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ELECTROMAGNETIC TRANSMISSION PROBLEMS WITH A
LARGE PARAMETER IN WEIGHTED SOBOLEV SPACES

JORGE ELIÉCER OSPINO

Abstract. We present an a priori estimate for an electromagnetic transmis-
sion problem in unbounded exterior domains in R3. We consider Maxwell’s

equations in two sub-domains, the bounded interior representing a conduct-
ing material (metal) and the unbounded exterior representing an insulating

material (air). The behavior of the solution at infinity is described by means

of families of weighted Sobolev spaces, so-called Beppo-Levi spaces [11]. We
prove the existence and uniqueness of the solution.

1. The electromagnetic transmission problem

Let Ωcd be a bounded region in R3 representing a metallic conductor and Ωis :=
R3\Ωcd. Let latter represents the air. The parameters ε0, µ0, σ denote permittivity,
permeability, and conductivity in Ωcd. We assume σ = 0 in Ωis. All fields are time-
harmonic with frequency ω. As in [13] we neglect conduction currents in the air
and displacement currents in the metal. Thus we consider

curl E− iωµ0H = 0, in Ωcd ∪ Ωis (Faraday’s law),

curl H + (iωε0 − σ)E = J, in Ωcd ∪ Ωis (Ampere’s law),
(1.1)

where E denotes the electric field, H the magnetic field and J the electric current.
Across the interface Σ the tangential components of both E and H must be contin-
uous; i.e. Eis

T = Ecd
T , His

T = Hcd
T . Furthermore the Silver-Müller radiation condition

is assumed to hold at infinity (see (1.2) below).
Following Peron [17] we introduce a large parameter ρ =

√
σ
ωε0

> 0 and set

µ =
√
µ0/ε0, ε(ρ) = 1

µ (1Ωis +(1+iρ2)1Ωcd), and F = iκJ. Then, defining x̂ = x/|x|,
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equation (1.1) and the Silver-Müller radiation condition become

curl Eρ − iκµHρ = 0, in Ωcd ∪ Ωis (Faraday’s law),

curl Hρ + iκε(ρ)Eρ =
1
iκ

F, in Ωcd ∪ Ωis (Amper’s law),

|Hρ × x̂−Eρ| = o
( 1
|x|
)
, as |x| → ∞ (Silver-Müller radiation condition).

(1.2)
The first two equations in (1.2) reduce to

1
µ

curl curl Eρ − κ2ε(ρ)Eρ = F, in Ωcd ∪ Ωis,

setting Hρ = 1
iκµ curl Eρ. The Silver-Müller radiation condition at infinity becomes

| curl Eρ × x̂−Eρ| = o
( 1
|x|
)
, as |x| → ∞. (1.3)

Peron [17] considers problem (1.2) in a bounded domain Ω which is split into the
conductor Ωcd and the insulator Ωis, with either Dirichlet or Neumann condition.
In our case Ω is unbounded and the boundary conditions are replaced by the Silver-
Müller decay condition at infinity. Problem (1.2) may be analyzed using Hs

loc(R3)
spaces or Beppo-Levi spaces. The reader is referred to Costabel and Stephan [5] and
Giroire [8] for applications of these spaces to boundary value problems involving
the Laplacian operator. Nedelec [14] uses of Hs

loc spaces for the study of problems
in electromagnetic theory. Let

L2(Ωcd) = (L2(Ωcd))3 :=
{
u : Ωcd → R3 :

∫
Ωcd
|u|2dx <∞

}
,

with norm

‖u‖L2(Ωcd) =
(∫

Ωcd
|u|2dx

)1/2

.

Let also

H(curl,Ωcd) = {u ∈ L2(Ωcd) : curl u ∈ L2(Ωcd)},

H(div,Ωcd) = {u ∈ L2(Ωcd) : div u ∈ L2(Ωcd)},

with norms

‖u‖2H(curl,Ωcd) = ‖ curl u‖2L2(Ωcd) + ‖u‖2L2(Ωcd),

‖u‖2H(div,Ωcd) = ‖ div u‖2L2(Ωcd) + ‖u‖2L2(Ωcd),

respectively. As in [17] we define

X(Ωcd) = H(curl,Ωcd) ∩H(div,Ωcd),

with norm

‖u‖2X(Ωcd) = ‖ curl u‖2L2(Ωcd) + ‖ div u‖2L2(Ωcd) + ‖u‖2L2(Ωcd),

and

XT (Ωcd) = {u ∈ X(Ωcd) : [n · u] = 0, on Σ},

XN (Ωcd) = {u ∈ X(Ωcd) : [n× u] = 0, on Σ},

XT (Ωcd, ρ) = {u ∈ H(curl,Ωcd) : ε(ρ)u ∈ H(div,Ωcd), [n · u] = 0, on Σ},



EJDE-2013/248 ELECTROMAGNETIC TRANSMISSION PROBLEMS 3

XN (Ωcd, ρ) = {u ∈ H(curl,Ωcd) : ε(ρ)u ∈ H(div,Ωcd), [n× u] = 0, on Σ}.

with norm

‖u‖2X(Ωcd,ρ) = ‖ curl u‖2L2(Ωcd) + ‖div(ε(ρ)u)‖2L2(Ωcd) + ‖u‖2L2(Ωcd),

Note that XT (Ωcd), XN (Ωcd), XT (Ωcd, ρ) and XN (Ωcd, ρ) are Hilbert spaces. Also
let D denote the space of all C∞-functions defined in R3 with compact support and
D′ its topological dual space (space of distributions, see [18]).

In what follows we define several spaces of distributions which turn out to be
Hilbert spaces. For detailed proof of the corresponding facts the reader is referred
to [2, 6, 11] and [14, Section 2.5.4].

For x ∈ R3, let `(‖x‖) =
√

1 + x2
1 + x2

2 + x2
3, and

W(curl,R3) = {u ∈ D′(R3) : `(‖x‖)−1u ∈ L2(R3), curl u ∈ L2(R3)},
W(div,R3) = {u ∈ D′(R3) : `(‖x‖)−1u ∈ L2(R3), div u ∈ L2(R3)}.

Note that W(curl,R3) and W(div,R3) are Hilbert spaces equipped with the norms

‖u‖2W(curl,R3) = ‖ curl u‖2L2(R3) + ‖`(‖x‖)−1u‖2L2(R3),

and
‖u‖2W(div,R3) = ‖div u‖2L2(R3) + ‖`(‖x‖)−1u‖2L2(R3).

