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MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR
EQUATIONS INVOLVING CRITICAL ORLICZ-SOBOLEV

NONLINEAR TERMS

JEFFERSON A. SANTOS

Abstract. In this work, we study the existence and multiplicity of solutions

for a class of problems involving the φ-Laplacian operator in a bounded do-

main, where the nonlinearity has a critical growth. Our main tool is the
variational method combined with the genus theory for even functionals.

1. Introduction

In this article, we consider the existence and multiplicity of solutions for the
quasilinear problem

−div
(
φ(|∇u|)∇u

)
= λφ∗(|u|)u+ f(x, u), in Ω

u = 0, on ∂Ω
(1.1)

where Ω ⊂ RN is a bounded domain in RN with smooth boundary, λ is a positive
parameter and φ : (0,+∞)→ R is a continuous function satisfying

(φ(t)t)′ > 0 ∀t > 0. (1.2)

There exist l,m ∈ (1, N) such that

l ≤ φ(|t|)t2

Φ(t)
≤ m ∀t 6= 0, (1.3)

where

Φ(t) =
∫ |t|

0

φ(s)s ds, l ≤ m < l∗, l∗ =
lN

N − l
, m∗ =

mN

N −m
.

Moreover, φ∗(t)t is such that Sobolev conjugate function Φ∗ of Φ is its primitive;
that is, Φ∗(t) =

∫ |t|
0
φ∗(s)sds.

Related to function f : Ω× R→ R, we assume the following:
(F1) f ∈ C(Ω× R,R) is odd with respect t and

f(x, t) = o
(
φ(|t|)|t|

)
, as |t| → 0 uniformly in x;

f(x, t) = o
(
φ∗(|t|)|t|

)
, as |t| → +∞ uniformly in x;
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(F2) There is θ ∈ (m, l∗) such that F (x, t) ≤ 1
θf(x, t)t, for all t > 0 and a.e. in

Ω, where F (x, t) =
∫ t

0
f(x, s)ds.

Problem (1.1) associated with nonhomogenous nonlinear Φ arises in various fields
of physics [16]:

(i) in nonlinear elasticity, Φ(t) = (1 + |t|2)γ − 1 for γ ∈ (1, N
N−2 ).

(ii) in plasticity, Φ(t) = |t|pln(1 + |t|) for 1 < p0 < p < N − 1 with p0 =
−1+

√
1+4N

2 .
(iii) in generalized Newtonian fluids, Φ(t) =

∫ t
0
s1−α(sinh−1 s)βds, 0 ≤ α ≤ 1,

β > 0.
Our main result reads as follows.

Theorem 1.1. Assume that (1.2), (1.3), (F1) and (F2) are satisfied. Then, there
exist a sequence {λk} ⊂ (0,+∞) with λk+1 < λk, such that, for λ ∈ (λk+1, λk),
problem (1.1) has at least k pairs of nontrivial solutions.

The main difficulty to prove Theorem 1.1 is related to the fact that the nonlin-
earity f has a critical growth. In this case, it is not clear that functional energy
associated with (1.1) satisfies the well known (PS) condition, once that the em-
bedding W 1,Φ(Ω) ↪→ LΦ∗(Ω) is not compact. To overcome this difficulty, we use
a version of the concentration compactness lemma due to Lions for Orlicz-Sobolev
space found in Fukagai, Ito and Narukawa [14]. We would like to mention that
Theorem 1.1 improves the main result found in [25].

We cite the papers of Alves and Barreiro [3], Alves, Gonçalves and Santos
[4], Bonano, Bisci and Radulescu [5], Cerny [7], Clément, Garcia-Huidobro and
Manásevich [9], Donaldson [10], Fuchs and Li [12], Fuchs and Osmolovski [13], Fuk-
agai, Ito and Narukawa [14, 15], Gossez [17], Mihailescu and Raduslescu [19, 20],
Mihailescu and Repovs [21], Pohozaev [22] and references therein, where quasilinear
problems like (1.1) have been considered in bounded and unbounded domains of
RN . In some those papers, the authors have mentioned that this class of problem
arises in applications, such as, nonlinear elasticity, plasticity and non-Newtonian
fluids.

