, 1}, we write SD(BR(j)) for the set containing all (u, U) ∈ RM
which satisfy the conditions uj = θj and H(ui, θi, 0) = Bi for all i ∈ R(j).

A wall is therefore a piece of a hyperplane uj = θj where the step functions
H(ui, θi, 0) remain continuous (and thus constant) for all i 6= j.

Evidently, the wall SD(BR(j)) lies between two adjacent boxes: R(B0
R(j)), where

H(uj , θj , 0) = 0, and R(B1
R(j)), where H(uj , θj , 0) = 1. Inside either box sys-

tem (3.10) is affine:

u̇(t) = U(z, u(t), U(t)) := αu(BmR(j))u(t) + βu(BmR(j))U(t) + γu(BmR(j)),

U̇(t) = U(z, u(t), U(t)) := αU (BmR(j))u(t) + βU (BmR(j))U(t) + γU (BmR(j)),

t > 0, m = 0, 1.

(3.11)
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Let P be a point in the wall SD(BR(j)) and (u(t,m, P ), U(t,m, P )) be the solu-
tion to (3.11), which satisfies

(u(0,m, P ), U(0,m, P )) = P, m = 0, 1.

The solutions’ behavior at P is governed by the sign of the derivative of the com-
ponent uj of the vector u (see [15]). Summarizing we get the following definition:

Definition 3.4. A point P ∈ SD(BR(j)) is called
– of “type I” if u̇j(0, 0, P ) < 0 and u̇j(0, 1, P ) < 0, or if u̇j(0, 0, P ) > 0 and

u̇j(0, 1, P ) > 0;
– of “type II” if u̇j(0, 0, P ) > 0 and u̇j(0, 1, P ) < 0;
– of “type III” if u̇j(0, 0, P ) < 0 and u̇j(0, 1, P ) > 0.

The derivatives can, of course, be directly expressed in terms of P using (3.11):

u̇(0,m, P ) = αu(BmR(j))Pu + βu(BmR(j))PU ,

where (Pu, PU ) = P ∈ SD(BR(j)).

Definition 3.5. A part of the wall SD(BR(j)) is called of type I (resp. II, III) if
any point in it, except for a nowhere dense set, is of type I (resp. II, III).

Remark 3.6. The definition 3.5 deserves a comment. In the case of pure delay
(c0 = 0) there exist some exceptional points (of mixed type) where u̇j = 0 which
form a nowhere dense subset of points. These points are neither black, nor white,
nor transparent (see [17, Prop. 2] for details).

In the non-delay case a wall can only be of one certain type [14]. Introducing
delays into the system may imply existence of walls of mixed types [15], [18]. This is
readily seen from the system (3.11): In the non-delay situation the auxiliary vector
variable U is absent, while in the delay case this variable is present and therefore
may influence the sign of the derivatives u̇j(0,m, P ).

Example 3.7. Consider the delay equation

ẋ = 0.5− z3 + 1.21z2 − 0.41z − 0.47x,

z = H(y, θ, q),

y(t) = c0x(t) + c1

∫ t

−∞
K1(t− s)x(s)ds,

(3.12)

where K1 is given by (3.8). The considered wall is given by y = θ = 1.
Assume that c0 > 0, c0 + c1 = 1. First we apply MLCT to system (3.12)

ẋ = 0.5− z3 + 1.21z2 − 0.41z − 0.47x,

ẏ = c0(0.5− z3 + 1.21z2 − 0.41z − 0.47x) + α(x− y),

then, using representation (3.11), we obtain the following coupled system

ẋ = 0.5− 0.47x

ẏ = c0(0.5− 0.47x) + α(x− y)

(z = 0)

and

ẋ = 0.29− 0.47x

ẏ = c0(0.29− 0.47x) + α(x− y)
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(z = 1)

which is equivalent to (3.12).
Let us choose the values α = 0.5, c0 = 0.7. In this case,

ẏ(0, 0, P ) = (α− 0.47c0)x− α+ 0.5c0,

ẏ(0, 1, P ) = (α− 0.47c0)x− α+ 0.29c0.

The point P (x, y) = (1.2, 1) in the wall y = 1 is of type II since ẏ(0, 0, 1.2) = 0.06 >
0 and ẏ(0, 1, 1.2) = −0.09 < 0; while the point P (x, y) = (0.6, 1) is of type I, since
ẏ(0, 0, 0.6) = −0.05 < 0 and ẏ(0, 1, 0.6) = −0.19 < 0.

4. Singular perturbation analysis: general case

In this section we aim to describe the solutions’ behavior in a vicinity of a
wall, where (according to definition 3.3 of a wall) only one variable, the so-called
“singular” or “switching” variable, assumes its threshold value, while the other
variables, the so-called “regular” variables [12], stay away from their respective
threshold values. A detailed analysis in the non-delay case is offered in [22], so that
in this paper we concentrate on the dynamics of the system in the case when the
“delayed” variable y1 becomes singular, while all the other variables yi = xi, i =
2, . . . , n are non-delayed and regular. According to definition 3.3 the corresponding
wall is denoted by SD(BR(1)). We study system (3.1) under assumptions (A1)–(A3),
(A5), (A6) or, after applying the MLCT method, the equivalent system of ordinary
differential equations (3.5), which becomes discontinuous in the limit, as qi → 0
(i = 1, . . . , n), where ν1 = θ1, so that the existence and uniqueness theorem 2.1
does not hold true. That is why singular perturbation analysis (SPA) (see e.g. [23])
is needed to study the behavior of the solutions to such a system (see [12], [18],
[22]).

First of all, we rewrite (3.5) as

ẋi = Fi(z1, zR(1))−Gi(z1, zR(1))xi, i = 1, . . . , n,

ν̇1(t) = −αν1 + αν2 + αx1(c0 + c1) + c0(F1(z1, zR(1))−G1(z1, zR(1))x1),

ν̇2(t) = −αν2 + αν3 + αx1c2,

ν̇3(t) = −αν3 + αν4 + αx1c3,

. . .

ν̇p(t) = −ανp + αx1cp,

zi = H(xi, θi, qi), 2 ≤ i ≤ n,
z1 = H(ν1, θ1, q1),

y1 = ν1,

(4.1)

where zR(1) = (z2, . . . , zn).
Assume that the system is equipped with the initial conditions

x(t0, q̄) = x0(q̄),

ν(t0, q̄) = ν0(q̄),
(4.2)

where
x = (x1, . . . , xn)], ν = (ν1, . . . , νp)], q̄ = (q1, . . . , qn).
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We want to construct the limit solution (as qi → 0, i = 1, . . . , n) inside the
wall SD(BR(1)) and to show that the solution of the smooth problem (3.5),(4.2)
uniformly converges to this limit solution. Following SPA described in [12] we
replace y1 with z1. This change of variables gives us the system

q1ż1 =
z1(1− z1)

H−1(z1, θ1, q1)

[
− αH−1(z1, θ1, q1) + αν2 + αx1(c0 + c1)

+ c0

(
F1(z1, zR(1))−G1(z1, zR(1))x1

)]
,

ẋi = Fi(z1, zR(1))−Gi(z1, zR(1))xi, i = 1, . . . , n,

ν̇2(t) = −αν2 + αν3 + αx1c2,

ν̇3(t) = −αν3 + αν4 + αx1c3,

. . .

ν̇p(t) = −ανp + αx1cp,

(4.3)

where qi > 0, i = 1, . . . , n. The extra factors in the first equation arise from the
differentiation of z1 with respect to y1 (see [12] or [18] for details).

We denote for simplicity

f(z1, zR(1), x1, ν2, q̄) = −αH−1(z1, θ1, q1) + αν2 + αx1(c0 + c1)

+ c0

(
F1(z1, zR(1))−G1(z1, zR(1))x1

)
.