Furthermore we will use the space

X(R3) = W(curl,R3) ∩W(div,R3),

subject to the norm

‖u‖2X(R3) = ‖ curl u‖2L2(R3) + ‖ div u‖2L2(R3) + ‖`(‖x‖)−1u‖2L2(R3),

and

XT (R3) = {u ∈ X(R3) : [n · u] = 0, on Σ},
XN (R3) = {u ∈ X(R3) : [n× u] = 0, on Σ},

XT (R3, ρ) = {u ∈W(curl,R3) : ε(ρ)u ∈W(div,R3), [n · u] = 0, on Σ},
XN (R3, ρ) = {u ∈W(curl,R3) : ε(ρ)u ∈W(div,R3), [n× u] = 0, on Σ},

XTN (R3, ρ) = {u ∈W(curl,R3) : ε(ρ)u ∈W(div,R3), [n× u] = [n · u] = 0, on Σ},

with norm

‖u‖2XTN (R3,ρ) = ‖ curl u‖2L2(R3) + ‖ div(ε(ρ)u)‖2L2(R3) + ‖`(‖x‖)−1u‖2L2(R3).

Note that XT (R3), XN (R3), XT (R3, ρ), and XN (R3, ρ) are Hilbert spaces. For m
in N ∪ {0} and k in Z, we define

L2
m,k(R3) :=

{
u : R3 → R3 : ∀α ∈ N3, 0 ≤ |α| ≤ m, `(‖x‖)|α|−m+ku ∈ L2(R3)

}
,

with norm
‖u‖L2

m,k(R3) = ‖`(‖x‖)|α|−m+ku‖L2(R3),

where L2
m,k(R3) =

(
L2
m,k(R3)

)3.
Next we extend [12, Theorems 1.2.16 and 1.2.17] for unbounded domains.
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Lemma 1.1. Let F ∈ L2(R3). Let Eρ and Hρ in L2(R3) be a solution to (1.2).
Then, Eρ,Hρ ∈W(curl,R3) if and only if Ecd

ρ ,H
cd
ρ ∈ H(curl,Ωcd) and Eis

ρ ,H
is
ρ ∈

W(curl,Ωis) and [n×Eρ]Σ = 0, [n×Hρ]Σ = 0, where [u]Σ = uis−ucd denotes the
jump across Σ.

Proof. “⇒” If Eρ,Hρ ∈ W(curl,R3), then by definition Ecd
ρ ,H

cd
ρ ∈ H(curl,Ωcd)

and Eis
ρ ,H

is
ρ ∈W(curl,Ωis). Thus for uρ = Eρ or uρ = Hρ, we have∫
Ωcd∪Ωis

v · curl uρdx =
∫

Ωcd
v · curl ucd

ρ dx+
∫

Ωis
v · curl uis

ρ dx,

and ∫
Ωcd∪Ωis

uρ · curl vdx =
∫

Ωcd
ucd
ρ · curl vdx+

∫
Ωis

uis
ρ · curl vdx,

for all v ∈W(curl,R3).
In Ωcd, integrating by parts (see [12, Theorem 1.2.17]) gives∫

Ωcd
[v · curl ucd

ρ dx− ucd
ρ · curl v]dx =

∫
Σ

[n× (n× ucd
ρ )] · (n× v)ds.

where
n× (n× ucd

ρ ) = n(n · ucd
ρ )− ucd

ρ (n · n) = n(n · ucd
ρ )− ucd

ρ .

Thus

[n× (n× ucd
ρ )] · (n× v) = [n(n · ucd

ρ )− ucd
ρ ] · (n× v) = −ucd

ρ · (n× v),

and
−ucd

ρ · (n× v) = v · (n× ucd
ρ ).

Hence ∫
Ωcd

v · curl ucd
ρ dx =

∫
Ωcd

ucd
ρ · curl vdx+

∫
Σ

v · (n× ucd
ρ )ds.

Let BR be a ball with radius R > 0 containing Ωcd. Let ΩR = BR ∩ Ωis. Hence
∂ΩR = ∂BR ∪ Σ.

In the domain ΩR, we have, integrating by parts, (see [12, Theorem 1.2.17]),∫
ΩR

v ·curl uis
ρ dx =

∫
ΩR

uis
ρ ·curl vdx−

∫
Σ

v ·(n×uis
ρ )ds+

∫
∂BR

v ·(n×uis
ρ )ds. (1.4)

Due to the Silver-Müller radiation conditions (see (1.3))

|
∫
∂BR

v · (n× uis
ρ )ds| ≤

∫
∂BR

|v||n× uis
ρ |ds

≤
∫
∂BR

|v||n||uis
ρ || sin θ|ds

≤
∫
∂BR

C1

R2

C2

R2
ds =

C

R2
→ 0, as R→∞.

Hence, in (1.4) taking the limit as R→∞, we have∫
Ωis

v · curl uis
ρ dx =

∫
Ωis

uis
ρ · curl vdx−

∫
Σ

v · (n× uis
ρ )ds.

Thus∫
Ωcd∪Ωis

v · curl uρdx =
∫

Ωcd∪Ωis
uρ · curl vdx+

∫
Σ

v · (n× ucd
ρ − n× uis

ρ )ds,
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yielding ∫
Σ

v · (n× ucd
ρ − n× uis

ρ )ds = 0,

and therefore [n× uρ]Σ = 0.
“⇐” If Ecd

ρ ,H
cd
ρ ∈ H(curl,Ωcd), Eis

ρ ,H
is
ρ ∈ W(curl,Ωis), [n × Eρ]Σ = 0, and

[n×Hρ]Σ = 0. Then for v ∈W(curl,R3) and uρ = Eρ or uρ = Hρ, integrating by
parts,∫

Ωcd∪Ωis
uρ · curl vdx

=
∫

Ωcd
ucd
ρ · curl vdx+

∫
Ωis

uis
ρ · curl vdx,

=
∫

Ωcd
v · curl ucd

ρ dx+
∫

Ωis
v · curl uis

ρ dx+
∫

Σ

v · (n× ucd
ρ − n× uis

ρ )ds.

Hence n× ucd
ρ − n× uis

ρ = 0 implies∫
Ωcd∪Ωis

uρ · curl vdx =
∫

Ωcd∪Ωis
v · curl uρdx.

�

Our next Lemma adapts [17, Lemmas 2.7 and 2.8] for exterior domains in
weighted Sobolev spaces.

Lemma 1.2. Let F ∈W(div,R3). Let Eρ and Hρ in L2(R3) solutions of (1.2).
If Eρ,Hρ ∈W(curl,R3), then ε(ρ)Eρ,Hρ ∈W(div,R3), [n · (ε(ρ)Eρ)]Σ = 0, and
[n ·Hρ]Σ = 0. Furthermore,

div(ε(ρ)Eρ) = − 1
κ2

div F, div Hρ = 0 in L2(R3).