This paper is organized as follows: In Section 2, we collect some preliminaries on
Orlicz-Sobolev spaces that will be used throughout the paper, which can be found
in [1], [2], [11] and [23]. In Section 3, we recall an abstract theorem involving genus
theory that will use in the proof of Theorem 1.1 and prove some technical lemmas,
and then we prove Theorem 1.1.

2. Preliminaries on Orlicz-Sobolev spaces

First of all, we recall that a continuous function A : R→ [0,+∞) is a N -function
if:

(A1) A is convex.
(A2) A(t) = 0 if and only if t = 0.
(A3) A(t)

t → 0 as t→ 0, and A(t)/t→∞ as t→ +∞.
(A4) A is an even function.

In what follows, we say that a N -function A satisfies the ∆2-condition if, there
exists t0 ≥ 0 and k > 0 such that

A(2t) ≤ kA(t) ∀t ≥ t0.
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This condition can be rewritten of the following way: For each s > 0, there exists
Ms > 0 and t0 ≥ 0 such that

A(st) ≤MsA(t), ∀t ≥ t0. (2.1)

Fixed an open set Ω ⊂ RN and a N-function A satisfying ∆2-condition, the space
LA(Ω) is the vectorial space of the measurable functions u : Ω→ R such that∫

Ω

A(u) <∞.

The space LA(Ω) endowed with Luxemburg norm,

|u|A = inf
{
α > 0 :

∫
Ω

A
(u
α

)
≤ 1
}
,

is a Banach space. The complement function of A, denoted by Ã(s), is given by
the Legendre transformation,

Ã(s) = max
t≥0
{st−A(t)} for s ≥ 0.

The functions A and Ã are complementary each other. Moreover, we have the
Young’s inequality

st ≤ A(t) + Ã(s), ∀t, s ≥ 0. (2.2)

Using this inequality, it is possible to prove the Hölder type inequality∣∣∣∫
Ω

uv
∣∣∣≤ 2|u|A|v| eA, ∀u ∈ LA(Ω) and v ∈ L eA(Ω). (2.3)

Another important function related to function A is the Sobolev’s conjugate func-
tion A∗ of A, defined by

A−1
∗ (t) =

∫ t

0

A−1(s)
s(N+1)/N

ds, for t > 0.

When A(t) = |t|p for 1 < p < N , we have A∗(t) = p∗p
∗
|t|p∗ , where p∗ = pN

N−p .

Hereafter, we denote by W 1,A
0 (Ω) the Orlicz-Sobolev space obtained by the com-

pletion of C∞0 (Ω) with respect to norm

‖u‖ = |∇u|A + |u|A.

An important property is that: If A and Ã satisfy the ∆2-condition, then the
spaces LA(Ω) and W 1,A(Ω) are reflexive and separable. Moreover, the ∆2-condition
also implies that

un → u in LA(Ω)⇐⇒
∫

Ω

A(|un − u|)→ 0 (2.4)

and

un → u in W 1,A(Ω)⇐⇒
∫

Ω

A(|un − u|)→ 0 and
∫

Ω

A(|∇un −∇u|)→ 0. (2.5)

Another important inequality was proved by Donaldson and Trudinger [10],
which establishes that for all open Ω ⊂ RN and there is a constant SN = S(N) > 0
such that

|u|A∗ ≤ SN |∇u|A, u ∈W 1,A
0 (Ω). (2.6)
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Moreover, exist C0 > 0 such that∫
Ω

A(u) ≤ C0

∫
Ω

A(|∇u|), u ∈W 1,A
0 (Ω). (2.7)

This inequality shows the following embedding is continuous

W 1,A
0 (Ω) ↪→ LA∗(Ω).

