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EXISTENCE OF SOLUTIONS FOR TWO-POINT
BOUNDARY-VALUE PROBLEMS WITH SINGULAR
DIFFERENTIAL EQUATIONS OF VARIABLE ORDER

SHUQIN ZHANG

ABSTRACT. In this work, we show the existence of a solution for a two-point
boundary-value problem having a singular differential equation of variable or-
der. We use some analysis techniques and the Arzela-Ascoli theorem, and then
illustrate our results with examples.

1. INTRODUCTION

Fractional calculus (fractional derivatives and integrals) refer to the differential
and integral operators of arbitrary order, and fractional differential equations re-
fer to those containing fractional derivatives. The former are the generalization of
integer-order differential and integral operators and the latter, the generalization
of differential equations of integer order. The derivatives and integrals of variable-
order, which fall into a more complex category, are those whose orders are the
functions of certain variables. Recently, derivatives and integrals and differential
equations of variable-order have been considered, see the references in this article.
In these works, authors consider the applications of variable-order derivatives in
various topics, such as anomalous diffusion modeling, mechanical applications, mul-
tifractional Gaussian noises. Moreover, a physical experimental study of calculus
of variable-order has been considered in [I0], a comparative study of constant-order
and variable-order models has been considered in [17].

The nonlinear functional analysis methods (such as some fixed point theorems)
have played a very important role in considering existence of solutions to differential
equations of integer order and fractional order (constant order, such as 1/3). For
such applications, because differential equations can be transformed into integral
equations, by means of some fundamental properties of differential and integral
calculus of integer order and fractional calculus (constant order). But, in general,
we find that calculus of variable-order lacks these fundamental properties, thereby
making it difficult to apply nonlinear functional analysis methods to consider ex-
istence of solution to problems for differential equations of variable-order. The
following are several definitions of derivatives and integrals of variable-order for a
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function f, which can be founded in for example in [I0} 20],

o — g)pt)-1
Ifff)f(t):/a (tr(p)(t))f(s)ds, p(t) >0, t > a, (1.1)

where I'(-) denotes the Gamma function, —oo < a < 400, provided that the right-
hand side is pointwise defined.

p(t) ! (t_ )p(s) ! s)ds a
2010 = [ e a0 >0 1> (1.2

provided that the right-hand side is pointwise defined.

pt) t(t_s)p(t =1 s)ds a
2010 = [ G e w0 >0 e (03)

provided that the right-hand side is pointwise defined.

) B dn p(t) dm t( —S)" 1—p(t)
Dy f(t) = T L7V f() = pr /a Wf(s)d& t>a, (1.4)

where n —1 < p(t) < n,t > a,n € N, provided that the right-hand side is pointwise
defined.

dm dm t(_s>n1p()
pr® iy L OF T z—/ —_— d t 1.5

a+ f( ) dtn a+ f( ) dtn F(n _ p(s)) f(S) S, > @, ( )
where n —1 < p(t) < n,t > a,n € N, provided that the right-hand side is pointwise
defined.

(t) d* n—p(t) dn [t (t—s)nioplt=s)
DY f(t) = P I P r() = dtn/ T~ p(i )] f(s)ds, t>a, (1.6)

where n—1 < p(t) < n, t > a, n € N, provided that the right-hand side is pointwise
defined.

In particular, when p(t) is a constant function, p(t) = ¢, where ¢ is a finite
positive constant, then I ggf), Dp ()" are usual Riemann-Liouville fractional integral
I?, and derivative D, see [6]. It is well known that fractional calculus I, , D
have the following very important properties, which play a very important role
in considering existence of solutions of fractional differential equation denoted by
D!, by means of some fixed point theorems.

Proposition 1.1 ([6]). The equality I I3, f(t) = I;j_réf(t), v > 0,8 >0 holds
for f € L(a,b).