Proof. If F ∈W(div,R3) and Eρ,Hρ ∈ L2(R3) are solutions of (1.2), then applying
divergence operator in (1.2), we have

div(ε(ρ)Eρ) = − 1
κ2

div F, div Hρ = 0 inL2(R3),

and ε(ρ)Eρ ∈ W(div,R3), Hρ ∈ W(div,R3). Now, for uρ = ε(ρ)Eρ or Hρ, we
have ∫

Ωcd∪Ωis
φ div uρdx =

∫
Ωcd

φdiv ucd
ρ dx+

∫
Ωis

φ div uis
ρ dx,∫

Ωcd∪Ωis
uρ · ∇φdx =

∫
Ωcd

ucd
ρ · ∇φdx+

∫
Ωis

uis
ρ · ∇φdx,

for all φ ∈ V = H1
0 (Ωcd)∪W1

0(Ωis). In Ωcd, integrating by parts (see [12, Theorem
1.2.16]), ∫

Ωcd
φdiv ucd

ρ dx =
∫

Ωcd
ucd
ρ · ∇φdx−

∫
Σ

(n · ucd
ρ )φds.

Let be a ball BR with radius R > 0 containing Ωcd. Let ΩR = BR ∩ Ωis. Hence
∂ΩR = ∂BR ∪ Σ. In the domain ΩR, we have, integrating by parts, (see [12,
Theorem 1.2.16]),∫

ΩR

φ div uis
ρ dx
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=
∫

ΩR

uis
ρ · ∇φdx+

∫
Σ

(n · uis
ρ )φds−

∫
∂BR

(n · uis
ρ )φds

=
∫

ΩR

uis
ρ · ∇φdx+

∫
Σ

(n · uis
ρ )φds−

∫
∂BR

(n · [uis
ρ + Uis

ρ × n])φds,

where, if uis
ρ = ε(ρ)Eρ, Uis

ρ = −ε(ρ)Hρ or if uis
ρ = Hρ, Uis

ρ = Eρ and n·[Uis
ρ×n] = 0.

Due to the Silver-Müller radiation conditions (see (1.3))∫
∂BR

n · [uis
ρ + Uis

ρ × n] · φds→ 0 asR→∞.

Hence ∫
Ωis

φ div uis
ρ dx =

∫
Ωis

uis
ρ · ∇φdx+

∫
Σ

(n · uis
ρ )φds.

Altogether we have∫
Ωcd∪Ωis

φdiv uρdx =
∫

Ωcd∪Ωis
uρ · ∇φdx+

∫
Σ

(n · uis
ρ − n · ucd

ρ ) · φds

then ∫
Σ

(n · uis
ρ − n · ucd

ρ ) · φds = 0,

for all φ implies [n · uρ]Σ = 0. �

For Eρ,E′ ∈ W̃(curl,R3) := {E ∈W(curl,R3) : E ∈ L2(R3)}, set

bρ(Eρ,E′) :=
∫

Ωcd∪Ωis

( 1
µ

curl Eρ · curl E′ − κ2ε(ρ)Eρ ·E′
)
dx. (1.5)

Proposition 1.3. If F ∈ L2(R3), Eρ,Hρ ∈ L2(R3) satisfy (1.2), then, Eρ ∈
W(curl,R3) and for all E′ ∈W(curl,R3),

bρ(Eρ,E′) =
∫

Ωcd∪Ωis
F ·E′dx. (1.6)

The proof of Proposition 1.3 is a minor modification of the proof [17, Proposition
3], and is left for the reader.

Proposition 1.4. If Eρ ∈ W(curl,R3) satisfies (1.6), then Eρ satisfies (in the
sense of distributions):

curl curl Eρ − κ2Eρ = µFis, in Ωis,

curl curl Eρ − κ2(1 + iρ2)Eρ = µFcd, in Ωcd,

[n×Eρ]Σ = 0, [n× curl Eρ]Σ = 0, on Σ,

(1.7)

with Silver-Müller condition

| curl Eρ × x̂−Eρ| = o
( 1
|x|
)
, as |x| → ∞,

On the other hand, if Eρ solves (1.7), then

1
µ

curl curl Eρ − κ2ε(ρ)Eρ = F, in Ωcd ∪ Ωis, (1.8)

div(ε(ρ)Eρ) = − 1
κ2

div F, in Ωcd ∪ Ωis. (1.9)
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Proof. We follow the proof of [17, Proposition 2.15] to show that Eρ satisfies the
first two equations in (1.7).

Taking E′ ∈ D′(R3) with support in Ωis as test function in (1.6) and using∫
Ωcd∪Ωis

curl Eρ · curl E′dx = 〈curl curl Eρ,E′〉Ωis ,

we see that the first equation in (1.7) is satisfied. Taking E′ ∈ D′(R3) with support
in Ωcd as test function in (1.6) and using∫

Ωcd∪Ωis
curl Eρ · curl E′dx = 〈curl curl Eρ,E′〉Ωcd ,

we see that the second equation in (1.7) is satisfied. By Lemma 1.1, the third
relation (1.7) holds.

Let BR be a ball with radius R > 0 containing Ωcd. Let Ω = Ωcd ∪ (Ωis ∩ BR).
Hence ∂(Ωis ∩BR) = Σ ∪ ∂BR = ∂Ω, for all E,H ∈ H(curl,Ω),∫

Ω

curl E ·H−E · curl H)dx = 〈n×E,Hτ 〉∂Ω, (1.10)

where Hτ = (n × H) × n. From the first equation in (1.7) we have curl Eis ∈
H(curl,Ωis ∩ BR). Applying formula (1.10) in Ωis ∩ BR to E = curl Eis

ρ and H =
E′ ∈ H(curl,Ω), we have∫

Ωis∩BR
curl Eis

ρ · curl (E′)isdx

=
∫

Ωis∩BR
curl curl Eis

ρ · (E′)isdx+ 〈curl Eis
ρ × n, (E′)is

τ 〉∂(Ωis∩BR).