(4.4)

System (4.3) will be then rewritten in the following form:

q1ż1 =
z1(1− z1)

H−1(z1, θ1, q1)
f(z1, zR(1), x1, ν2, q̄),

ẋi = Fi(z1, zR(1))−Gi(z1, zR(1))xi, i = 1, . . . , n,

ν̇(t) = Aν(t) + αx1Π,

(4.5)

where

A =


−α α . . . 0
0 −α . . . 0
...

...
. . .

...
0 0 . . . −α

 ,

dimA = (p− 1)× (p− 1),

ν = (ν2, . . . , νp)], Π = (c2, . . . , cp)],

(4.6)

while the initial conditions become

z1(t0, q1) = z0
1(q1),

x(t0, q̄) = x0(q̄),

ν(t0, q̄) = ν0(q̄).

(4.7)

In SPA system (4.5) together with conditions (4.7) is called the full initial value
problem.
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After applying the stretching transformation τ = (t− t0)/q1, system (4.5) takes
the form of the boundary layer system

z′1 =
z1(1− z1)

H−1(z1, θ1, q1)
f(z1, zR(1), x1, ν2, q̄),

x′i = q1

[
Fi(z1, zR(1))−Gi(z1, zR(1))xi

]
, i = 1, . . . , n,

ν′ = q1(Aν + αx1Π)

(4.8)

with the initial conditions

z1(0, q1) = z0
1(q1),

x(0, q̄) = x0(q̄),

ν(0, q̄) = ν0(q̄).

The prime denotes differentiation with respect to the new time τ .
Now we let qi → 0, i = 1, . . . , n, so that y1 → θ1 and zR(1) → BR(1), what means

that the limit solution belongs to the wall SD(BR(1)). The boundary layer system
reduces to the boundary layer equation (BLE)

z′1 =
z1(1− z1)

θ1
f(z1,BR(1), x1, ν2, 0̄), (4.9)

where 0̄ = (0, . . . , 0), z1(0, 0) = B1,

f(z1,BR(1), x1, ν2, 0̄) = −αθ1 + αν2 + αx1(c0 + c1)

+ c0

(
F1(z1,BR(1))−G1(z1,BR(1))x1

)
.

(4.10)

The following assumptions are considered in the sequel:
(A7) There is an isolated stationary solution z1 = ẑ1 of the boundary layer

equation (4.9) such that ẑ1 ∈ (0, 1).
One should notice that the stationary solution ẑ1 is a function of x1 and ν2, so that,
in fact, we have ẑ1 = ẑ1(x1, ν2).

(A8) The stationary solution z1 = ẑ1 is locally asymptotically stable.
(A9) The initial value z1(0, 0) = B1 belongs to the domain of attraction of the

solution ẑ1.

Theorem 4.1. If assumptions (A7)-(A9) are fulfilled, then the solutions of the
smooth problem (4.5), (4.7) uniformly converge (as q̄ → 0̄) to the solution (ẑ1, x̂, ν̂)
of the reduced problem

z1 = ẑ1,

ẋi = Fi(ẑ1,BR(1)) −Gi(ẑ1,BR(1))xi, i = 1, . . . , n,

ν̇ = Aν + αx1Π,

x(t0, 0̄) = x0(0̄),

ν(t0, 0̄) = ν0(0̄).

(4.11)

More precisely, for all T > t0

lim
q1→0

z1(t, q1) = ẑ1 uniformly on any [t, T ], ∀t, T, t0 < t < T,

lim
q̄→0̄

x(t, q̄) = x̂ uniformly on [t0, T ],
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lim
q̄→0̄

ν(t, q̄) = ν̂ uniformly on [t0, T ],

where x = (x1, . . . , xn)], ν = (ν2, . . . , νp)], A and Π are given by (4.6).

Proof. According to Theorem 2.1 the boundary layer system (4.8) and the boundary
layer equation (4.9) have unique global solutions.

To prove the statement we need to recall Tikhonov’s theorem the assumptions of
which are identical with assumptions (A7)-(A9). The validity of the assumptions
is then straightforward to check. �

As in [22], we only intend here to study generic cases, so that the following
assumption will be permanently used in the forthcoming sections:
(A10) For any (x1, ν2) the function f(·,BR(1), x1, ν2, 0̄) has only simple roots

(where the derivative is not zero) in the open interval (0, 1).
We will sometimes let the functions Fi(z1, . . . , zn) andGi(z1, . . . , zn), i = 1, . . . , n

fulfill the following more specific assumption:
(A11) The functions Fi(z1, . . . , zn) andGi(z1, . . . , zn), i = 1, . . . , n are multilinear;

i.e., linear in each variable zk, k = 1, . . . , n.
Under this multilinearity assumption, BLE (4.9) has at most one stationary solu-

tion in the interval (0, 1). In case of no solutions, the point P will be “transparent”,
which means that the solution of system (2.1) crosses the wall at P (i.e. after hav-
ing traveled inside one of the adjacent boxes and having hit P , it goes through the
wall at P and continues traveling inside the another adjacent box). In other words,
the system is “switching” at P . If BLE has exactly one stable (resp. unstable) sta-
tionary solution in the interval (0, 1), then P becomes “black” or attracting (resp.
“white” or repelling). In this case SPA can help to construct the limit behavior of
the solutions of system (2.1) as qi → 0, i = 1, . . . , n. It can also be shown that
the limit dynamics is independent of the box the trajectory comes from. For more
details see e.g. [12, 18].

Remark 4.2. The assumption of multilinearity (assumption (A11)) put on the
production and degradation rate functions is widely used in the theory of gene reg-
ulatory networks (see e.g. [11]–[14], [18], [19]). However, several reasons for intro-
ducing nonlinearities into the genetic models can be mentioned (see the discussions
in [22]). The present article is, in particular, meant to continue the mathematical
analysis of nonlinear genetic models started in [22] by comparing the dynamics of
the system (2.1) under the general assumption (A1) and under the multilinearity
assumption (A11).

In our, more general, setting, i.e. when assumptions (A1) and (A10) are used
instead of assumption (A11), we get a more complicated geometry of the trajectories
near P , although the algebraic conditions at P (i.e. those given in definition 3.4)
will be the same in both cases. This was shown in our previous paper [22] for non-
delay networks. Below we briefly summarize the differences between the general
and the multilinear cases.

Assume that the total number of stationary solutions of BLE in the interval (0, 1)
is even and non-empty. Then one of the outmost stationary solutions in this interval
will be asymptotically stable, while the other outmost stationary solution will be
unstable. Performing SPA near the point P one can show that P is attracting for the
trajectories coming from one of the adjacent boxes and repelling for the trajectories
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coming from the other box. By this, P is not transparent, as the trajectories can
never cross the wall at P . In the sequel, we will call such a P “pseudo-transparent”.

When the total number of stationary solutions of BLE in the interval (0, 1) is
odd and bigger than 1, then we may have two situations: the outmost stationary
solutions are both asymptotically stable or both unstable. In the first case, P is
an attracting point, but the limit dynamics in the wall, unlike the multilinear case,
does depend on the box the trajectory comes from. We will call such a P “pseudo-
black”. In the second case, P is repellent, but again the limit trajectories show
different behavior in different boxes, thus making P “pseudo-white”.

In the next sections we offer necessary and sufficient conditions for a type I
(resp. type II and type III) point to be transparent (resp. black and white), and
we also provide a detailed study of how the replacement of multilinearity assump-
tion (A11) by the general assumption (A1) influences dynamics in gene regulatory
models. We will be particularly interested in comparing the dynamics within the
pairs “transparent vs. pseudo-transparent”, “black vs. pseudo-black” and “white
vs. pseudo-white”.

5. Dynamics along type I parts of the wall

In this section we prove that type I points show up in the situation where the
total number of stationary solutions of BLE (4.9) within (0, 1) is even. If this set of
stationary solutions is empty, than the point P will be, as in the multilinear case,
transparent, if it is not empty, we get a pseudo-transparent point.