Proposition 1.2 ([6]). The equality D, I) f(t) = f(t), v > 0 holds for f €
L(a,b).
Proposition 1.3 ([6]). Let o > 0. Then the differential equation Dy, u = 0 has
unique solution
u(t) =ci(t—a)* P Fea(t —a)* 4 Fep(t—a)*

where c; ER,1=1,2,...,n, andn—1 < a <n.
Proposition 1.4 ([6]). Let a >0, v € L(a,b), D, u € L(a,b). Then the following
equality holds

I D2 ut)=ult) + et —a)* T+ et —a)* 2+ -+ et —a)* ",
where c; ER, 1 =1,2,...;n, andn—1<a<n.
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In general, these properties do not hold for derivatives and integrals of variable-

order Df;(j), Igﬁ:) defined by (1.1)—(1.6). For example, when p(t), ¢(t) are not con-
stant functions, we have that

PO1D p() # 2O p(1), () > 0,q(t) >0, feL(ab).  (L7)

Example 1.5. Let p(t) =¢, 0 <t <6,

2, 0<t<?2
qt) =141, 2<t<3,
t, 3<t<6,

F(t) =1,0 <t <6. We calculate I2' f(t) and 15" defined by (T3).
50 £ )

B t (t— S)p(t)—l S (s— 7-)q(S)—l
- / () / Jyrs

2 (t—s)pO=1 sy yats)—1 ) bt — s)p-1 sw_Ty@—lTs
T0(0) / gy +/2 To0) / M) ¢
) 1

2 _ p(t S (g 7)\2— t(p _ g\P(t)— s (¢ r)a(s)—1
/ (t—s) / (s—7 drds + / (t—s) / (s—7) drds
0 0 I( 2 0 (

L(p(t)) I'(q(s))
2 t— S (t) 1 2 t (t _ s)p(t)—l $ ( T)q(s) 1
/o e ” +/2 (D) / Tg(z) 7%

p(O+a(t) t(t = st
K o= /o L (p(t) + q(t))

@
I
3

[\
~

f(s)ds,
we see that
2 3-1.2 3 3-1 ps 1-1
3—s5)"ts (3—19) (s—1)
1 f (1)) = :/ B s / / drd
Y T YGRS (G T S Y

_8+/3(3_)3_18d8_8_~_9_79
5 ) I'(3) 5 24 40’

3 3 _
p(t)+a(t) _ (3 — s)P®)Fa®)-1 7 (3—s)*+1-t 97
Ioy IO ()25 —/0 T0p(3) 1 9(3)) f(s)ds _/O st =3

we see easily that
IO FO)lems # 10O F (1)

According to (|1.7]), we can see that Propositions do not hold for Dg(ﬁ) and
171 defined by (T1)-(T.6).

Remark 1.6. For integral of variable-order defined by (|1.5)-(1.6)), we can not easily
calculate out fractional integral I” (t) of some functions f(t), for example, we do not

t t—s P t t (t—s)Pt=o)~1
know that what Iffi)l = f %ds and Ifi)l =/, (F(;st equal.

There also has more complex integrals and derivatives of variable-order, whose
order function p(t) of (| . is replaced by p(t, f(t)); see [6,9,10]. For example,
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for given a function f, its integral and derivative of variable order p(t, f(t)) (1 <
p(t, f(t)) < 2) can be defined as follows:

t —
(@) g 1 (E=s)PeS DL
Ly ) = /a REONIO)

&2 d2 t (t _ 5)1*P(57f(5))
pPEF@E) ey — 727PGF() popy — / d t
a0 de2 ot 7(®) dt2 J, F(2—p(s,f(s)))f(5) ) >?1 9)

f(s)ds, t>a, (1.8)

provided that the right-hand side is pointwise defined.

Of course, Propositions do not usually hold for integral and derivative
of variable-order defined by , . Therefore, without those properties, a
variable-order differential equation cannot be transformed into an equivalent in-
tegral equation, so that one can consider existence of solutions of a differential
equation of variable-order, by means of some fixed point theorems.

In this paper, we will consider the existence of solutions to the following singular
two-point boundary-value problem for differential equation of variable order

DI (t) = f(t,2), 0<t<T, 0<T < oo, (1.10)
2(0) =0, x(T)=0, (1.11)

where Dgf:’z(t)) denotes derivative of variable-order defined by (1.9), 1 < q(t, z(t)) <
¢ <2,0<t<T,zeR,and t"f : [0,T] x R — R is a continuous function, here
0<r<1.

Due to the properties of variable-order calculus, we do not transform problem
— to an integral equation, but, through the use of analysis techniques
and the Arzela-Ascoli theorem to consider existence of solution to 7.