(1.11)

Applying formula (1.10) in Ωcd to E = curl Ecd
ρ and H = E′ ∈ H(curl,Ω), we have∫

Ωcd
curl Ecd

ρ · curl (E′)cddx

=
∫

Ωcd
curl curl Ecd

ρ · (E′)cddx+ 〈curl Ecd
ρ × n, (E′)cd

τ 〉Σ.
(1.12)

In (1.11),

〈curl Eis
ρ × n, (E′)is

τ 〉∂(Ωis∩BR) = 〈curl Eis
ρ × n, (E′)is

τ 〉Σ + 〈curl Eis
ρ × n, (E′)is

τ 〉∂BR .
Applying Silver-Müller radiation condition yields

|〈curl Eis
ρ × n, (E′)is

τ 〉∂BR | =
∣∣ ∫
∂BR

curl Eis
ρ × n · (E′)is

τ ds
∣∣

≤
∫
∂BR

| curl Eis
ρ × n||(n×E′)× n|ds

≤
∫
∂BR

| curl Eis
ρ ||n|| sin θ1||n||n×E′|| sin θ2|ds

≤
∫
∂BR

C1| curl Eis
ρ ||n||E′|| sin θ3|ds

≤
∫
∂BR

C1| curl Eis
ρ ||E′|ds

= C1
C2

R4
R2 =

C

R2
→ 0, as R→∞.
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Then, by the dominated convergence Theorem,∫
Ωis

curl Eis
ρ · curl (E′)isdx

=
∫

Ωis
curl curl Eis

ρ · (E′)isdx+ 〈curl Eis
ρ × n, (E′)is

τ 〉Σ.
(1.13)

From (1.12) and (1.13),∫
Ωcd∪Ωis

curl Eρ · curl E′dx

=
∫

Ωcd∪Ωis
curl curl Eρ ·E′dx+ 〈[curl Eρ × n]Σ,E′τ 〉Σ,

for all E′ ∈W(curl,R3). From (1.6) and the first two equations in (1.7),

〈[curl Eρ × n]Σ,E′τ 〉Σ = 0,

which proofs the fourth equation in (1.7). �

Next we consider a regularized version of problem (1.6). Namely: We consider
finding Eρ ∈ XT (R3, ρ), such that, for all E′ρ ∈ XT (R3, ρ),∫

Ωcd∪Ωis

( 1
µ

curl Eρ · curl E′ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′ρ)− κ2ε(ρ)Eρ ·E′ρ
)
dx

= 〈f,E′ρ〉,
(1.14)

where

〈f,E′ρ〉 =
∫

Ωcd∪Ωis

(
F ·E′ρ −

α

κ2
div F · div(ε(ρ)E′ρ)

)
dx, (1.15)

and where α > 0.
The next theorem, extends [17, Theorem 2.21] (see also Costabel et al. [4]), which

corresponds to Peron’s theorem [17, Theorem 2.21] and is its modification for an
unbounded exterior domain and weighted spaces.

Theorem 1.5. There exists α > 0, independent of ρ, such that if Eρ ∈ XT (R3, ρ)
is a solution of (1.14)–(1.15) for F ∈W0(div,R3), then

div(ε(ρ)Eρ) +
1
κ2

div F = 0, in Ωcd ∪ Ωis. (1.16)

Furthermore Eρ and Hρ = 1
iωε0

curl Eρ satisfy Maxwell’s equations (1.2).

Proof. Let us define the operator ∆N
ε(ρ) from W1

0(R3) to W1
0(R3)′ mapping ϕ to

div(ε(ρ)∇ϕ), where div(ε(ρ)∇ϕ) ∈W1
0(R3)′ defined for any ψ ∈W1

0(R3) by∫
Ωcd∪Ωis

ε(ρ)∇ϕ · ∇ψdx.

see [17, Theorem 2.21]. Defining the domain of ∆N
ε(ρ) by

D(∆N
ε(ρ)) = {ϕ ∈W1

0(R3)| div(ε(ρ)∇ϕ) ∈ L2(R3)},

∇ϕ ∈ XT (R3, ρ) for ϕ ∈ D(∆N
ε(ρ)).
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Let Eρ satisfy (1.14). Choosing E′ = ∇ϕ with ϕ ∈ D(∆N
ε(ρ)), (1.14) gives∫

Ωcd∪Ωis
(α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ)− κ2ε(ρ)Eρ · ∇ϕ)dx

=
∫

Ωcd∪Ωis

(
F · ∇ϕ− α

κ2
div F · div(ε(ρ)∇ϕ)

)
dx.

(1.17)

Since ε(ρ)Eρ,F ∈W0(div,R3) and ϕ ∈W1
0(R3) we have∫

R3
−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫
Ωcd
−κ2ε(ρ)Eρ · ∇ϕ)dx+

∫
Ωis
−κ2ε(ρ)Eρ · ∇ϕ)dx.

Green’s formula in Ωcd, yields∫
Ωcd
−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫
Ωcd

κ2 div(ε(ρ)Eρ) · ϕ)dx+
∫

Σ

κ2n · (ε(ρ)Eρ∇ϕ))dS.

Let BR be a ball with radius R > 0 containing Ωcd, with ∂ΩR = ∂BR ∪Σ. Let ΩR
be as above. Integrating by parts,∫

ΩR

−κ2ε(ρ)Eρ · ∇ϕ)dx =
∫

ΩR

κ2 div(ε(ρ)Eρ) · ϕ)dx+
∫
∂ΩR

κ2n · (ε(ρ)Eρ)ϕ)ds,

(1.18)
and∫

∂ΩR

κ2n · (ε(ρ)Eρ)ϕ)ds =
∫

Σ

κ2n · (ε(ρ)Eρ)ϕ)ds+
∫
∂BR

κ2n · (ε(ρ)Eρ)ϕ)ds.

As in the proof of Lemma 1.2, applying the Silver-Müller condition (see (1.7)),∫
∂BR

κ2n · (ε(ρ)Eρ)ϕds→ 0, as R→∞,

Hence, by (1.18),∫
Ωis
−κ2ε(ρ)Eρ · ∇ϕ)dx

=
∫

Ωis
κ2 div(ε(ρ)Eρ) · ϕdx−

∫
Σ

κ2n · (ε(ρ)Eρ∇ϕ))ds−
∫

Σ

κ2n · (ε(ρ)Eρ)ϕds = 0,

for all ϕ ∈ D(∆N
ε(ρ)) yielding [n · (ε(ρ)Eρ)] = 0 on Σ. Now∫

R3
F · ∇ϕdx =

∫
Ωcd

F · ∇ϕdx+
∫

Ωis
F · ∇ϕdx,

Green’s formula in Ωcd, yields∫
Ωcd

F · ∇ϕdx = −
∫

Ωcd
div F · ϕdx−

∫
Σ

(n · F)ϕds.

Again, we choose R > 0 such that BR contains Ωcd. Using again that Ωis =⋃
R>0 ΩR and that ∂ΩR = ∂BR ∪ Σ.
Applying the divergence theorem to F = iκ curl H − κ2ε(ρ)E in ΩR, and the

Silver-Müller condition, we have∫
∂BR

(n · F)ϕds→ 0, as R→∞.

Hence ∫
Ωis

F · ∇ϕdx = −
∫

Ωis
div F · ϕdx+

∫
Σ

(n · F)ϕds.
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Then, we have∫
R3
−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫
R3
κ2 div(ε(ρ)Eρ) · ϕdx+

∫
Σ

κ2n · [ε(ρ)Eρ]ϕds

=
∫

R3
κ2 div(ε(ρ)Eρ) · ϕdx

and ∫
R3

F · ∇ϕdx = −
∫

R3
div F · ϕdx.