In what follows, we consider system (3.1) under assumptions (A1)–(A3), (A5),
(A6), (A10). We study the system’s dynamics near the wall SD(BR(1)), where
y1 = θ1 is a singular variable and yi = xi, i = 2, . . . , n are regular variables.
Applying the MLCT method to system (3.1), we obtain an equivalent system of
ordinary differential equations (3.5) or (4.1), which we are going to study in this
section.

Let P = (x1, . . . , xn, ν1, . . . , νp) ∈ SD(BR(1)) be a point of type I, so that the
function f(z1,BR(1), x1, ν2, 0̄), given by (4.10) with qi = 0, i = 1, . . . , n, satisfies
the conditions

f(0,BR(1), x1, ν2, 0̄) > 0,

f(1,BR(1), x1, ν2, 0̄) > 0,
(5.1)

or
f(0,BR(1), x1, ν2, 0̄) < 0,

f(1,BR(1), x1, ν2, 0̄) < 0,
(5.2)

where x1 and ν2 are the coordinates of the chosen point P .
Now we formalize the geometric description of transparent and pseudo-trans-

parent points given in the previous section.

Definition 5.1. We say that a type I point P ∈ SD(BR(1)) is transparent if there
exists a neighborhood N of P in the wall and a positive number ε such that any
solution of system (4.1) with any q̄ = (q1, . . . , qn) > 0, qi < ε (i = 1, . . . , n),
which hits N at some point, transversally crosses the wall at this point entering
the another adjacent box and staying there for a positive time. Any type I point
that is not transparent will be called pseudo-transparent.

The main result of this section is stated in the following theorem.
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Theorem 5.2. Under assumptions (A1)–(A3), (A5), (A6), (A10) and (5.1) or
(5.2) we have:

A. If for the coordinates x1, ν2 of P ∈ SD(BR(1)) the function f(·,BR(1), x1, ν2, 0̄)
has no roots in the interval (0, 1), then P is transparent;

B. If for the coordinates x1 and ν2 of the point P ∈ SD(BR(1)) the function
f(·,BR(1), x1, ν2, 0̄) has at least one root in the interval (0, 1), then the total number
of roots is even and the point P is pseudo-transparent.

Proof. Let us first prove statement A. Without loss of generality it can be assumed
that at the chosen point P = (x1, . . . , xn, ν1, . . . , νp) ∈ SD(BR(1)) the function
f(z1,BR(1), x1, ν2, 0̄) satisfies conditions (5.1) for 0 ≤ z1 ≤ 1.

Let qi > 0, i = 1, . . . , n. As system (4.1) is smooth, its solutions cross transver-
sally the wall SD(BR(1)) (where ν1 = θ1) if ẏ1(t) = ν̇1(t) 6= 0 at the crossing time
t. Notice that in this case ẏ1(t) = f(z1,BR(1), x1, ν2, q̄). In the limit (as q̄ → 0̄)
we have at the point P that f(z1,BR(1), x1, ν2, 0̄) > 0 for all z1 ∈ [0, 1] by condi-
tions (5.1). Due to the continuity, the function f remains positive in a neighborhood
of P and for small qi > 0, i = 1, . . . , n. This implies that P is transparent, and
statement A of the theorem is thus proven.

Let us prove statement B. Assume that for the coordinates (x1, ν2) of P the
function f(·,BR(1), x1, ν2, 0̄) has a root ẑ1

1 ∈ (0, 1).
Conditions (5.1) imply that the total number of stationary solutions of BLE

inside the interval (0, 1) must be even. Since at least one stationary solution ẑ1
1

belongs to (0, 1), we get two different outmost stationary solutions in (0, 1), and
one of which must be asymptotically stable. We claim that P will be a pseudo-
transparent point in this case.

Assume, for instance, that the leftmost stationary solution ẑ1
1 ∈ (0, 1) is asymp-

totically stable, so that the stationary solution ẑ1 = 0 is unstable. Then we have
f(0,BR(1), x1, ν2, 0̄) > 0 and therefore f(1,BR(1), x1, ν2, 0̄) > 0, which implies as-
ymptotic stability of the stationary solution ẑ1 = 1 of BLE. To prove that near the
point P the wall attracts the trajectories which are to the left of it, we observe that
z1 = 0, being the initial value for z1 in the boundary layer equation, belongs the
domain of attraction of ẑ1

1 , so that from Theorem 4.1, we immediately obtain the
desired result as well as the equation for the limit trajectories in the wall (“sliding
modes”). Therefore, the limit solutions near P do not cross the wall. Rather, they
stay in the wall once they hit it.

By this, the point P , as well as the points within its small neighborhood, are
not transparent. �

Remark 5.3. Theorem 5.2 proves that if the point is pseudo-transparent, then
it has an attracting neighborhood in the wall, yet this neighborhood only attracts
the trajectories belonging to one of the adjacent boxes, e.g. to the right one if the
conditions

f(0,BR(1), x1, ν2, 0̄) < 0, f(1,BR(1), x1, ν2, 0̄) < 0

are fulfilled. We may say that the neighborhood is “black” on its right. On the other
hand, we can observe that near P the trajectories to the left of the wall converge
toward the focal point belonging to the same box (see [18] for details). This means
that the limit trajectories to the left of the wall cannot cross this wall either, which
implies that the neighborhood is “white” on its left. To check in the latter case that
the solutions of the smooth system qi > 0, i = 1, . . . , n, approach the solutions of
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the limit system, it is again sufficient to apply a standard continuous dependence
theorem (as we did in the paper [22]).

Theorem 5.2 states, therefore, that introducing nonlinear functions of z may
convert a transparent part of a wall into a non-transparent part, or more precisely
to a “white-black” part. We stress that such a transformation is invisible in the
limit, as the limit system (4.1) and the transversality conditions (5.1) or (5.2) are
invariant under the replacement of the powers zni with zi (as Bn = B for any
Boolean variable). Yet, a more careful analysis justified in the above theorem,
shows that the trajectories for small positive q̄ may behave very differently in these
two cases.

Let us consider some examples.

Example 5.4. The following multilinear system is studied

ẋ = 0.1 + 0.1z − 0.34x,

z = H(y, θ, q),

y(t) = c0x(t) + c1

∫ t

−∞
K1(t− s)x(s)ds

(5.3)

with the delay kernel K1 given by (3.8), z = H(y, θ, q) satisfying (2.2), q > 0, and
the wall y = θ = 1.

Assume that c0 > 0, c0 + c1 = 1. Applying MLCT to system (5.3) yield

ẋ = 0.1 + 0.1z − 0.34x,

ẏ = c0(0.1 + 0.1z − 0.34x) + α(x− y),

then, using representation (3.11), we obtain the following coupled system

ẋ = 0.1− 0.34x

ẏ = c0(0.1− 0.34x) + α(x− y)

(z = 0)
, (5.4)

and

ẋ = 0.2− 0.34x

ẏ = c0(0.2− 0.34x) + α(x− y)

(z = 1)

which is equivalent to (5.3).
The boundary layer equation reads here as

z′ = z(1− z)
(
c0(0.1 + 0.1z − 0.34x) + α(x− 1)

)
, (5.5)

so that f(z, x) = c0(0.1 + 0.1z − 0.34x) + α(x− 1).
The number of roots of f(·, x) depends on the value of coordinate x.
We fix some values for variables c0 and α to specify the case, namely c0 =

0.7, α = 0.5. It is straightforward to check that for x ∈ (−∞, 1.37) ∪ (1.64,∞)
equation (5.5) does not have any stationary solutions inside (0,1), while outside:
the stationary solution ẑ = 0 is locally asymptotically stable, ẑ = 1 is unstable.
This part of wall is of type I, namely transparent, and trajectory hits the wall on
its right side and depart from the wall on its left.



EJDE-2013/24 NONLINEAR PERTURBATIONS 17

When x ∈ (1.37, 1.64) equation (5.5) has only one unstable stationary solution
ẑ(x) ∈ (0, 1). This part of wall is of type III, namely white or repelling. The
trajectories of the system (5.3) are depicted in Figure 2.