2. PRELIMINARIES

Through this paper, we assume that:

(H1) ¢:[0,T] x R — (1,¢*] is a continuous function, here 1 < ¢* < 2;

(H2) t"f:]0,T] x R — R is a continuous function, 0 < r < 1.
It follows from the continuity of compose functions that I'(¢(¢, z(¢))) is continuous
on [0,T] x R, when g satisfies assumption condition (H1).

We assume 6 > 0 to be an arbitrary small number, which is important for the
next step in the analysis.

Lemma 2.1. Let (H1) hold. And let x,,x € C[0,T], assume that x,(t) — z(t),t €
[0,T] as n — oo, then

/t—6 (1 = 5)=steen) o /t 5t — s)l-alsials) i o)
s — —x(s)ds, .
o D(2—aqls,zn(s))) 2 —q(s,z(s)))

fort e[, T], as n — co.

Proof. For x,,x € C[0,T], we see that
if 0 < T <1, then 709 () < pl=a” pl=als(s)) < ploa” (2.2)
if 1 < T < 400, then 71420 (5) <1 pl=alsz()) 7, (2.3)
Thus, for 0 < T < +00, we let
T* = max{T*~7 ,1}. (2.4)
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Let
M = max |z(t)|+1, M;= max |z,(t)]+1,
0<t<T 0<t<T
1
L= max + 1.
0<t<T || | <M ‘F(2 = q(t, zn(1))) |
By the convergence of x,, for (32 ;;%f (¢ is arbitrary small positive number), there

exists Ny € N such that
2-q")e
3LT*T "’
Since (t — s)l_q(s 2(s) § <t—s<T,is continuous with respect to its exponent
1 —q(s,(s)), for 5377, When n > Ny, it holds

lzn (t) — z(t)] < € 1[0,7], n > Np.

|(t — s)t 1@ (¢ — g)l-alsa()) < O<t—s<T, (25)

3MLT
also, by continuity of F(Z—q(ls =) , for 3]\24qu )f* , when n > Ny, it holds
1 1 (2—q*)e

IF( ,q(s za(s))) T(2- q(s,x(s)))l <sypr0sss<T. (26)

Hence, from (2.2 , (12.4), , (2.6), for Ve > 0, when n > Ny, we have that

t—6 t _ 5 1 q(s,2,(5)) B t—o (t o S)lfq(s,m(s)) ole\ds
JAR ey R e o R
(

(t ) (Samn 5))
< / e LAOREIOI
t—o (t . 8)1 q(s,zn(s)) _ (t _ s)lfq(s,w(s))
+/0 | @ a(s.2n(9)))

[|(s)lds

t—0
_ g)l-a(sa(s) 1 _ 1
+/o (t=) e G @ a2

L(2—q%)e [t7° - . MLe [t7°
< t— a(s,zn(s)) g / d
= 30T T /0 (t=s) St LT y

M(2 - q*)€ =0 1—q(s,z(s))
+ SANT*T /0 (t—s) ds

_ (2 —q*)€ -0 1—q(s,zn(s)) t—s 1—q(s,zn(s)) 0
= 5rT ), T (—— T ) ds + 3T ds

[|(s)|ds

(2—q")e /t 1—
Pl=a(s.2(s)) 1—q(s.2(5))
T, F T -) ds

(2 _ q*)s /tci t— . c t—9
<=4 T* s+ d
o 7~ ") 37 s
2 _ g* t—45 t— .
L 2od)e )E/ (L)1 g
0 T

(2—q")e /t_(S - e [ (2—q")e /t_é 1—g¢"*
ST E e s = [ ds+ S (s d
e S T T

o 19 13
o 3729 372-aq"

(279 — 620y 4 (¢ — 5) +

$2-0" _ 20
3T ( )
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eT?2—a Te 729
372 37 | 372w

T .
3 3 3 7

which implies that (2.1)) holds. O

<

By a similar argument, we can show the following result.

Lemma 2.2. Let (H1), (H2) hold. And let x,,x € C[0,T], assume that x,(t) —
x(t),t € [0,T] as n — oo, then

t—6 t—06
/ (t = )1 (5 2a(s))ds — / (t— ) f(s.a(s)ds, €T, (27)
0 0

as n — oo.
Proof. By the convergence of x,,, for ( > 0, there exists Ny € N such that
[z (t) —2(t)| < ¢, t€[0,T], n= No,

by the continuity of tf, for 25 (where ¢ is arbitrary small number), when n > Np,
it holds

L3 —r)

s"1f(s,xn(s)) — f(s,2(s))] < =T = 1)’ s €1[0,T].