If Ω is a bounded domain and the two limits hold

lim sup
t→0

B(t)
A(t)

< +∞, lim sup
|t|→+∞

B(t)
A∗(t)

= 0, (2.8)

then the embedding
W 1,A

0 (Ω) ↪→ LB(Ω) (2.9)
is compact.

The next four lemmas involving the functions Φ, Φ̃ and Φ∗ and theirs proofs can
be found in [14]. Hereafter, Φ is the N -function given in the introduction and Φ̃,Φ∗
are the complement and conjugate functions of Φ respectively.

Lemma 2.1. Assume (1.2) and (1.3). Then

Φ(t) =
∫ |t|

0

sφ(s)ds,

is a N -function with Φ, Φ̃ ∈ ∆2. Hence, LΦ(Ω),W 1,Φ(Ω) and W 1,Φ
0 (Ω) are reflexive

and separable spaces.

Lemma 2.2. The functions Φ, Φ∗, Φ̃ and Φ̃∗ satisfy the inequality

Φ̃(φ(|t|)t) ≤ Φ(2t), Φ̃∗(φ∗(|t|)t) ≤ Φ∗(2t), ∀t ≥ 0. (2.10)

Lemma 2.3. Assume that (1.2) and (1.3) hold and let ξ0(t) = min{tl, tm}, ξ1(t) =
max{tl, tm}, for all t ≥ 0. Then

ξ0(ρ)Φ(t) ≤ Φ(ρt) ≤ ξ1(ρ)Φ(t) for ρ, t ≥ 0,

ξ0(|u|Φ) ≤
∫

Ω

Φ(u) ≤ ξ1(|u|Φ) for u ∈ LΦ(Ω).

Lemma 2.4. The function Φ∗ satisfies the inequality

l∗ ≤ Φ′∗(t)t
Φ∗(t)

≤ m∗ for t > 0.

As an immediate consequence of the Lemma 2.4, we have the following result

Lemma 2.5. Assume that (1.2) and (1.3) hold and let ξ2(t) = min{tl∗ , tm∗},
ξ3(t) = max{tl∗ , tm∗} for all t ≥ 0. Then

ξ2(ρ)Φ∗(t) ≤ Φ∗(ρt) ≤ ξ3(ρ)Φ∗(t) for ρ, t ≥ 0,

ξ2(|u|Φ∗) ≤
∫

Ω

Φ∗(u)dx ≤ ξ3(|u|Φ∗) for u ∈ LA∗(Ω).

Lemma 2.6. Let Φ̃ be the complement of Φ and put

ξ4(s) = min{s
l
l−1 , s

m
m−1 }, ξ5(s) = max{s

l
l−1 , s

m
m−1 }, s ≥ 0.

Then the following inequalities hold

ξ4(r)Φ̃(s) ≤ Φ̃(rs) ≤ ξ5(r)Φ̃(s), r, s ≥ 0;
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ξ4(|u|eΦ) ≤
∫

Ω

Φ̃(u)dx ≤ ξ5(|u|eΦ), u ∈ LeΦ(Ω).

3. An abstract theorem and technical lemmas

In this section we recall an important abstract theorem involving genus theory,
which will use in the proof of Theorem 1.1. After, we prove some technical lemmas
that will use to show that the energy functional associated with problem (1.1)
satisfies the hypotheses of the abstract theorem.

3.1. An abstract theorem. Let E be a real Banach space and Σ the family of
sets Y ⊂ E\{0} such that Y is closed in E and symmetric with respect to 0; that
is,

Σ = {Y ⊂ E\{0};Y is closed in E and Y = −Y }.
Hereafter, let us denote by γ(Y ) the genus of Y ∈ Σ (see [24, pp. 45]). Moreover,
we set

Kc = {u ∈ E; I(u) = c and I ′(u) = 0},
Ac = {u ∈ E; I(u) ≤ c}.