Similarly, according to (1.17) there holds∫
R3

(
α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ) +

α

κ2
div F · div(ε(ρ)∇ϕ)

− κ2ε(ρ)Eρ · ∇ϕ− F · ∇ϕ
)
dx = 0.

Then ∫
R3

(
α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ) +

α

κ2
div F · div(ε(ρ)∇ϕ)

+ κ2 div(ε(ρ)Eρ) · ϕ+ div F · ϕ
)
dx = 0.

Therefore, for all ϕ ∈ D(∆N
ε(ρ)),∫

R3

(
div(ε(ρ)Eρ) +

1
κ2

div F
)
· (α div(ε(ρ)∇ϕ) + κ2ϕ)dx = 0. (1.19)

The sesquilinear form associated with the operator −∆N
ε(ρ) is uniformly coercive

on W1
0(R3), because (see Giroire [8])

Re
(∫

R3
ε(ρ)∇ϕ · ∇ϕdx

)
=

1
µ
|ϕ|2W1

0(R3) ≥ C‖ϕ‖
2
W1

0(R3). (1.20)

Next, we follow again Peron [17] and examine the real non-zero eigenvalues λ of
−∆N

ε(ρ); i.e,

−∆N
ε(ρ)ϕ = λϕ in R3, (1.21)

which, after integration by parts, gives∫
R3
ε(ρ)∇ϕ · ∇ϕdx = λ

∫
R3
ϕ · ϕdx.

Now (1.20) gives λ ≥ C and we take α > 0 large enough such that κ2

α < C. Then
κ2

α is not an eigenvalue of −∆N
ε(ρ). Consequently (1.19) implies

div(ε(ρ)Eρ) +
1
κ2

div F = 0, in R3.

This way, from (1.14) and (1.15),∫
R3

( 1
µ

curl Eρ · curl E′ρ − κ2ε(ρ)Eρ ·E′ρ
)
dx =

∫
R3

F ·E′ρdx.

for all E′ρ ∈ XT (R3, ρ).
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We define Hρ from Faraday’s law by Hρ = 1
iωε0

curl Eρ in R3. Then from
Proposition 2, it follows that∫

R3

( iωε0

µ
curl Hρ ·E′ρ − κ2ε(ρ)Eρ ·E′ρ

)
dx =

∫
R3

F ·E′ρdx,

for all E′ρ ∈ XT (R3, ρ), implying

curl Hρ + iκε(ρ)Eρ =
1
iκ

F, in R3.

�

Remark 1.6. An easy modification of the proof of the Theorem 1 shows that there
exists β > 0, independent of ρ, such that if Eρ ∈ XN (R3, ρ) is a solution to∫

R3

( 1
µ

curl Eρ · curl E′ρ+β div(ε(ρ)Eρ) ·div(ε(ρ)E′ρ)−κ2ε(ρ)Eρ ·E′ρ
)
dx = 〈f,E′ρ〉,

(1.22)
and (1.15) for some F ∈W(div,R3), then

div(ε(ρ)Eρ) +
1
κ2

div F = 0, in R3. (1.23)

Furthermore, Eρ and Hρ = 1
iωε0

curl Eρ solve (1.2). This results corresponds di-
rectly to [17, Theorem 2.22].

In this part, we give a variational formulation for the term ϕρ ∈ V, with
V = H1

0 (Ω−) ∪W1
0(Ω+), (see [16, Chapter 2] and [15]), which appears in the de-

composition of the electrical field, to see Theorem 2.1. Again, we extend the ideas
of Peron [17] to prove Lemmas 1.7 and 1.8 for the unbounded exterior domain. Our
Lemma 1.7 corresponds to [17, Lemma 2.33] and gives the appropriate setting for
an unbounded exterior domain.

Lemma 1.7. Let Eρ ∈ XT (R3, ρ) satisfy (1.14)-(1.15) for F ∈ W0(div,R3), and
let (wρ, ϕρ) ∈W1

0(R3)×V with div wρ = 0 given by Theorem 2.1. Then, ϕρ solves
the variational problem: Find ϕρ ∈ V, such that for all ψ ∈ V,∫

R3
ε(ρ)∇ϕρ · ∇ψdx =

1
κ2

∫
R3

div F · ψdx+
1
µ
iρ2

∫
Σ

wρ · n|Σψds. (1.24)

Proof. Due to Theorem 2.1 there exists an unique couple (wρ, ϕρ) ∈ W1
0(R3) × V

such that Eρ = wρ +∇ϕρ. Thus we have∫
R3
ε(ρ)∇ϕρ · ∇ψdx =

∫
R3
ε(ρ)Eρ · ∇ψdx−

∫
R3
ε(ρ)wρ · ∇ψdx, ∀ψ ∈ V.

Then, since ε(ρ)Eρ ∈W0(div,R3), there holds∫
R3
ε(ρ)Eρ · ∇ψdx = −

∫
R3

div(ε(ρ)Eρ) · ψdx,

so, due to Theorem 1.5,∫
R3
ε(ρ)Eρ · ∇ψdx =

1
κ2

∫
R3

div F · ψdx.

Next, we have∫
R3
ε(ρ)wρ · ∇ψdx =

∫
Ωis

ε(ρ)iswρ · ∇ψdx+
∫

Ωcd
ε(ρ)cdwρ · ∇ψdx,
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and, by integration by parts,∫
Ωcd

ε(ρ)cdwρ · ∇ψdx =
∫

Ωcd
div(ε(ρ)cdwρ)ψdx−

∫
Σ

(ε(ρ)cdwρ · n)ψds.

Let BR be a ball with radius R > 0 containing Ωcd. We have∫
ΩR

ε(ρ)iswρ · ∇ψdx =
∫

ΩR

div(ε(ρ)iswρ)ψdx+
∫

Σ

(ε(ρ)iswρ · n)ψds

+
∫
∂BR

(ε(ρ)iswρ · n)ψds.

Applying the Silver-Müller condition,∫
∂BR

(ε(ρ)iswρ · n)ψds =
∫
∂BR

(ε(ρ)is[wρ −wρ × n] · n)ψds→ 0 as R→∞,

Hence ∫
Ωis

ε(ρ)iswρ · ∇ψdx =
∫

Ωis
div(ε(ρ)iswρ)ψdx+

∫
Σ

(ε(ρ)iswρ · n)ψds.

Thus∫
R3
ε(ρ)wρ · ∇ψdx =

∫
R3

div(ε(ρ)wρ)ψdx+
∫

Σ

(ε(ρ)is − ε(ρ)cd)wρ · n|Σψds.

Since div wρ = 0 in R3, we obtain (1.24) because (see (1.2))

ε(ρ)is − ε(ρ)cd = − 1
µ
iρ2.

�

Analogously we obtain the following counterpart of [17, Lemma 2.34].