Thus, we have
t—6
/0 (t = s)(f(s,zn(s)) — f(s,2(s)))ds|
t—6

|

< [ = s o) - Foa)ds
I'(3—r) =0 ,T

< m/{) (t—s)s "ds
r3—r)e [* .

< m/{) (t—s)s™"ds

G-Il —r)e 4,
ST TG 0

which implies that (2.7) holds. O

Lemma 2.3 ([6]). Let [a,b] be a finite interval and let AC|a,b] be the space of func-
tions which are absolutely continuous on [a,b]. It is known that ACla,b] coincides
with the space of primitives of Lebesque summable functions:

f(t) € AC[a,b] & f(t) =c+/0 o(s)ds, ¢ € L(a,b), c € R,

and therefore the absolutely continuous function f(t) has a summable derivative
() = p(t) almost everywhere on [a,b].
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3. EXISTENCE RESULT

By the definition of derivative of variable order, defined by (|1.9), we see that
problem ([1.10)-(1.11)) is equivalent to the equation

t (t _ 5)1 q(s,z(s)) t
/O mx(s)ds =c1 + Cgt + /; (t — S)f(S,Z‘(S))dS, (31)
for t € [0,T], where c1, c2 € R such that z(0) = (T') = 0 holds.

Theorem 3.1. Assume that (H1), (H2) hold. Then problem (1.10)-(1.11)) exists
one solution z* € C[0,T).

Proof. To obtain the existence result for (1.10)-(1.11f), we firstly verify the following
sequence has convergent subsequence,

0, 0<t<9,
1-g(s.2j_1(s)
zp(t) = S zp_1(t) + f mﬂfk 1(s)ds (32)
—C2 k— 1 t— fO_ S :Ek,l(s))ds, (5<t§T,
for k=1,2,..., where xo(t ) =0,ted, T], 0 is an arbitrary small number, and
T—6 _g)lmals,mp_1(s)) T—6§
fo (g(z_)q(S,zk,l(s)))’xk—l(S)ds —Jo (T —s)f(s,zK-1(s))ds
Cg’kfl = 5 (33)
T—-9§
such that
2(0) =x,(T) =0, k=1,2,.... (3.4)

To apply the Arzela-Ascoli theorem to consider the existence of convergent sub-
sequence of sequence xj defined by , firstly, we prove the uniformly bounded
of sequence z, on [0, T].

We find that z, is uniformly bounded on [0,4]. Now, we will verify sequence z
is uniformly bounded on [§,T]. Since xy = 0 is uniformly bounded on [0,T], we
have that

T— 5 1 q(s,xo(s)) T—6
}/ 2—q 5.70(9)) o(s)ds—/o (T = s)f(s,wo(s))ds|

T—6
oy / (T — ) f(s,0)ds|

T—6
= | /0 (T —s)s7"s" f(s,0)ds|

T—6
< M/ (T —s)s™"ds
0

T
<M | (T-s)s"ds
0
_ Mr(l - T) 2—r
rd—r) ’

where M = maxo<;<7 t"|f(t,0)| + 1, which implies that |coo| < %Tz "
Then, for ¢ € [§, T], we have
=3 (¢ — g)1—a(s,za(s))
t—s) 71
O] = o)+ [
0

['(2 = q(s,70(s)))

xo(s)ds — cap(t — 9)
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t—48
7/ (t — )£ (5, 0)ds]
0

t—6
= |ea,0(t — 9) 7/0 (t—s)f(s,0)ds]|

t—6
< e o|(T —9) + M/ (t—s)s "ds
0

t
< |cQ70|(T—5)+M/ (t — s)s—"ds
0
MU —7), 5 MD(1—1) o, .
P T e 22N T e -y
) ARV L

which implies that 2 is uniformly bounded on [d, T, together with z;(t) = 0 for
t €[0,4], we obtain that x; is uniformly bounded on [0, T].