Next, we recall a version of the Mountain Pass Theorem for even functionals,
whose proof can be found in [24].

Theorem 3.1. Let E be an infinite dimensional Banach space with
E = V ⊕X, where V is finite dimensional and let I ∈ C1(E,R) be a even function
with I(0) = 0, and satisfying:

(I1) there are constants β, ρ > 0 such that I(u) ≥ β > 0, for each u ∈ ∂Bρ ∩X;
(I2) there is Υ > 0 such that I satisfies the (PS)c condition, for 0 < c < Υ;
(I3) for each finite dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such

that I(u) ≤ 0 for all u ∈ Ẽ\BR(0).
Suppose V is k dimensional and V = span{e1, . . . , ek}. For m ≥ k, inductively
choose em+1 6∈ Em := span{e1, . . . , em}. Let Rm = R(Em) and Dm = BRm ∩ Em.
Define

Gm :=
{
h ∈ C(Dm, E);h is odd and h(u) = u,∀u ∈ ∂BRm ∩ Em}, (3.1)

Γj :=
{
h(Dm\Y );h ∈ Gm,m ≥ j, Y ∈ Σ, and γ(Y ) ≤ m− j

}
. (3.2)

For each j ∈ N, let
cj = inf

K∈Γj
max
u∈K

I(u). (3.3)

Then, 0 < β ≤ cj ≤ cj+1 for j > k, and if j > k, cj < Υ and cj is critical value of
I. Moreover, if cj = cj+1 = · · · = cj+l = c < Υ for j > k, then γ(Kc) ≥ l + 1.

3.2. Technical lemmas. Associated with problem (1.1), we have the energy func-
tional Jλ : W 1,Φ

0 (Ω)→ R defined by

Jλ(u) =
∫

Ω

Φ(|∇u|)− λ
∫

Ω

Φ∗(u)−
∫

Ω

F (x, u).

By conditions (F1) and (F2), Jλ ∈ C1
(
W 1,Φ

0 (Ω),R
)

with

J ′λ(u) · v =
∫

Ω

φ(|∇u|)∇u∇v − λ
∫

Ω

φ∗(|u|)uv −
∫

Ω

f(x, u)v,
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for any u, v ∈ W 1,Φ
0 (Ω). Thus, critical points of Jλ are weak solutions of prob-

lem (1.1).

Lemma 3.2. Under the conditions (F1) and (F2), the functional Jλ satisfies (I1).

Proof. On the one hand, from (F1) and (F2), for a given ε > 0, there exists Cε > 0
such that

|F (x, t)| ≤ εΦ(t) + CεΦ∗(t), ∀(x, t) ∈ Ω̄× R. (3.4)

Combining (2.7) with (3.4),

Jλ(u) ≥ (1− εC0)
∫

Ω

Φ(|∇u|)− (1 + Cε)
∫

Ω

Φ∗(u).

For ε is small enough and ‖u‖ = ρ ' 0, from (2.6) and Lemma 2.4, it follows that

Jλ(u) ≥ C1|∇u|mΦ − C2S
l∗

N |∇u|l
∗

Φ

for some positive constants C1 and C2. For m < l∗, if ρ is small enough, there is
β > 0 such that

Jλ(u) ≥ β > 0 ∀u ∈ ∂Bρ(0),
which completes the proof. �

Lemma 3.3. Under conditions (F1) and (F2), the functional Jλ satisfies (I3).

Proof. Suppose (I3) does not hold. Then, there is a finite dimensional subspace
Ẽ ⊂W 1,Φ

0 (Ω) and a sequence (un) ⊂ Ẽ\Bn(0) satisfying

Jλ(un) > 0, ∀n ∈ N. (3.5)

A direct computation shows that given ε > 0, there is a constant M > 0 such that

−M − εΦ∗(t) ≤ F (x, t) ≤M + εΦ∗(t), ∀(x, t) ∈ Ω× R. (3.6)

Consequently,

Jλ(un) ≤
∫

Ω

Φ(|∇un|)dx− λ
∫

Ω

Φ∗(un) + ε

∫
Ω

Φ∗(un) +M |Ω|.