Lemma 1.8. Let Eρ ∈ XN (R3, ρ) solution of (1.22)-(1.15) associated with F ∈
W(div,R3), and let (wρ, ϕρ) ∈ XN (R3) × V given by Theorem 2.1. Then, ϕρ is
solution of following variational problem: Find ϕ ∈ V, such that for all ψ ∈ V,∫

R3
ε(ρ)∇ϕ · ∇ψdx =

1
κ2

∫
R3

div F · ψdx+
1
µ
iρ2

∫
Σ

wρ · n|Σψds. (1.25)

2. Decomposition of vector fields and compact embedding in
weighted spaces

In this section we collect the tools needed in the proof of our a priori estimate
(Theorem 3.1), namely a vector Helmholtz decomposition in R3 and a compactness
results (Lemma 2.3) for the embedding in weighted spaces.

First we consider the vector potential of divergence-free vector fields and present
results for a Helmholtz decomposition by Girault [6]. The weighted Sobolev spaces
used here were introduced and studied by Hanouzet in [9]. For any multi-index α
in N3, we denote by ∂α the differential operator of order α:

∂α =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

, with |α| = α1 + α2 + α3.

Then, for all m in N and all k in Z, we define the weighted Sobolev space

Wm
k (Ωis) :=

{
v ∈ D′(Ωis) : ∀α ∈ N3, 0 ≤ |α| ≤ m, `(r)|α|−m+k∂αv ∈ L2(Ωis)

}
,

(2.1)
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which is a Hilbert space with the norm:

‖v‖Wm
k (Ωis) =

{ m∑
|α|=0

‖`(r)|α|−m+k∂αv‖2L2(Ωis)

}1/2

.

Hence
W0

0(Ωis) = L2(Ωis), W0
−1(R3) = L2

0,−1(R3).

For all n ∈ Z, Pn denotes the space of all polynomials (in three variables) of degree
at most n, with the convention that the space is reduced to zero when n is negative.

We denote by Pn is the subspace of all harmonic polynomials of Pn, again with
the convention that the space is reduced to zero when n is negative. For all integers
k ≥ 0, we define the following subspace of (Pk)3,

Gk := {∇q : q ∈ Pk+1}.

Note that G0 = R3. The following result is based on the paper by Girault [6]. In
the case of a bounded domain, there are two classical orthogonal decompositions
of vector fields: a decomposition in L2 and a decomposition in H1

0 (cf. for example
[7]). The following theorem establishes the analogue of the decomposition in L2 for
vector fields in R3. Let

Vm
k (R3) := {v ∈Wm

k (R3)3 : div v = 0},
Ck := {curl q : q ∈ (Pk+1)3},

with the usual convention that Ck = {0}, when k < 0, observe that C0 = R3 = G0.
In addition, for all k ≥ 1, Gk ⊂ Ck, but the inverse inclusion is false.

Theorem 2.1 (Girault [6, Theorem 5.1]). Let the integers m and k belong to Z
and let u be a vector field in Wm

m+k(R3)3.
(1) If k ≤ 1, u may be decomposed as

u = ∇p+ curl Φ, (2.2)

where Φ is unique in Vm+1
m+k(R3)/C−k−1 and p is uniquely determined by u and Φ

in Wm+1
m+k(R3)/R, or Wm+1

m+k(R3) if k = 0 or 1. They satisfy the bounds:

‖Φ‖Wm+1
m+k(R3)3/C−k−1

+ ‖p‖Wm+1
m+k(R3)/R ≤ C‖u‖Wm

m+k(R3)3 , (2.3)

with the convention that the quotient norm of p is replaced by ‖p‖Wm+1
m+k(R3) when

k = 0 or 1.
(2) If k ≥ 2 has the decomposition (2.2) with a unique p in Wm+1

m+k(R3) and
a unique Φ in Vm+1

m+k(R3) if and only if u is orthogonal to Ck−2 (for the duality
paring). The analogue of (2.3) holds:

‖Φ‖Wm+1
m+k(R3)3 + ‖p‖Wm+1

m+k(R3) ≤ C‖u‖Wm
m+k(R3)3 , (2.4)

(3) When both m and k belong to N, the decomposition is orthogonal for the
scalar product of L2(R3).

Now, this part is concerned with compact embedding in weighted Sobolev spaces
for unbounded domains, and is based on Avantaggiati and Troisi [1]. Let Ω be an
unbounded domain of Rn, satisfying the cone property, and δ ∈ C0(Ω), a positive
continuous function divergent for |x| → ∞, satisfying also:
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(1) There exist two open and separated subsets Ω1 and Ω2 of Rn, such that
Ω = Ω1 ∪ Ω2 and

δ(x) ≤ 1, ∀x ∈ Ω1, δ(x) ≥ 1, ∀x ∈ Ω2.

We will put also, Ω0 = Ω.
(2) For each x0 ∈ Ωi, i = 0, 1, 2, let

Ai(x0) = Ωi ∩ {x : |x− x0| < δ(x0)}.

We assume that there c1 and c2 are two positive constants independent of
x0 and x, and

c1δ(x0) ≤ δ(x) ≤ c2δ(x0), ∀x ∈ Ai(x0),

(3) If ϕi(x,x0) is the characteristic function of the set Ai(x0), then the inequal-
ities

c3δ
n(x) ≤

∫
Ωi

ϕi(x,x0)dx0 ≤ c4δn(x), ∀x ∈ Ai(x0),

hold, where c3 and c4 are two positive constants independent of x.

If s, λ ∈ R and 0 < p ≤ ∞, we will denote by L̃ps,λ(Ω) the space of the functions

u(x), such that δs
(

δ
1+δ2

)λ
u ∈ Lp(Ω), with norm

‖u‖eLps,λ(Ω) := ‖δs
( δ

1 + δ2

)λ
u‖Lp(Ω). (2.5)

If s, λ ∈ R, r ∈ N0 and p ∈ (1,∞), we will denote by W r,p
s,λ(Ω) the space of the

distributions u on Ω, such that ∂αu ∈ L̃ps+|α|−r,λ(Ω) for |α| ≤ r, with norm

‖u‖W r,p
s,λ(Ω) :=

[ r∑
k=0

‖∂ku‖peLp
s+|α|−r,λ(Ω)

]1/p
. (2.6)

We observe that W r,p
s,λ(Ω) is continuously embedded in

W k,p
s+k−r+t,λ+τ (Ω), for k ≤ r, τ ≥ 0, t ∈ [−τ, τ ]. (2.7)

Therefore,
W 0,p
s,λ (Ω) = L̃ps,λ(Ω).

We have also L2
0,−1(Ω) = L̃2

−1,1(Ω).
The next theorem is due to Avantaggiati and Troisi [1, Theorem 6.1].