Example 5.5. Consider the following non-multilinear delay system

ẋ = 0.1− z2 + 1.1z − 0.34x,

z = H(y, θ, q),

y(t) = c0x(t) + c1

∫ t

−∞
K1(t− s)x(s)ds,

(5.6)

with delay kernel K1 given by (3.8), z = H(y, θ, q) satisfying (2.2), q > 0, and the
wall y = θ = 1. Clearly, replacing z2 by z yields system (5.3).

Assume that c0 > 0, c0 + c1 = 1. Applying MLCT to system (5.6) gives

ẋ = 0.1− z2 + 1.1z − 0.34x,

ẏ = c0(0.1− z2 + 1.1z − 0.34x) + α(x− y).

then, using representation (3.11), we obtain the following coupled system
ẋ = 0.1− 0.34x

ẏ = c0(0.1− 0.34x) + α(x− y)

(z = 0),
(5.7)

and

ẋ = 0.2− 0.34x

ẏ = c0(0.2− 0.34x) + α(x− y)

(z = 1),

which is equivalent to (5.6).
The boundary layer equation reads here as

z′ = z(1− z)
(
c0(0.1− z2 + 1.1z − 0.34x) + α(x− 1)

)
, (5.8)

so that f(z, x) = c0(0.1− z2 + 1.1z − 0.34x) + α(x− 1).
We let c0 and α be 0.7 and 0.5, respectively. It is straightforward to check

that for x ∈ (−∞, 0.83) ∪ (1.64,∞) equation (5.8) does not have any stationary
solutions inside (0, 1), with ẑ = 0 and ẑ = 1 being locally asymptotically stable and
unstable stationary solutions, respectively. This is transparent type I part of the
wall. Trajectory hits the wall on its right side and departs from the wall on its left.

When x ∈ (1.37, 1.64) equation (5.8) has only one unstable stationary solution
ẑ(x) ∈ (0, 1). This is type III part of the wall, namely white (repelling).

And finally, when x ∈ (0.83, 1.37) equation (5.8) has two stationary solutions
ẑ1(x), ẑ2(x) ∈ (0, 1) being unstable and locally stable, respectively. Thus, this part
of the wall of type I consists of pseudo-transparent points.

The trajectories of the system (5.6) are depicted in Figure 3.

Remark 5.6. In [22] there were studied non-delay versions of systems (5.3) and
(5.6). It was shown that introducing nonlinearity into a linear non-delay system
with a transparent wall (remember that in case of non-delay systems a wall can
only be of one certain type) changes the wall’s type to pseudo-transparent (in the
new terminology introduced in this paper). Comparing the walls from Ex. 5.4 and
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Figure 2. Trajectories of system (5.3), where K1 is given by (3.8),
z = H(y, θ, q), q = 0.01, θ = 1, α = 0.5, c0 = 0.7
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Figure 3. Trajectories of system (5.6), where K1 is given by (3.8),
z = H(y, θ, q), q = 0.01, θ = 1, α = 0.5, c0 = 0.7

5.5 we can see that introducing nonlinearity into delay system (5.3) changes the
type of the wall’s part from transparent to pseudo-transparent (see Figure 4).

Remark 5.7. Comparing Figures 2 and 3 we can see that trajectories in the regular
domains, i.e. boxes R(B0

R) and R(B1
R), are quite similar, but become very different

when approaching the wall y = 1. The similarity of the dynamics of systems (5.3)
and (5.6) can be justified by the following fact: if z2 is replaced by z, then the
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                transparent                              white       transparent

x
                                         1.37              1.64

transparent       pseudo−transparent           white       transparent

x
0.83                                  1.37              1.64

(a) Wall y = 1 from Ex. 5.4 (b) Wall y = 1 from Ex. 5.5

Figure 4. A change in the type of the wall’s part after substitut-
ing the linear delay system (a) by the nonlinear delay system (b):
a piece of the transparent part of the wall becomes pseudo-
transparent.

system (5.6) becomes the system (5.3). In the limit they therefore produce the
same pair of affine systems (5.4),(5.7). In the regular domains, this replacement
is “invisible”, which we also could observe in the two figures above. However,
near the wall the difference between trajectories becomes significant. According
to Theorem 5.2 BLEs (5.5) and (5.8) for systems (5.3) and (5.6), respectively, are
different: BLE corresponding to the non-multilinear system (Figure 3) has acquired
a stable stationary solution in the interval (0, 1). Hence, the trajectories of systems
are not equivalent in a vicinity of the wall.

6. Dynamics along type II and III parts of the wall

In this section we study the situation where the total number of stationary
solutions of BLE (4.9) in (0, 1) is odd. We show that if this number is 1, than the
point P will be, as in the multilinear case, black (resp. white) if the stationary
solution is asymptotically stable (resp. unstable). Should the total number of
stationary solutions in (0, 1) be bigger than 1, we get a pseudo-black or pseudo-
white point.

We do not give here a formal definition of these four notions, as for our purposes
it is sufficient with the informal description offered in Section 4.

First of all, we observe that assumptions (A7) and (A8) used in Theorem 4.1 are
fulfilled if the following conditions are satisfied:

f(0,BR(1), x1, ν2, 0̄) > 0,

f(1,BR(1), x1, ν2, 0̄) < 0,
(6.1)

or equivalently,

−αθ1 + αν2 + αx1(c0 + c1) + c0
(
F1(0,BR(1))−G1(0,BR(1))x1

)
> 0,

−αθ1 + αν2 + αx1(c0 + c1) + c0
(
F1(1,BR(1))−G1(1,BR(1))x1

)
< 0,

(6.2)

if we apply formulas (4.4) with qi = 0, i = 1, . . . , n, z1 = 0 and 1.
Indeed, conditions (6.2) imply that BLE (4.9) has an odd number of stationary

solutions in the interval (0, 1), of which the outmost solutions must be asymptoti-
cally stable. As we will see below, this situation corresponds to a type II piece of the
wall. In this case, this piece is attracting, and if the stationary solution is unique
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in (0, 1), then the dynamics in the wall, constructed with the help of Theorem 4.1,
does not depend on the box the solution comes from. This is, in particular, the
case when the functions Fi and Gi, i = 1, . . . , n are multilinear. But it is important
to notice that if the functions Fi and Gi satisfy the general assumption (A1), BLE
may have more than one stationary solution in (0, 1). In this case inequalities (6.2)
imply that the outmost solutions will be different and both stable. As we will show,
this results in two different dynamics in the wall.

Let P = (x1, . . . , xn, ν1, . . . , νp) be a point from the wall SD(BR(1)) such that
for the coordinates (x1, ν2) the function f(z1,BR(1), x1, ν2, 0̄), given by (4.10) with
qi = 0, i = 1, . . . , n, satisfies inequalities (6.1).

The following theorem is the main result of this section.

Theorem 6.1. Under assumptions (A1)–(A3), (A5), (A6), (A10) and (6.1) we
have:

A. If for the coordinates x1, ν2 of P ∈ SD(BR(1)) the function f(·,BR(1), x1, ν2, 0̄)
has one root in the interval (0, 1), then P is black;

B. If for the coordinates x1 and ν2 of the point P ∈ SD(BR(1)) the function
f(·,BR(1), x1, ν2, 0̄) has more than one root in the interval (0, 1), then the total
number of roots is odd and the point P is pseudo-black.

Proof. As it was noticed before, inequalities (6.1) provide the fact that the function
f(·,BR(1), x1, ν2, 0̄) has an odd number of roots in the open interval (0, 1). If the
root is unique ẑ1

1 ∈ (0, 1), conditions (6.1) imply that it is a stable stationary
solution of BLE. Therefore, both z1 = 0 and z1 = 1, being initial values for z1

in the boundary layer equation, belong to the attraction basin of unique ẑ1
1 , thus

guarantying that all assumptions of Tikhonov’s theorem are fulfilled. Therefore,
applying Theorem 4.1 gives us the limit dynamics along the wall independent of
the choice of the box the trajectory comes from. By that, P is a black point.