Fixing ε = λ/2, and using Lemma 2.5, we obtain

Jλ(un) ≤
∫

Ω

Φ(|∇un|)−
λ

2
ξ3(|un|Φ∗) +M |Ω|. (3.7)

Using that dim Ẽ < ∞, we know that any two norms are equivalent in Ẽ. Then,
using that ‖un‖ → ∞, we can assume that |un|Φ∗ > 1. Thereby, from Lemmas 2.3
and 2.5,

Jλ(un) ≤ |∇un|mΦ −
λ

2
|un|l

∗

Φ∗ +M |Ω|.

Using again the equivalence of the norms in Ẽ, there is C > 0 such that

Jλ(un) ≤ ‖un‖m −
λ

2
C‖un‖l

∗
+M |Ω|.

Recalling that m < l∗, the above inequality implies that there is n0 ∈ N such that

Jλ(un) < 0, ∀n ≥ n0,

which contradicts (3.5). �

Lemma 3.4. Under conditions (F1)–(F2), any (PS) sequence for Jλ is bounded in
W 1,Φ

0 (Ω).
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Proof. Let {un} be a (PS)d sequence of Jλ. Then,

Jλ(un)→ d, J ′λ(un)→ 0 as n→ +∞.
We claim that {un} is bounded. Indeed, note that

Jλ(un)− 1
θ
J ′λ(un)un =

∫
Ω

Φ(|∇un|)−
1
θ

∫
Ω

φ(|∇un|)|∇un|2

− λ
∫

Ω

Φ∗(un) +
λ

θ

∫
Ω

φ∗(|un|)u2
n

−
∫

Ω

F (x, un) +
1
θ

∫
Ω

f(x, un)un.

Consequently,

λ

∫
Ω

(1
θ
φ∗(|un|)u2

n − Φ∗(un)
)

= Jλ(un)− 1
θ
J ′λ(un)un −

∫
Ω

Φ(|∇un|)

+
1
θ

∫
Ω

φ(|∇un|)|∇un|2

+
∫

Ω

(
F (x, un)− 1

θ
f(x, un)un

)
.

Then, by (1.3), (F2) and Lemma 2.4, for n sufficiently large,

λ(
l∗

θ
− 1)

∫
Ω

Φ∗(un) ≤ C + 1 + ‖un‖+ (
m

θ
− 1)

∫
Ω

Φ(|∇un|),

which implies that

[λ(
l∗

θ
− 1)]

∫
Ω

Φ∗(un) ≤ C + ‖un‖,

where C is a positive constant, and so∫
Ω

Φ∗(un)dx ≤ C(1 + ‖un‖). (3.8)

By (3.6) and (3.8),∫
Ω

Φ(|∇un|) ≤ Jλ(un) + λ

∫
Ω

Φ∗(un) +
∫

Ω

F (x, un)dx

≤ C + on(1) + (λ+ ε)
∫

Ω

Φ∗(un)

≤ C(1 + ‖un‖) + on(1).

Therefore, for n sufficiently large,∫
Ω

Φ(|∇un|) ≤ C (1 + ‖un‖) .

If ‖un‖ > 1, from Lemma 2.5, it follows that

‖un‖l ≤ C(1 + ‖un‖).