Theorem 2.2. There are real numbers s, λ, r, p, where r ∈ Z+ and p > 1, such
that for each non-negative integer k < r, for each real number τ > 0, and for each
t ∈ (−τ, τ), the injection

W r,p
s,λ(Ω) ↪→W k,p

s+k−r+t,λ+τ (Ω) (2.8)

is compact.

As a consequence of the above results, we have the following Lemma.

Lemma 2.3. The emmbeding of PH1(R3) into L2
0,−1(R3) is compact.
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Proof. First, we observe that by definition L̃2
−1,1(Ω) = L2

0,−1(Ω) = W 0,2
−1,1(Ω). On

the other hand choosing t = s = λ = k = 0, τ = r = 1, p = 2 in (2.8) gives the
compact embedding W 1,2

0,0 (Ω) ⊂⊂ W 0,2
−1,1(Ω). Hence W 1,2

0,0 (Ω) ⊂⊂ L2
0,−1(Ω) where

we can set Ω = R3.
Furthermore ϕ ∈ PH1(R3) := {ϕ = (ϕis, ϕcd) : ϕis ∈ W1

0(Ωis), ϕcd ∈ H1(Ωcd)},
due to the definition of W1

0, gives that∇ϕ ∈ L2 and hence∇ϕ ∈ L̃2
0,0 with s = λ = 0

in (2.5). Therefore, ϕ ∈ W 1,2
0,0 (Ω) with r = 1, p = 2, s = λ = 0 in (2.6) because

with s = λ = 0 = |α|, r = 1 there holds

‖ϕ‖eL2
−1,0

(Ω) = ‖δ−1ϕ‖L2(Ω) ≤ c‖
ϕ√

1 + x2
‖L2(Ω) <∞

by taking δ proportional to
√

1 + x2. �

3. A priori estimate for the electrical field

Next we give an existence and uniqueness result for the solution of (1.14)-(1.15).
The proof uses an a priori estimate. The ideas of this section are based on those of
Peron [3, 17], but using compactness results for the embedding of weighted spaces
with unbounded domains. This is a crucial difference of our proof compared to
Peron’s proof. An alternative proof may be obtained using [10, Theorem 2.1].

For the rest of this article we assume the following condition.
Spectral hypothesis: We assume κ2 is not an eigenvalue of the limit problem.
That is, we assume that if E0 ∈W(curl,Ωis) is such that for all E′ ∈W(curl,Ωis),∫

Ωis
(curl E0 · curl E′ − κ2E0 ·E′)dx = 0, n×E = 0 on Σ, (3.1)

then E0 = 0.
Now, we can formulate our main theorem of this section.

Theorem 3.1. Under the spectral hypothesis (3.1), there exists a constant ρ0 > 0,
such that for all ρ > ρ0, problem (1.14)-(1.15) admits an unique solution Eρ ∈
XTN (R3, ρ) for F ∈W0(div,R3), satisfying

‖ curl Eρ‖L2
0,−1(R3) + ‖ div(ε(ρ)Eρ)‖L2

0,−1(R3) + ‖Eρ‖L2
0,−1(R3) + ρ‖Eρ‖L2(Ωcd)

≤ C‖F‖W(div,R3),

(3.2)
with a constant C > 0, independent of ρ.

The proof of the above theorem is given in various steps, below. The estimate
(3.2) is based on the a priori estimate (3.3).

Theorem 3.2. If (3.1) holds, then there exists a constant ρ0 > 0, such that, for
all ρ > ρ0, if Eρ ∈ XTN (R3, ρ) satisfies (1.14)-(1.15) for F ∈W0(div,R3), then

‖Eρ‖L2
0,−1(R3) ≤ C‖F‖W(div,R3), (3.3)

where C > 0 is a constant independent of ρ.

Proof. The proof is similar to the one given by Peron [17, Theorem 2.35]. Here we
use a compact embedding of PH1(R3) into L2

0,−1(R3) where

PH1(R3) = {ϕ : ϕis ∈ (W1
0(Ωis))3, ϕcd ∈ (H1(Ωcd))3}.



16 J. E. OSPINO EJDE-2013/248

Let Eρ ∈ XTN (R3, ρ), be a solution of (1.14)-(1.15). For Φ ∈ XTN (R3, ρ),∫
R3

( 1
µ

curl Eρ · curl Φ + α div(ε(ρ)Eρ) · div(ε(ρ)Φ)− κ2

µ
EρΦ

)
dx

− 1
µ
iρ2

∫
Ωcd

EρΦdx

=
∫

R3

(
F · Φ− α

κ2
div F · div(ε(ρ)Φ)

)
dx.

(3.4)

By Theorem 1.5 there holds

div(ε(ρ)Eρ) +
1
κ2

div F = 0, in R3.

For Φ ∈ XTN (R3, ρ),∫
R3

(curl Eρ · curl Φ− κ2EρΦ)dx− iρ2

∫
Ωcd

EρΦdx = µ

∫
R3

F · Φdx, (3.5)

for all Φ ∈ XTN (R3, ρ). Just as in Peron [17] we prove the theorem by contradic-
tion argument, but we crucially apply a compactness result for the embedding in
weighted Sobolev spaces by Avantaggiati and Troisi [1].

Since Peron [17] considers only bounded domains, he can, in contrary, apply
standard embedding arguments (Rellich’s theorem). Suppose that exists a sequence
{Fρn}n≥1 in W(div,R3) with ρn →∞, ‖Fρn‖W(div,R3) = 1, Fρn · n = 0 in Σ, and
such that for the corresponding solutions Eρn ∈ XTN (R3, ρn) satisfy

lim
n→∞

‖Eρn‖XTN (R3,ρn) =∞.

Letting Ẽρn = (‖Eρn‖W(div,R3))−1Eρn we have

‖Ẽρn‖W(div,R3) = 1, lim
n→∞

‖F̃ρn‖W(div,R3) = 0. (3.6)

With Φ = Ẽρn , equality (3.5) becomes

‖ curl Ẽρn‖2L2(R3) − κ
2‖Ẽρn‖2L2

0,−1(R3) − iρ
2
n‖Ẽρn‖2L2(Ωcd) = µ(F̃ρn , Ẽρn)L2

0,−1(R3).

(3.7)
Taking imaginary parts we have

ρ2
n‖Ẽρn‖2L2(Ωcd) = −µ Im(F̃ρn , Ẽρn)L2

0,−1(R3). (3.8)

By the Cauchy-Schwartz inequality we obtain,

| Im(F̃ρn , Ẽρn)L2
0,−1(R3)| ≤ ‖F̃ρn‖W(div,R3)‖Ẽρn‖W(div,R3).