Assume that for the coordinates (x1, ν2) of P , the function f(·,BR(1), x1, ν2, 0̄)
has more than one root ẑ1

1 , . . . , ẑ
m
1 ∈ (0, 1). Conditions (6.1) imply that the leftmost

root ẑ1
1 ∈ (0, 1) and the right most root ẑm1 ∈ (0, 1) are asymptotically stable

stationary solutions of BLE. We observe that z1 = 0, being the initial value for
z1 in the boundary layer equation, belongs the domain of attraction of ẑ1

1 , while
z1 = 1, being the initial value for z1 in the boundary layer equation, belongs the
domain of attraction of ẑm1 so that Theorem 4.1 gives us the limit trajectories in
the wall (“sliding modes”). Since the stationary points are different, the dynamics
will be different depending on the box the trajectories come from. This proves that
the point P is pseudo-black. �

The following examples illustrate the above theorem.

Example 6.2. We study the following multilinear system

ẋ = 0.5− 0.21z − 0.47x,

z = H(y, θ, q),

y(t) = c0x(t) + c1

∫ t

−∞
K1(t− s)x(s)ds,

(6.3)

with the delay kernel K1 given by (3.8), z = H(y, θ, q) satisfying (2.2), q > 0, and
the wall y = θ = 1.
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Assume that c0 > 0, c0 + c1 = 1. Applying MLCT to system (6.3) gives

ẋ = 0.5− 0.21z − 0.47x,

ẏ = c0(0.5− 0.21z − 0.47x) + α(x− y).

Then, using representation (3.11), we obtain the following coupled system

ẋ = 0.5− 0.47x

ẏ = c0(0.5− 0.47x) + α(x− y)

(z = 0),
(6.4)

and

ẋ = 0.29− 0.47x

ẏ = c0(0.29− 0.47x) + α(x− y)

(z = 1),

which is equivalent to (6.3).
The boundary layer equation reads here as

z′ = z(1− z)
(
c0(0.5− 0.21z − 0.47x) + α(x− 1)

)
, (6.5)

so that f(z, x) = c0(0.5− 0.21z − 0.47x) + α(x− 1).
The number of roots of f(·, x) depends on the value of coordinate x. We fix some

values for variables c0 and α to specify the case. Let c0 = 0.7, α = 0.5.
It is straightforward to check that for x ∈ (−∞, 0.88) ∪ (1.74,∞) equation (6.5)

does not have any stationary solutions inside (0, 1), while the solution ẑ = 0 is
locally asymptotically stable and ẑ = 1 is unstable. This part of the wall is trans-
parent and trajectory hits the wall on its right side and departs from the wall on
its left.

When x ∈ (0.88, 1.74), equation (6.5) has only one stationary solution ẑ(x) ∈
(0, 1) which is stable. This part of wall is black. The trajectories of the system (6.3)
are depicted in Figure 5.

Example 6.3. The following non-multilinear system is studied

ẋ = 0.5− z3 + 1.21z2 − 0.41z − 0.47x,

z = H(y, θ, q),

y(t) = c0x(t) + c1

∫ t

−∞
K1(t− s)x(s)ds

(6.6)

with the delay kernel K1 given by (3.8), z = H(y, θ, q) satisfying (2.2), q > 0, and
the wall y = θ = 1.

Assume that c0 > 0, c0 + c1 = 1. Applying MLCT to system (6.6)

ẋ = 0.5− z3 + 1.21z2 − 0.41z − 0.47x,

ẏ = c0(0.5− z3 + 1.21z2 − 0.41z − 0.47x) + α(x− y),



22 V. TAFINTSEVA, A. PONOSOV EJDE-2013/24

then, using representation (3.11), we obtain the following coupled system

ẋ = 0.5− 0.47x

ẏ = c0(0.5− 0.47x) + α(x− y)

(z = 0)
(6.7)

and

ẋ = 0.29− 0.47x

ẏ = c0(0.29− 0.47x) + α(x− y)

(z = 1)

which is equivalent to (6.6).
The boundary layer equation reads here as

z′ = z(1− z)
(
c0(0.5− z3 + 1.21z2 − 0.41z − 0.47x) + α(x− 1)

)
, (6.8)

so that f(z, x) = c0(0.5− z3 + 1.21z2 − 0.41z − 0.47x) + α(x− 1).
The number of roots of f(·, x) depends on the value of coordinate x.
We let values for c0 and α be 0.7 and 0.5, respectively. It is straightforward to

check that for x ∈ (−∞, 0.88) ∪ (1.74,∞) the boundary layer equation (6.8) does
not have any stationary solutions inside the open interval (0, 1), with the solutions
ẑ = 0 and ẑ = 1 being locally asymptotically stable and unstable, respectively.
This part of wall is transparent, and the trajectories hit the wall on its right side
and depart from the wall on its left.

When x ∈ (0.88, 0.99)∪(1.05, 1.74), equation (6.8) has only one stable stationary
solution ẑ(x) ∈ (0, 1). These parts of wall are of type II, namely black.

And finally, when x ∈ (0.99, 1.05) equation (6.8) has three stationary solutions
ẑ1(x), ẑ2(x), ẑ3(x) ∈ (0, 1), where the leftmost and rightmost ones are stable. This
is a pseudo-black part of the wall.

The trajectories of the system (6.6) are depicted in Figure 6.

Remark 6.4. From the examples above we can conclude that introducing non-
linearity into the delay system (6.3) may lead to changes in the type of the wall’s
parts. A piece of a black part of the wall becomes pseudo-black (see Figure 7).
Similar facts have been discovered for the non-delay analogues of systems (6.3) and
(6.6) in [22], where the entire black wall turned into a pseudo-black one.

Remark 6.5. Similarly to the previous section we can observe from Figures 5 and
6 that the trajectories in the regular domains R(B0

R) and R(B1
R) are quite similar,

but become very different when approaching the wall y = 1. The similarity of the
dynamics of systems (6.3) and (6.6) can be explained by the following fact: if z3

and z2 are replaced by z, then system (6.6) becomes system (6.3). In the limit they
therefore produce the same pair of affine systems (6.4),(6.7). In the regular domains,
this replacement is again “invisible”. However, near the wall the difference between
the trajectories becomes significant. According to Theorem 6.1, BLEs (6.5) and
(6.8) for systems (6.3) and (6.6), respectively, are different: BLE corresponding to
the non-multilinear system (Figure 6) has two different stable stationary solutions
in the interval (0, 1) instead of a single one in the case of the multilinear system
(Figure 5). Hence, the trajectories of the systems are not equal in a vicinity of the
wall.
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Figure 5. Solutions of system (6.3), where K1 is given by (3.8),
z = H(y, θ, q), q = 0.01, θ = 1, α = 0.5, c0 = 0.7
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Figure 6. Solutions of system (6.6), where K1 is given by (3.8),
z = H(y, θ, q), q = 0.01, θ = 1, α = 0.5, c0 = 0.7.