From , , , it holds that

T— 5 1 q(s,z1(s)) T-6
|/ 2_q s,21(s))) xl(s)ds_/o (T = s)f(s,z1(s))ds]

T-6 1—q(s,z1(s)) T — T=0

q S

oy 1 1=a(s,21() | 7g 4+ M / T —s)s "ds
1/0 |F(2—CI(37$1(5)))H( 1 ) | ! 0 | )

T=0 T—s . T
< MlL/ T*(T)HI ds+Mf/ (T — 5)s~"ds
0 0

MiLT*TT ' o e ogry | MyD(L—7) 5
e N ol R o Rl el Sl
e I e
M LT*T MfF(l —7) T2 M,
2—gq* r'—r)
where
1
= max +1, M= max t"|f(t, z1(t))|+1,
0<t<T, |1 | <M |F(2—q(t,x1(t)))| I oci<tfimli<mn £tz @)

which implies that |cg 1] < T% Also, for t € [6,T], by (2.2 ., , .7 we have
that

E=0 (¢ — s)lmalsai(s))
[22(8)] < o1(®)] + leaal (T = 8)+ [ |
0

['(2 = q(s, 21(s)))

|1 (s)[ds

t—0
+/0 (t — 5)|f (s, 21(s))ds

t—0
<Mt feaal(T = 8) + ML [ T (e
0

T
Mfr(l — T) T27r

r@3—r)
< My + e |(T = 8) + M L/t_éT*(H)lq*dH M =1) oy
S My 2,1 1 | T F(3—r)
M,LT*T9 ~1 . . M.T(1—
My e (T — 5) 4 ST o gy ML= 1) gy

2 —q* r@s—r)
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M,LT*T ~ MT(1—r)

<M +M
= MM T3 -1

T27T =: MQ,

which implies that x5 is uniformly bounded on [d, T, together with zo(t) = 0 for
t € [0, d], we obtain that x5 is uniformly bounded on [0, T]. Continuous this process,
we can obtain that sequence zj, is uniformly bounded on [0, T7].

Now, we consider the equicontinuous of sequence xj on [0,7]. Firstly, we can
know that

the function k(t) = a* — b" is decreasing for t € (—1,0) and 0 < a < b < 1. (3.5)
Indeed, since Ina < Inb < 0, a® > b > 0, we have that
E'(t)=a'lna—b'Inb<b'lna—b"Inb="b'(Ina —Inb) <0,
which implies that k(t) is decreasing function. Thus, for

i =81 s,z(s
Z(S):(lT)l als2()) _

where 0 < 872 < 225 < 1 we may look I(s) as the same type as k(s), then I(s) is
decreasing with respect to its exponent 1 — ¢(s, z(s)).

In the next analysis, we will use the Minkowsk’s inequality: for a, b non-negative,
and any R > 0, it holds

@j)lfﬂsm(s))

(a+b)f < cr(a® 4+, where cgp = max{1,2%71}.
As a result, for a,b non negative, and any 0 < p < 1, it holds
(a+b)* < cu(a* + b*) = max{1,2 ' }(a" + ") = a* + b". (3.6)

Obviously, zo is equicontinuous on [0,T]. We let M = maxo<i<7 "|f(s,0)| + 1.
For all € > 0, and all ¢1,¢2 € [0,T], t1 < t2. we consider result in two cases.

Case I: 0 <t; <d <ty <T. We take 1 1 = min{?(‘CQi)l—i-l)’(Eé}\;;))ﬁ}7 when

ta —t1 <M1, we have
to—90
|21 (t2) — w1(t1)] = |e2,0(t2 — 6) +/ (t2 — 5)f(s,0)ds|
0
to—90
<|ea0l(t2 —9) + M/ (ta — s)s "ds
0

to—0
< |02’0|(t2 —9)+ MT/ s "ds
0
MT

= |02)0|(t2 — (S) —+ ﬁ(tQ _ 6)1—7"
MT
S (|CQ,Q| + 1)|(t2 — tl) + E(té _ tl)l—r

MT _,
< (lez,0l + Dmr + ﬁm,[

Case II: § <t; <ty <T. We take
e(1—r) (s(lfr))l%}
leaol + 1)(1 =)+ MT*=""" 2MT ’

1,77 = min { X
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when to —t1 < m1,11, by (3.6), we have
|z1(t2) — z1(t1)]
t1—0 to—§
—lesaltr~t2)+ [ (- o) f(s0ds [ (ta - s)f(s.00as
0 0
t1—0 to—0
<eaol(ta —t1) +/ t1 — t2|f(s,0)|ds +/ (t2 — 5)|f(s,0)|ds
0

t1—

t1—6 to—0
< lesol(ts — 1) + M/ (ts — t1)s~"ds + M/ (ts — 5)5—"ds
0 t1—08

(‘02’0| + 1)(1 — T‘) + MTI-"