Using that l > 1, the above inequality gives that {un} is bounded in W 1,Φ
0 (Ω). �

As a consequence of the above result, if {un} is a (PS) sequence for Jλ, we can
extract a subsequence of {un}, still denoted by {un} and u ∈W 1,Φ

0 (Ω), such that
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• un ⇀ u in W 1,Φ
0 (Ω);

• un ⇀ u in LΦ∗(Ω);
• un → u in LΦ(Ω);
• un(x)→ u(x) a.e. in Ω;

From the concentration compactness lemma of Lions in Orlicz-Sobolev space
found in [14], there exist two nonnegative measures µ, ν ∈M(RN ), a countable set
J , points {xj}j∈J in Ω and sequences {µj}j∈J , {νj}j∈J ⊂ [0,+∞), such that

Φ(|∇un|)→ µ ≥ Φ(|∇u|) +
∑
j∈J

µjδxj in M(RN ) (3.9)

Φ∗(un)→ ν = Φ∗(u) +
∑
j∈J

νjδxj in M(RN ) (3.10)

νj ≤ max{Sl
∗

Nµ
l∗
l
j , Sm

∗

N µ
m∗
l
j , Sl

∗

Nµ
l∗
m
j , Sm

∗

N µ
m∗
m
j }, (3.11)

where SN satisfies (2.6).
Next, we will show an important estimate for {νi}, from below. Firs, we prove

a technical lemma.

Lemma 3.5. Under the conditions of Lemma 3.4. If {un} is a (PS) sequence for
Jλ and {νj} as above, then for each j ∈ J ,

νj ≥
( l

λm∗
) β
β−1S

− α
β−1

N or νj = 0,

for some α ∈ {l∗,m∗} and β ∈ { l
∗

l ,
m∗

l ,
l∗

m ,
m∗

m }.

Proof. Let ψ ∈ C∞0 (RN ) such that

ψ(x) = 1 in B1/2(0), suppψ ⊂ B1(0), 0 ≤ ψ(x) ≤ 1 ∀x ∈ RN .

For each j ∈ Γ and ε > 0, let us define

ψε(x) = ψ
(x− xj

ε

)
, ∀x ∈ RN .

Then {ψεun} is bounded in W 1,Φ
0 (Ω). Since J ′λ(un)→ 0, we have

J ′λ(un)(ψεun) = on(1),

or equivalently,∫
Ω

φ(|∇un|)∇un∇ (unψε) = on(1) + λ

∫
Ω

φ∗(|un|)u2
nψε +

∫
Ω

f(x, un)unψε

≤ on(1) + λm∗
∫

Ω

Φ∗(un)ψε +
∫

Ω

f(x, un)unψε.
(3.12)

Using that

lim
t→+∞

f(x, t)tψε(x)
Φ∗(t)

= 0, uniformly in x ∈ Ω

and that limn→+∞ f(x, un)unψε = 0 a.e. on Ω, we have by compactness Lemma of
Strauss [8] (note that this result is still true when we replace RN by Ω)

lim
n→∞

∫
Ω

f(x, un)unψε =
∫

Ω

f(x, u)uψε. (3.13)
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On the other hand, by (1.3)∫
Ω

φ(|∇un|)∇un∇(unψε) =
∫

Ω

φ(|∇un|)|∇un|2ψε +
∫

Ω

φ(|∇un|)(∇un∇ψε)un

≥ l
∫

Ω

Φ(|∇u|)ψε +
∫

Ω

φ(|∇un|)(∇un∇ψε)un.

(3.14)
By Lemmas 2.2 and 2.6, the sequence {|φ(|∇un|)∇un|eΦ} is bounded. Thus, there
is a subsequence {un} such that

φ(|∇un|)∇un ⇀ w̃1 weakly in LeΦ(Ω,RN ),

for some w̃1 ∈ LeΦ(Ω,RN ). Since un → u in LΦ(Ω),∫
Ω

φ(|∇un|)(∇un∇ψε)un →
∫

Ω

(w̃1∇ψε)u.