Let us formulate a similar theorem for the remaining type III points.
Let P = (x1, . . . , xn, ν1, . . . , νp) be a point from the wall SD(BR(1)) such that

for the coordinates (x1, ν2) the function f(z1,BR(1), x1, ν2, 0̄) (qi = 0, i = 1, . . . , n)
satisfies the inequalities

f(0,BR(1), x1, ν2, 0̄) < 0,

f(1,BR(1), x1, ν2, 0̄) > 0.
(6.9)
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x
                                         0.88              1.74

                transparent                              black       transparent

x

transparent           black          pseudo−black  black  transparent

0.88                                  0.99   1.05      1.74

(a) Wall y = 1 from Ex. 6.2 (b) Wall y = 1 from Ex. 6.3

Figure 7. A change in the type of the wall’s part after substitut-
ing the linear delay system (a) by the nonlinear delay system (b):
a piece of the black part of the wall becomes pseudo-black

Theorem 6.6. Under assumptions (A1)—(A3), (A5), (A6), (A10) and (6.9) we
have:

A. If for the coordinates x1, ν2 of P ∈ SD(BR(1)) the function f(·,BR(1), x1, ν2, 0̄)
has one root in the interval (0, 1), then P is white;

B. If for the coordinates x1 and ν2 of the point P ∈ SD(BR(1)) the function
f(·,BR(1), x1, ν2, 0̄) has more than one root in the interval (0, 1), then the total
number of roots is odd and the point P is pseudo-white.

Proof. First of all we notice that inequalities (6.9) imply the fact that the function
f(·,BR(1), x1, ν2, 0̄) has an odd number of roots in the interval (0, 1). If the root is
unique, it is an unstable stationary solution of BLE. If the number of roots is odd,
then conditions (6.9) imply that the outmost stationary solutions ẑ1

1 , ẑ
m
1 ∈ (0, 1) of

BLE are unstable. The proof of this statement is similar to the proof of Theorem 5.2
and based on the position of the focal points with respect to the wall. Thus, P is
white or pseudo-white depending on the number of roots of f(·,BR(1), x1, ν2, 0̄). �

7. Polynomial representation of gene regulatory systems with delay

In this section we aim to study polynomial representations of gene regulatory
systems with delay. The problem of classification of generic systems (2.1) with
Boolean response functions via polynomial functions (’recasting’) is the main focus
of this section. The recasting problem intends to find out whether it is possible to
determine a simplified polynomial representation of a general network such that in
the limit, i.e. when both networks become switched systems, they have the same
dynamics. This problem was studied in [22] for gene regulatory systems without
delay and the minimum degree of the representing polynomial system was found
in some cases. It was e.g. proven that for the regions outside of the thresholds,
i.e. for regular domains, the multilinear representation reflects the dynamics of
any nonlinear system. For singular domains of codimension 1, i.e. for walls, the
minimum degree of the limit polynomial appeared to be 2 or 3 depending on the
dynamics’ properties of the system in the wall. Finally, it was shown that in the
domain consisting of a wall and two adjacent regular domains the limit polynomial
appears to be of degree 4 or 5 at most. In this paper we continue to study the
minimum degree problem of the recast polynomial system in the case of networks
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with delay. More precisely, we will analyze (3.5) as an equivalent system to the
system (3.1) considered under assumptions (A1)–(A3), (A5), (A6), (A10), and for
simplicity we restrict ourselves to the case of regular domains (boxes) and singular
domains of codimension 1 (walls).

Let us define the notion of the limit dynamics first.

Definition 7.1. Let D ⊂ RM , where RM , M = (1, . . . , n)
⊔

(1, . . . , p) is the
phase space of the system (3.5) such that (u, U) ∈ RM , u = (ν1, x2, . . . , xn),
U = (x1, ν2, . . . , νp). Let (x(t, q̄), ν(t, q̄)) be the solution satisfying the initial condi-
tions x(t0, q̄) = x0, ν(t0, q̄) = ν0, here x0 and ν0 are independent of q̄ = (q1, . . . , qn)
where qi > 0, i = 1, . . . , n. If there exist functions x(t, 0̄) and ν(t, 0̄) satisfying the
same conditions x(t0, 0̄) = x0, ν(t0, 0̄) = ν0 such that

lim
q̄→0̄

x(t, q̄) = x(t, 0̄),

lim
q̄→0̄

ν(t, q̄) = ν(t, 0̄),

we call the set (x(t, 0̄), ν(t, 0̄)) a limit solution of the system (3.5).

Let us consider the system

ẋ(t) = F̃ (z)− G̃(z)x(t),

ν̇(t) = Aν(t) + Π̃(z, x1(t)), t > 0,

zi = H(xi, θi, qi), 2 ≤ i ≤ n,
z1 = H(ν1, θ1, q1),

(7.1)

where

Π̃(z, x1(t)) = αx1(t)π + c0Λ̃(z, x1(t)),

Λ̃(z, x1(t)) = (F̃1(z)− G̃1(z)x1(t), 0, . . . , 0)],

supplied with the initial conditions

x(t0, q̄) = x0, ν(t0, q̄) = ν0.

Let us denote the solution of the system (7.1) as (x̃(t, q̄), ν̃(t, q̄)).

Definition 7.2. System (3.5) is called equivalent to system (7.1) in the domain D,
or simply D-equivalent, if for any initial conditions (x0, ν0) ∈ D there exist limit
solutions (x(t, 0̄), ν(t, 0̄)) and (x̃(t, 0̄), ν̃(t, 0̄)) satisfying x(t0, 0̄) = x̃(t0, 0̄) = x0,
ν(t0, 0̄) = ν̃(t0, 0̄) = ν0 such that they coincide within D:

x(t, 0̄) = x̃(t, 0̄), ν(t, 0̄) = ν̃(t, 0̄).

In [22] a somewhat more detailed definition of the equivalence of two systems
was offered. We do not go into details here, pointing only out that both definitions
mean that the limit solutions of two D-equivalent systems coincide as long as they
belong to the domain D. This in turn means that the trajectories of the solutions
(x(t, q̄), ν(t, q̄)) and (x̃(t, q̄), ν̃(t, q̄)), qi > 0, i = 1, . . . , n of two D-equivalent systems
satisfying the same initial conditions x(t0, q̄) = x̃(t0, q̄) = x0, ν(t0, q̄) = ν̃(t0, q̄) =
ν0 become indistinguishable within the domain D once one replaces sigmoids by
step functions. This implies that in the limit D-equivalent systems provide (within
D) the same simplified mathematical model of a given regulatory network with
delay.
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To proceed further, we use the notation from [22] and denote by e(P ) the max-

imum of all exponents in the polynomial P (z1, . . . , zn) =
∑
j akj

0
z
kj
1

1 z
kj
2

2 . . . z
kj

n
n ;

i.e., e(P ) = maxj{kj1, . . . , kjn}. The minimum degree problem of the represent-
ing polynomial system consists then in finding the minimal number e(F̃ , G̃) ≡
max{e(F̃l, G̃m) : l,m = 1, . . . , n} which is, in fact, the maximum of the degrees of
F̃ and G̃ regarded as polynomials with respect to each of the variables z1, . . . , zn.

For the sake of convenience, let us recall that according to the notation intro-
duced in Section 3 the regular domain R(B), B = (B1, . . . , Bn) is the open set
R(B) = {(u, U) ∈ RM | H(ui, θi, 0) = Bi, i = 1, . . . , n}, where u = (ν1, x2, . . . , xn),
U = (x1, ν2, . . . , νp), while the wall SD(BR(1)) is the set SD(BR(1)) = {(u, U) ∈
RM | ν1 = θ1, H(xk, θk, 0) = Bk, k = 2, . . . , n}.

In these terms the main result of this section is formulated as follows.

Theorem 7.3. For the system (3.5) (which is equivalent to the system (3.1) un-
der assumptions (A1)–(A3), (A5), (A6), (A10) there always exists a D-equivalent
polynomial system (7.1).

A. If D =
⋃
BR(B), i.e. D is the maximal regular domain, then e(F̃ , G̃) = 1.

B. If D is a type I part of the wall SD(BR(1)), then e(F̃ , G̃) = 2.
C. if D is a type II part of the wall SD(BR(1)), then e(F̃ , G̃) = 3.