< (t2 —t1)+Mf1;((t2—5)1_T— (tr = 8)'™")

1—7r 1
+1)(1—r)+MTT MT _
= (e20[ + (A = 7) (ta—t1) + ——((ta —t1 +t1 — 8"
1—r 1—7r
—(t1—=)'")
el +1)(1—7)+ MT=" MT r .
g dezol ¥ - 1) (12— 1)+ (12— 1)+ (01 )}
1—7r 1—r
—(t1—08)'"")
(lcao] + 1)(1 —7) + MTT MT .
== ty—t)+ ——(to — ¢
1T—r (o =t) + 7 (2 =)
(le2ol + (X — 1) + MT' " 1y
< 1—r m,rr + 1_T771711
€ €
<S4 =e
=5 + 5 €
These imply that x;(¢) is equicontinuous on [0, T], the same result can be obtained
when ty < t7.
We let
1
My = max s"|f(s,z1)|+1, L= max + 1.
T ocsstfim I <an (s z0)] 0<s<T, |l [|[<M; |F(2 —q(s,z1(5)))

For all € > 0, and all ¢1,t2 € [0,7T], t; < t2. We consider result in two cases.
Case I: 0<t; < <ty <T. We take

- 5 2—¢° e e(l-r)
772’1—mln{m,[,4(|02,0|+1)»(4M1LT*T(I*_1) 7( 4MfT) }7

when to —t1 < n21, by (2.2)), (2.3), (3.6) and the previous arguments, we have
|z2(t2) — @2(t1)]

= ‘,Il(tg) — 6270(t2 - 5) + A 1'\(2 _ q(s,.’[}l(S)))

to—0
1/ (2 — 8) (s,21)ds]
0

to—0 (tQ o S)lfq(s,zl(s))

x1(s)ds

t2—5
< |y ()| + |eao0l(ta — 6) + MlL/ (ty — 5)t 717 ()) g
0

to—9
+ My / (ta — s)s "ds
0
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t2—8 tg — S
< ‘Il(t2)| + ‘6270|(t2 o 5) +M1L/ Tlfq(s,am(s))(i
0

o )1*q(57x1(8))d5

to )
+ MfT/ s "ds
0

ta—4 Lty —s —g*
<|z1(te)| + [e2,0/(t2 — 6) + M1 L T (7T ) 4 ds
0

F1 (- o)

= e+ lenollts —0) + ETT T oo ey y M,
nts) — a8+ lenalts —0) + I 1y gy g g

F (-0

< fos(t2) — a0+ lenolts )+ ETT 1y g e g
e
3mm>xmm+wmunmm+Mfffl@m2f

+ i\/[iT(h —t)'”

M LT*T =t o .«  M;T ,_,
2_ ¢~ Na,1 +1—r 2.1

<|z1(t2) — @1 (t1)| + (Je2,0] + V)m2,r +

ce+i4ipk
44 4 4
Case II: § <t <ty <T. We take
€

( (2—¢q*)e )2_1q* e(l—r) (5(1—r))ﬁ}
0270‘ + 1)’ SM,LT*T7 -1 ’ 4MfT1*’"’ AM;T ’

when to —t1 < 2,1, by " 7 7 " " and the previous argumentsa

we have

|[z2(t2) — x2(t1)]

to—0 _ g)l-a(s.zi(s))
= |z1(t2) — x1(t1) —ca1(te —t1) + /0 (;?2 _ ()1(5 x1(8)))

hi=o yL-a(sei(s) t2—8
- %WSMUDM®@A (t2 = 5)f (s, 21)ds

t1—90
+/ (t1 — 8)f(s,z1)ds]|

< Jaalta) = a1 ()] + Jeas| (2 — 1) /Wﬁ%_WﬂW“”
< |x1(ta) — 21 (¢ + |c lg —11) +
1(ts 11 2,1](t2 1 s I'(2 —q(s,z1(s)))

t1—9
1 1 Lots o )
N b ) l=a(ea1 () _ (41 _ gl=a(sm ()11 (s)ds

2,77 = Min 7M1 17,
{ 4(]

x1(s)ds

(=)