Thus, combining (3.12), (3.13), (3.14), and letting n→∞, we have

l

∫
Ω

ψεdµ+
∫

Ω

(w̃1∇ψε)u ≤ λm∗
∫

Ω

ψεdν +
∫

Ω

f(x, u)uψε. (3.15)

Now we show that the second term of the left-hand side converges 0 as ε→ 0.
Claim 1: {f(x, un)} is bounded in LeΦ∗(Ω). In fact, by (F1) and Lemma 2.2 we
have ∫

Ω

Φ̃∗(f(x, un)) ≤ c1
∫

Ω

Φ̃∗(φ∗(|un|)un) + c2

∫
[|un|>1]

Φ̃∗(φ(|un|)un)

+ c3

∫
[|un|≤1]

Φ̃∗(φ(|un|)un)

≤ c1
∫

Ω

Φ∗(un) + c2

∫
[|un|>1]

Φ̃∗(φ(|un|)un) + c3|Ω|.

Hence, by (1.3), Lemma 2.3 and m < l∗,∫
Ω

Φ̃∗(f(x, un)) ≤ C1

∫
Ω

Φ̃∗(φ∗(|un|)un) + C2

∫
[|un|>1]

Φ̃∗(|un|m−1) + C3|Ω|

≤ C1

∫
Ω

Φ∗(un) + C2

∫
[|un|>1]

Φ̃∗(|un|l
∗−1) + C3|Ω|.

Now, by Lemmas 2.4 and 2.2,∫
Ω

Φ̃∗(f(x, un)) ≤ K1

∫
Ω

Φ∗(un) +K2|Ω| < +∞.

From Claim 1, there is a subsequence {un} such that

φ∗(|un|)un + f(x, un) ⇀ w̃2 weakly in LeΦ∗(Ω),

for some w̃2 ∈ LeΦ∗(Ω). Since

J ′λ(un)v =
∫

Ω

φ(|∇un|)∇un∇v −
∫

Ω

(φ∗(|un|)un + f(x, un)) v → 0,

as n→∞ for any v ∈W 1,Φ
0 (Ω),∫

Ω

(w̃1∇v − w̃2v) = 0,
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for any v ∈W 1,Φ
0 (Ω). Substituting v = uψε we have∫

Ω

(w̃1∇(uψε)− w̃2uψε) = 0.

Namely, ∫
Ω

(w̃1∇ψε)u = −
∫

Ω

(w̃1∇u− w̃2u)ψε.

Noting w̃1∇u − w̃2u ∈ L1(Ω), we see that right-hand side tends to 0 as ε → 0.
Hence we have ∫

Ω

(w̃1∇ψε)u→ 0,

as ε→ 0.
Letting ε→ 0 in (3.15), we obtain lµj ≤ λm∗νj . Hence,

S−αN νj ≤ µβj ≤
( lλ
m∗
)β
νβj ,

for some α ∈ {l∗,m∗}, β ∈ { l
∗

l ,
m∗

l ,
l∗

m ,
m∗

m }, and so

νj ≥
( l

λm∗
) β
β−1S

− α
β−1

N or νj = 0.

�

Lemma 3.6. Assume that (F1)–(F2). Then, Jλ satisfies (PS)d for d ∈ (0, dλ)
where

dλ = min
{ l∗ − θ

θS
α
β−1
N λ

1
β−1

(
l

m∗
)

β
β−1 ;α ∈ {l∗,m∗}, β ∈ { l

∗

l
,
m∗

l
,
l∗

m
,
m∗

m
}
}
.

Proof. Using that Jλ(un) = d+ on(1) and J ′λ(un) = on(1), we have

d = lim
n→∞

I(un) = lim
n→∞

(
Jλ(un)− 1

θ
J ′λ(un)un

)
≥ lim
n→∞

[
(1− m

θ
)
∫

Ω

Φ(|∇un|) + λ(
l∗

θ
− 1)

∫
Ω

Φ∗(un)

−
∫

Ω

(
F (x, un)− 1

θ
f(x, un)un

)]
≥ λ(

l∗

θ
− 1)

∫
Ω

Φ∗(un).