Proof. Let us prove statement A. The idea of the proof can be taken from [22,
Theorem 2] where a similar statement in the non-delay case was proven. The
analogous result can be obtained here, namely that there are multilinear functions
F̃i(z1, . . . , zn) and G̃i(z1, . . . , zn) such that F̃i(B) = Fi(B), G̃i(B) = Gi(B) for
any Boolean vector B = (B1, . . . , Bn). We should also notice that Π̃(B, x1(t)) =
Π(B, x1(t)), as F̃1(B) = F1(B), G̃1(B) = G1(B) providing that the trajectories of
systems (3.5) and (7.1) coincide within D =

⋃
BR(B).

The proof given in [22, Theorem 2] can be used to construct the multilinear
functions F̃ (z1, . . . , zn) and G̃(z1, . . . , zn) of the equivalent system (7.1). Thus,
e(F̃ , G̃) = 1 and statement A is proven.

To prove statement B, we fix P = (x1, . . . , xn, θ1, ν2, . . . , νp), a pseudo-transparent
point from the wall SD(BR(1)) and look for quadratic system (7.1) which is equiv-
alent to (3.5) at the point P .

Without loss of generality it can be assumed that inequalities (5.1) are satis-
fied at the point P . The assumption c0 > 0 arises quite naturally, as if c0 =
0, the wall SD(BR(1)) is always transparent. We denote roots of the function
f(·,BR(1), x1, ν2, 0̄) given by (4.4) as ẑ1

1 < ẑ2
1 < . . . < ẑm1 , ẑk1 (x1, ν2) ∈ (0, 1),

k = 1, . . . ,m. According to Theorem 5.2, m is even and, as assumption (A10) is
satisfied, the roots are simple. We claim that systems (3.5) and (7.1) are equivalent
if functions F̃1 and G̃1 satisfy the following conditions:

1. F̃1(ẑ1
1 ,BR(1)) = F1(ẑ1

1 ,BR(1)), where F̃1(ẑ1
1 ,BR(1)) is a quadratic polyno-

mial;
2. G̃1(z1,BR(1)) = G1(ẑ1

1 ,BR(1)), for any z1 ∈ [0, 1] so that G̃1 is a positive
constant;

3. ∂
∂z1

F̃1(ẑ1
1 ,BR(1)) < 0;

4. ∂2

∂z21
F̃1(ẑ1

1 ,BR(1)) > 0.
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Indeed, the function f̃(z1,BR(1), x1, ν2, 0̄) then becomes a quadratic polynomial
satisfying the following conditions:

1′. f̃(ẑ1
1 ,BR(1), x1, ν2, 0̄) = f(ẑ1

1 ,BR(1), x1, ν2, 0̄);
2′. ∂

∂z1
f̃(ẑ1

1 ,BR(1), x1, ν2, 0̄) = c0
∂
∂z1

F̃1(ẑ1
1 ,BR(1)) < 0;

3′. ∂2

∂z21
f̃(ẑ1

1 ,BR(1), x1, ν2, 0̄) = c0
∂2

∂z21
F̃1(ẑ1

1 ,BR(1)) > 0.

Therefore, the quadratic function f̃(z1,BR(1), x1, ν2, 0̄) must be of the form

f̃(z1,BR(1), x1, ν2, 0̄) = a(z1 − ẑ1
1)(z1 − ẑ0

1) = az2
1 + bz1 + c,

where a > 0 and 0 < ẑ1
1 < ẑ0

1 .
The other root ẑ0

1 must belong to the interval (0, 1), namely, we require that
ẑ1

1 < ẑ0
1 < 1. To achieve this we observe that the coefficient a = c0

2
∂2

∂z21
F̃1(ẑ1

1 ,BR(1)).

Choosing ∂2

∂z21
F̃1(ẑ1

1 ,BR(1)) to be sufficiently large and keeping ∂
∂z1

F̃1(ẑ1
1 ,BR(1)) fixed

we can always reach the desired result when
∣∣ẑ1

1 −
|b|
2a

∣∣ < 1 − b
2a . Thus, ẑ0

1 < 1, as∣∣ẑ0
1 −

|b|
2a

∣∣ < ∣∣ẑ1
1 −

|b|
2a

∣∣.
Any limit dynamics in the wall is characterized by the outmost roots of the

function f(z1,BR(1), x1, ν2, 0̄). In our case it is characterized by the roots ẑ1
1 and ẑm1

which are stable and unstable stationary solutions of the boundary layer equation,
respectively. The function f̃(z1,BR(1), x1, ν2, 0̄) has exactly the same leftmost root
ẑ1

1 which is, according to conditions 1′,2′, stable stationary solution of BLE. This
fact allows us to conclude that f(z1,BR(1), x1, ν2, 0̄) and f̃(z1,BR(1), x1, ν2, 0̄) just
constructed give the same reduced problem (4.11). Thus, systems (7.1) and (3.5)
are equivalent at the pseudo-transparent point P and e(F̃ , G̃) = 2.

We would like to notice that the found D-equivalent system is valid in a neigh-
borhood UP of the particularly chosen point P from the wall SD(BR(1)). We
emphasize the fact that any type I (II,III) part of the wall is always an open set as
the inequalities which determine corresponding parts are strict and involved func-
tions are smooth. Therefore, if any point P from the wall is of type I (resp. II,III)
then there is a neighborhood UP which consists of type I (resp. II,III) points. This
completes the proof of statement B.

In the remaining part of the theorem we prove statement C. Let us fix a pseudo-
black point P = (x1, . . . , xn, θ1, ν2, . . . , νp) from the wall SD(BR(1)). We look for a
cubic system (7.1) which is equivalent to (3.5) at P . We claim that systems (3.5)
and (7.1) are equivalent if functions F̃1 and G̃1 satisfy the following conditions:

1. F̃1(ẑ1
1 ,BR(1)) is a cubic polynomial satisfying

∂

∂z1
F̃1(ẑ1

1 ,BR(1)) < 0,

∂

∂z1
F̃1(ẑm1 ,BR(1)) < 0,

and there is ẑ0
1 ∈ (ẑ1

1 , ẑ
m
1 ) such that ∂

∂z1
F̃1(ẑ0

1 ,BR(1)) > 0;
2. F̃1(ẑ1

1 ,BR(1)) = F̃1(ẑm1 ,BR(1)) = F̃1(ẑ0
1 ,BR(1)) = F1(ẑ1

1 ,BR(1));
3. G̃1(z1,BR(1)) = G1(ẑ1

1 ,BR(1)) for any z1 ∈ [0, 1], which means that the
expression G̃1(z1,BR(1)) is a positive constant.
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Then the function f̃(z1,BR(1), x1, ν2, 0̄) becomes a cubic polynomial satisfying the
following conditions:

1′. f̃(ẑ1
1 ,BR(1), x1, ν2, 0̄) = f(ẑ1

1 ,BR(1), x1, ν2, 0̄), and
f̃(ẑm1 ,BR(1), x1, ν2, 0̄) = f(ẑm1 ,BR(1), x1, ν2, 0̄);

2′. f̃(ẑ0
1 ,BR(1), x1, ν2, 0̄) = 0;

3′.
∂

∂z1
f̃(ẑ1

1 ,BR(1), x1, ν2, 0̄) < 0,

∂

∂z1
f̃(ẑm1 ,BR(1), x1, ν2, 0̄) < 0,

∂

∂z1
f̃(ẑ0

1 ,BR(1), x1, ν2, 0̄) > 0.

Therefore, the cubic function f̃(z1,BR(1), x1, ν2, 0̄) must be of the form

f̃(z1,BR(1), x1, ν2, 0̄) = −a(z1 − ẑ1
1)(z1 − ẑ0

1)(z1 − ẑm1 ),

where a > 0 and ẑ1
1 < ẑ0

1 < ẑm1 .
The choice of the coefficient a determines the shape of the graph of the function

f̃(z1,BR(1), x1, ν2, 0̄). We can always choose a to be as small as necessary in order
F̃1(z1,BR(1)) to satisfy assumption (A2).