[|1(s)[ds
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t1—0 to—0
n / b2 — ta[|f (5,21 (s))|ds + / (2 — ) f (5. 21(s))|ds

1—90
<|z1(t2) — 21(t1)] + |eaa|(t2 — t1)

tl 4
+ ML / ((t; — s)t 1m0 _ 4y — g)1=als@i(o)ygg
0
tg—(s tl 4
+ MlL/ (ty — s)t7 2@ ) gg 4 Mf/ (ty —t1)s "ds
t1—5 0
t2 )
+ MfT/ s "ds
t1—5

= [21(t2) — z1(t1)] + le21|(t2 — t1)

to—0
+M1L/ - T qa(s,x1(s ))( ta — S)l—q(s,m(s))ds
t

- T
t1—-6 1 —s ty—s
+M1L/ pi-atsan@) (U8 1maGemi) _ (228 1-gtaa))gg
0
My(ty —6)'—" M;T .
Jrf(llf)(tz—tlﬁrlif((t — &) = (1= 8)'T)

<|z1(te) — z1(t1)| + |e21|(te — 1)

t1—0
tl—S 1—g* tQ—S 1—g*
ML TH(A2)e" - (221
eant [y - (B s
to—0 1—r
tg — S 1—g* MfT
ML TH( 22 s+ — L (1, — ¢
eant [T B s B 1)
M;T
+ (b= ) = (= 0
MLT*TT = o - -
=|$1(t2)—$1(t1)\+|C2,1|(t2—751)+12_7q*(t? T -5
e g . MTT
2ty —ty +0)270 — 1371 — 520 )+ﬁ(t2—t1)
M;T
T (2= 8) T = (=)'
M, LT*T? =/, .
< fra(t2) = (00)] Hleaal(ta = 00) + =g (17 287
. c o\ | MTYT M;T
2ty — 1) 42070 1] q)+ﬁ(t2—t1)+l—;((t2—t1)lfr
+(t =0 = (=)'
M, LT*T9 ! .
= |w1(t2) — 21 (t1)| + |con|(t2 — 1) + 127—(]*(752 —19)*74

Mle—r

M,T
to — 1 ——(t2a — 11
+ 1= (t2 1)-1-1 (t2 )

ONMLLT*T? ~Y o .« MT "

- f
< xi(ta) —x1(t1)] + ( Dma, 1 + 2_—(1*77271? + o, it
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M;T
+ 1 = 7)5 11
€
<et-4-+-4-=2.
E+ 1 + 1 —|— 1 + 1 5
These imply that x5(t) is equicontinuous on [0, 7], the same result can be obtained
when t; < t;. Continue these process, we can obtain that zp, £k = 1,2..., is

equaicontinuous on [0, 7.

By the arguments of equicontinuity of xj, we can show that z; € C[0,T], for
k=1,2,.... Then, from the Arzela-Ascoli theorem, sequence xj, exists a convergent
subsequence z,,,. From , Zm,, should satisfy

0, 0<t<§,
t—§ (t S)l a(s, Tmg, 1(5))
Ty, () = S Ty, (8) + N G ER—r)) Loy, (8)ds (3.7
—Comyy (t—=08) = [y (t = 5)f(5,m,_,(s))ds, §<t<T,
where
T—6§ s 1-q(s,@my 1 () T—6§
Jo (€(2 )q(s e Gy T (8)ds = Jo (T = 8) f (8,2, (5))ds
Co2mp_1 — P
Mk —1 T_6
(3.8)
such that
T, (0) =, (T)=0, k=1,2,.... (3.9)

Now, we prove that the continuous limit of x,,,, denoted by z* is one solution of

problem (1.10))-(1.11)).
Let k£ — +oo in (3.7), . . by Lemmas-,. we have

Q 0<t<3d,
. gimaem )

z*(t) = + f m (s)ds — ca(t — ) (3.10)

fo (t —s)f(s,2*(s))ds, §<t<T,
x*(é) =z"(T) =0. (3.11)

where
T—6 1—q(s,z*(s)) T S N

. Jo Sy (s)ds — (T — s)f(s,2*(s))ds i1
T T-6 ’ (3.12)

Thus, we find that, for t € [0,6], * = 0; for ¢ € [0, T], «* satisfies relation

t=0 (4 _ g)1—a(s,3(5)) t=6
/0 g(z—)q(s ) (B)ds —ealt—0) - /0 (t=s)f(s,2"(s))ds = 0, (3.13)

for§ <t <T.