Recalling that

lim
n→∞

∫
Ω

Φ∗(un)dx =
[ ∫

Ω

Φ∗(u) +
∑
j∈J

νj

]
≥ νj ,

we derive that

d ≥ λ
( l∗
θ
− 1
)( l

λm∗
) β
β−1S

− α
β−1

N

=
( l∗ − θ

θ

)( l

m∗
) β
β−1S

− α
β−1

N λ
1

1−β ,

for some α ∈ {l∗,m∗}, β ∈ { l
∗

l ,
m∗

l ,
l∗

m ,
m∗

m }, which is an absurd. From this, we
must have νj = 0 for any j ∈ J , leading to∫

Ω

Φ∗(un)→
∫

Ω

Φ∗(u). (3.16)
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Combining the last limit with Brézis and Lieb [6], we obtain∫
Ω

Φ∗(un − u)→ 0 as n→∞,

from where it follows by Lemma 2.5

un → u in LΦ∗(Ω).

Now, as J ′λ(un)un = on(1), the last limit gives∫
Ω

φ(|∇un|)|un|2 = λ

∫
Ω

φ∗(|un|)u2
n +

∫
Ω

f(x, un)un + on(1).

In what follows, let us denote by {Pn} the sequence

Pn(x) = 〈φ(|∇un(x)|)∇un(x)− φ(|∇u(x)|)∇u(x),∇un(x)−∇u(x)〉.

Since Φ is convex in R and Φ(|.|) is C1 class in RN , has Pn(x) ≥ 0. From definition
of {Pn},∫

Ω

Pn =
∫

Ω

φ(|∇un|)|∇un|2 −
∫

Ω

φ(|∇un|)∇un∇u−
∫

Ω

φ(|∇u|)∇u∇(un − u).

Recalling that un ⇀ u in W 1,Φ
0 (Ω), we have∫

Ω

φ(|∇u|)∇u∇(un − u)→ 0 as n→∞, (3.17)

which implies that∫
Ω

Pn =
∫

Ω

φ(|∇un|)|∇un|2 −
∫

Ω

φ(|∇un|)∇un∇u+ on(1).

On the other hand, from J ′λ(un)un = on(1) and J ′λ(un)u = on(1), we derive

0 ≤
∫

Ω

Pn = λ

∫
Ω

φ∗(|un|)|un|2 − λ
∫

Ω

φ∗(|un|)unu

+
∫

Ω

f(x, un)un −
∫

Ω

f(x, un)u+ on(1).

Combining (3.16) with the compactness Lemma of Strauss [8], we deduce that∫
Ω

Pn → 0 as n→∞.

Using that Φ is convex, from a result due to Dal Maso and Murat [18], it follows
that

∇un(x)→ ∇u(x) a.e. Ω.

Now, using Lebesgue’s Theorem,∫
Ω

Φ(|∇un −∇u|)dx→ 0,

which shows that
un → u in W 1,Φ

0 (Ω). (3.18)

�

The next lemma is similar to [25, Lemma 5] and its proof will be omitted.
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Lemma 3.7. Under conditions (F1)–(F2), there is sequence {Mm} ⊂ (0,+∞)
independent of λ with Mm ≤Mm+1, such that for any λ > 0,

cλm = inf
K∈Γm

max
u∈K

Jλ(u) < Mm. (3.19)

Proof of Theorem 1.1. For each k ∈ N, choose λk such that Mk < dλk . Thus, for
λ ∈ (λk+1, λk),

0 < cλ1 ≤ cλ2 ≤ · · · ≤ cλk < Mk ≤ dλ.
By Theorem 3.1, the levels cλ1 ≤ cλ2 ≤ · · · ≤ cλk are critical values of Jλ. Thus, if

cλ1 < cλ2 < · · · < cλk ,

the functional Jλ has at least k critical points. Now, if cλj = cλj+1 for some j =
1, 2, . . . , k, it follows from Theorem 3.1 that Kcλj

is an infinite set [24, Cap. 7].
Then, in this case, problem (1.1) has infinitely many solutions. �
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