The limit dynamics in the wall in this case is characterized by the roots ẑ1
1

and ẑm1 of the function f(z1,BR(1), x1, ν2, 0̄) which are stable stationary solutions
of the boundary layer equation. The function f̃(z1,BR(1), x1, ν2, 0̄) has exactly
same outmost roots which are, according to conditions 1′ − 3′, stable station-
ary solutions of BLE. This fact allows us to conclude that f(z1,BR(1), x1, ν2, 0̄)
and f̃(z1,BR(1), x1, ν2, 0̄) constructed above give the same reduced problem (4.11).
Thus, systems (7.1) and (3.5) are equivalent at the pseudo-black point P and
e(F̃ , G̃) = 3. This concludes the proof of statement C. �

Remark 7.4. We should mention that for the points of type III the notion of
equivalence makes no sense, as the wall is repelling at those points. Thus, the
limit trajectories depart from the wall, what means that the limit dynamics exist
only in regular domains, boxes R(B0

R) and R(B1
R), in this case but not in the wall

SD(BR(1)).

8. Discussion

In this paper we studied time-delayed models of gene regulatory network with
Boolean interactions. Boolean approach appears naturally in gene networks from
the assumption that a gene switches its state from ’0’ to ’1’ and, therefore, the
response function is represented by the step function. But existing frameworks
based on the Boolean structure are different [6, Section 4,5,7]. One of them is a
piecewise-linear model which has been changed from Boolean-like to continuous by
replacing Boolean response functions by steep sigmoid functions. This allowed to
model complex and more realistic dynamic behavior of the network. In this case,
multilinear regulatory functions appear from the properties of the sigmoid functions
([4, chap. 1.4.3], [6], [12]), as the following is satisfied for sigmoids: zmk ≈ zk for
any m ∈ N.
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The framework studied in this paper is different and originated from [11],[13],
where the regulatory functions were not derived from any mathematical or biolog-
ical reasoning, but were chosen to be multilinear in consequence of the algebraic
equivalence of nonlinear and linear Boolean functions (see e.g. [1, p. 80], [6], [11]).
Although it is widely accepted in the literature (see e.g. [1], [4], [6] and references
therein), we find a mathematical justification of the miltilinearity assumption to be
somewhat controversial, as many different reasons could be mentioned supporting
the importance of more generic modeling approach (see [22, Section 9] for details).

Moreover, the results of paper [22] and the present paper show that the mul-
tilinearity assumption restricts the amount of the dynamics considerably. That is
why polynomial representation has been suggested in order to study generic types
of the dynamics. The results we got are purely mathematical and do not have
direct biological interpretation, but we believe that they can shed some light onto
dynamical properties of the gene regulatory networks.

As any model is supposed to be a simplified analog of the respective biological
system, the polynomial formalism should be a reliable framework to reflect real
behavior of a gene regulatory network. That is why further analysis on polynomial
genetic models should be done from both biological and mathematical points of
view, in order to understand and model real processes which occur in the genetic
networks.

In conclusion, we remark that the analysis which we perform in this paper is
heavily based on the special assumptions on the delay kernel allowing us to reduce
the delay system to a larger system of ordinary differential equations. It is still an
open question as to what extent a similar analysis could be done for other kinds
of delay (distributed delays with a finite memory, constant delays etc.). In this
respect, we would like to mention a very general analog of the linear chain trick
suggested in [16] as a possible way to generalize the results of the present paper.

9. Appendix: The modified linear chain trick

Consider the scalar equation

ẋ(t) = F
(
(Rx)(t), x(t)

)
, t > 0, (9.1)

with the initial condition
x(τ) = ϕ(τ), τ ≤ 0, (9.2)

where

x = x(t), F = F (H(y, θ, q))−G(H(y, θ, q))x(t), y(t) = (Rx)(t).

We first describe the standard linear chain trick (see e.g. [7]) and represent it in a
vector form, which helps us to derive MLCT.

Consider a simplified delay operator R satisfying assumption (A6) with c0 = 0.
Thus, R is given by

(Rx)(t) =
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0 . (9.3)

It is follows from (3.3) that
d

dw
Kj(w) = αKj−1(w)− αKj(w), j ≥ 2,

d

dw
Kj(w) = −αKj(w), j = 1.

(9.4)
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We denote

vj(t) =
∫ t

−∞
Kj(t− s)x(s)ds, j = 1, 2, . . . , p, (9.5)

which gives

(Rx)(t) =
p∑
j=1

cjvj(t), (9.6)

so that
ẋ(t) = F(cv(t), x(t)), (9.7)

where c = (c1, . . . , cp).
From (9.4) and (9.5) it follows that

v̇j(t) = αvj−1(t)− αvj(t), j ≥ 2,

v̇1(t) = −αv1(t) + αx(t),

arriving at the system of ordinary differential equations in the matrix form

v̇(t) = Bv(t) + ηx(t), t > 0, (9.8)

where

B =


−α 0 0 . . . 0
α −α 0 . . . 0
0 α −α . . . 0
...

...
...

. . .
...

0 0 0 . . . −α

 and η = (α, 0, . . . , 0)].

The initial condition (9.2) in terms of the new functions becomes

vj(0) =
∫ 0

−∞
Kj(−τ)ϕ(τ)dτ = (−1)j−1 αj

(j − 1)!

∫ 0

−∞
τ j−1eατϕ(τ)dτ, (9.9)

for j = 1, . . . , p. In addition, x(0) = ϕ(0).
The system of ordinary differential equations (9.7), (9.8) is equivalent to the

delay equation (9.1).
The standard linear chain trick, however, is not directly suitable for gene regu-

latory networks, since the regulatory function z should by definition depend on a
single variable and not on the sum of the variables, as in (9.6). By this reason, the
modification of the method is needed.

The description of the method is more straightforward if we still assume that the
delay operator is integral, i.e. given by (9.3). Obtaining a single variable instead
of a sum can be done using transpose matrices and vectors in the standard linear
chain trick.

First of all, let us observe that the solution of (9.8) can be written as

v(t) =
∫ t

−∞
eB(t−s)ηx(s)ds,

since x(s) = ϕ(s), s ≤ 0. Therefore,

(Rx)(t) = c

∫ t

−∞
eB(t−s)ηx(s)ds.

Transposing (9.8) and denoting

π = c], A = B], e1 = (1, 0, . . . , 0)]
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yield

(Rx)(t) = αe1

∫ t

−∞
eA(t−s)πx(s)ds.

Introducing now the new substitution

ν(t) = α

∫ t

−∞
eA(t−s)πx(s)ds,

we easily see that equation (9.1) with the initial condition (9.2) is equivalent to the
system of ordinary differential equations

ẋ(t) = F(ν1(t), x(t)),

ν̇(t) = Aν(t) + απx(t), t > 0,
(9.10)

with the initial conditions x(0) = ϕ(0) and

ν(0) = α

∫ 0

−∞
eA(−τ)πϕ(τ)dτ,

which is a vector form of (9.9).
We stress that, in contrast to (9.7), the right-hand side of (9.10) depends only

on two variables: x and ν1. This is an important trait when it comes to systems
describing gene regulatory networks.

Now, it is easy to treat the general delay operator (3.2), where c0 6= 0. A straight-
forward application of the MLCT leads to (9.10), where the first equation becomes
ẋ = F(c0x(t) + ν1(t), x(t)), which means that the response function depends on
more than one variable and which is not acceptable for our analysis. This problem
is easily resolved if we replace the original ν1 in (9.10) with the new one, which is
equal to y, where y = c0x+ ν1. Since

ẏ = c0F(y, x)− αy + αν2 + αx(c0 + c1),

this results in a slightly different system of auxiliary equations

ẋ(t) = F(ν1, x(t)),

ν̇(t) = Aν(t) + Π(ν1(t), x(t)), t > 0,

where

Π(ν1, x) = αxπ̃ + c0Λ(ν1, x),

π̃ = (c0 + c1, c2, . . . , cp)], Λ(ν1, x) = (F(ν1, x(t)), 0, . . . , 0)].
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