To verify z* is one solution of problem (1.10)-(1.11), we let 6 — 0 in (3.11)),
(3.12), (3.13). Now, for all £ > 0, take

e(2—¢q") )QJQ* (5(1 77‘))11r}
MLT*Tv " \TMT

0o = min{(

where

1
M = 1 L=
g Wi+ b= mex e g

[+ 1,
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when 0 < &g, by ., . ., , we have

t—4§ t—S 1—q(s,z*(s)) . B t (t_S)l—q(s,x*(s)) o (s)ds
|/ qux*<s>>>“s)ds | ey el

t (t _ 8)1 q(s,x™(s))

= x
| -5 1'(2 — q(s,2%(5)))
| t Tl—q(s,x*(s)) t—s

T2 ) T
gML/MT*( 7 )1 7 s

_ MLTTe ! s2a

s)ds|

1_Q(37’”*(S))x*(s)ds|

—q
2 —q*

MLT*T4 7152_‘1* .
2 —q* 0 ’

which implies that
) t—48 (t _ S)lfq(s,z*(s)) . /t (t _ 5)17(1(5,1’*(5))
lim ” x*(s)ds = "
0=0Jg  T(2—q(s,2%(s))) o T2 —qls,2*(s)))
By the same arguments, we have that
. T—6 (T _ S)l—q(s,x*(s)) . /T (T _ 3)1—q(s,r*(s))
lim T7(s)ds =
6=0Jo  T(2—q(s,2%(s))) o T'(2—qls,2%(s)))
Similarly, we have

!/Mt—s Fort @) = [ = 9)flo.a (o)

= (t —5)f(s,2"(s))ds]

t—o

t
SMf/t 5(t—3)57’"d3

x*(s)ds. (3.14)

x*(s)ds.  (3.15)

t
< MfT/ s "ds
t—§

M:T
=—1f (" = (t—=8)"")

M;T .,
=17 (=048 =(t—=08)"")
MyT -7 -7 -7
l_fr((t—é)l + 6T (=8t
MfTél—r
1—1r
_ My
1_

5T <

which implies
t—6

lim (t—s)f(s,2"(s))ds = /0 (t—s)f(s,z"(s))ds. (3.16)

5—0 0
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By the same arguments, we also have
T—5

lim (T —s)f(s,x"(s))ds = /0 (T —s)f(s,2"(s))ds. (3.17)

0—0 Jo

Now, we let § — 0 in (3.11)), (3.12), (3.13)), by (3.14)), (3.15), (3.16]) and (3.17),
we obtain

2*(0) = 2*(T) = 0, (3.18)

t _ ) q(s,x™(s)) t
/o 1(‘t(2 —)q(s x*(s)))x*(s)ds =ct +/0 (t =s)f(s,27(s))ds, O<t<T. (3.19)

where R
Ty o) T §
= fO (17:(2 )q(s x*(s))) S)dS - f() (T - 8)f(8, z (8))d8
= 7 .
Differentiating on both sides of (3.19)), we obtain

d . _
dtf[fﬂ“ W) =7 / flt,a*), 0<t<T, (3.20)

From the continuity of ¢" f and Lemma it follows that fot f(s,x*(s))ds is in
AC|0,T); consequently, from 7 we obtain

/fs:z: ds = CL;IQf(t’”(t)) “(t) — ¢ € AC[0,T). (3.21)

As a result, differentiating on both sides of (3.21), by definition of derivative of
variable-order (|1.9)), we obtain

DI D (4) = f(t,2%),0 < t < T, (3.22)
which together with (3.18]) yields that z* is a solution of (1.10)-(1.11)). Thus the
proof is complete. O

Example 3.2. Consider the problem
Dgf:,x(t))l,(t) = f(t’l‘), 0<t< 17

2(0) = z(1) =0, (3.23)

where q(t,z) = 1+ % + 3(1+x2) is a continuous function on [0,1] x R, f(t,z) =

=2 + 23 is a continuous function on (0,1] x R. Clearly, for (t,z) € [0,1] X R, we
have 1 < q(t,z) < 1+ % + % = 2. Therefore Theorem implies that (3.22)) has
one solution z* € C[0, 1].
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