Hence (3.6) yields
lim
n→∞

‖Ẽρn‖L2(Ωcd) = 0. (3.9)

Also, taking real parts in (3.7),

‖ curl Ẽρn‖2L2(R3) − κ
2‖Ẽρn‖2L2

0,−1(R3) = µRe(F̃ρn , Ẽρn)L2
0,−1(R3). (3.10)

Hence due to Cauchy-Schwartz inequality and (3.6), there are constants C1 and C2

independent of n, such that

‖ curl Ẽρn‖2L2(R3) ≤ C1 + C2‖F̃ρn‖L2
0,−1(R3). (3.11)

Therefore, {curl Ẽρn}n≥1 is bounded in L2
0,−1(R3).
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Let (wρn , ϕρn) ∈W1
0(R3)× V, (for definition of V see [16, Chapter 2] and [15]),

be given by Girault [6, Theorems 3.2 and 5.1], such that

Ẽρn = w̃ρn +∇ϕ̃ρn , div w̃ρn = 0, in R3,

and
‖w̃ρn‖W1

0(R3) ≤ C‖ curl Ẽρn‖L2(R3), (3.12)

where C > 0 is a constant independent of n. Therefore, {w̃ρn}n∈N is bounded in
W1

0(R3). According to Lemma 1.7 and (1.16), ϕ̃ρn satisfies∫
R3
ε(ρ)∇ϕ̃ρn · ∇ψdx =

1
κ2

∫
R3

div F̃ρn · ψdx+
1
µ
iρ2

∫
Σ

w̃ρn · n|Σψds. (3.13)

for all ψ ∈ V.
Let ρ0 > 0 and the constant Cρ0 > 0 be given by [16, Theorem 3] and [15,

Teorema 1]. We set δn = 1 + iρ2
n. Then there exists n0 ∈ N, such that for all

n ≥ n0 we have |δn| ≥ ρ0. Note that div F̃ρn and w̃ρn · n verify the hypotheses of
[16, Theorem 3] and [15, Teorema 1]. Also, problem (3.13) is coercive on V. Hence
the solution of (3.13) belongs to PH2(R3) and there holds

‖ϕ̃cd
ρn‖H2(Ωcd) + ‖ϕ̃is

ρn‖W2
1(Ωis) ≤ Cδ0

(
‖ div F̃ρn‖L2

0,−1(R3) + ‖w̃ρn · n‖H1/2(Σ)

)
.

for any n ≥ n0. Thus {∇ϕ̃ρn}n≥1 is bounded in PH1(R3), and {Ẽρn}n≥1 is
bounded in H1(Ωcd) ∪

(
W1

0(Ωis)
)3.

According to Lemma 2.3, the embedding of PH1(R3) in L2
0,−1(R3) is compact.

This implies that there exists a subsequence {Ẽρn}n≥1 and Ẽ ∈ L2
0,−1(R3), such

that
Ẽρn ⇀ Ẽ in

(
PH1(R3)

)3
, Ẽρn → Ẽ in L2

0,−1(R3). (3.14)

By (3.6), we have
‖Ẽ‖L2

0,−1(R3) = 1. (3.15)

To obtain a contradiction, we show that Ẽ = 0 in Ωis ∪ Ωcd. Due to (3.9),
‖Ẽ‖L2(Ωcd) = 0. Hence

Ẽ = 0, in Ωcd. (3.16)

Next, we take Φ ∈ XTN (R3, ρ) with support in Ωis. Then n · Φ = 0, n× Φ = 0 on
Σ and due to (3.5), we have

(curl Ẽρn , curl Φ)L2
0,−1(Ωis) − κ2(Ẽρn ,Φ)L2

0,−1(Ωis) = µ(F̃ρn ,Φ)L2
0,−1(Ωis). (3.17)

Letting n→∞ in (3.17) and using (3.14) we obtain

(curl Ẽ, curl Φ)L2
0,−1(Ωis) − κ2(Ẽ,Φ)L2

0,−1(Ωis) = 0. (3.18)

Now (3.1) gives Ẽ = 0, in Ωis, and therefore Ẽ = 0, in R3, which is a contradiction
to (3.15) and therefore (3.3) holds. �

Now with the help of Theorem 3.2 we can prove Theorem 3.1.

Proof of Theorem 3.1. Let ρ0 > 0 be given by Theorem 3.2. Let us assume Eρ
satisfies (1.14)-(1.15). Then Eρ satisfies (3.5) and taking Φ = Eρ we obtain

‖ curl Eρ‖2L2(R3) − κ
2‖Eρ‖2L2

0,−1(R3) − iρ
2‖Eρ‖2L2(Ωcd) = µ(F,Eρ)L2

0,−1(R3). (3.19)
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Taking real and imaginary parts as in the proof of Theorem 3.2 we obtain the a
priori estimate (3.2) from (1.16) and

ρ‖Eρ‖L2(Ωcd) ≤ C1‖F‖W(div,R3), (3.20)

‖ curl Eρ‖L2(R3) ≤ C2‖F‖W(div,R3). (3.21)

Next, note that the a priori estimate (3.2) implies the injectivity of the solution
operator to the variational problem (1.14). Therefore to show existence of the
solution it suffices to demonstrate that this operator is surjective. We introduce
the sesquilinear form cρ defined by

cρ(Eρ,E′ρ) =
∫

R3

( 1
µ

curl Eρ · curl E′ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′ρ)
)
dx. (3.22)

for all Eρ,E′ρ ∈ XT (R3, ρ). The bilinear form cρ is coercive on XT (R3, ρ). By
the Lax-Milgram Theorem there exist a bounded linear operator M such that
cρ(Eρ,E′ρ) = 〈MEρ,E′ρ〉. Since the embedding Iρ(Eρ) = ε(ρ)Eρ for Eρ ∈ XT (R3, ρ)
from XT (R3, ρ) into XT (R3, ρ)′ is compact. Hence M−κ2Iρ is a Fredholm operator.
In particular, it is surjective if and only if his adjoint M∗ − κ2I∗ρ is injective where
I∗ρ = ε(ρ)Iρ. Let c∗ρ be the sesquilinear form associated with the operator cρ; i.e.,

c∗ρ(Eρ,E
′
ρ) =

∫
R3

( 1
µ

curl Eρ · curl E′ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′ρ)
)
dx, (3.23)

for all Eρ,E′ρ ∈ XT (R3, ρ).
As in Theorem 3.1, an a priori estimate for M∗ − κ2I∗ρ is proven, yielding its

injectivity. Hence M−κ2Iρ is a subjectivity of the operator. Proving the Theorem.
�
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Matemáticas, (2012), submitted.

[16] J. E. Ospino; Finite elements/boundary elements for electromagnetic interface problems,
especially the skin effect, PhD thesis, Institut of Applied Mathematics, Hannover University,

Germany, (2011).
[17] V. Peron; Modélisation mathématique de phénomènes électromagnétiques dans des matériaux
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