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FRACTIONAL DIFFERENTIAL EQUATIONS WITH
FRACTIONAL NON-SEPARATED BOUNDARY CONDITIONS

XIAOYOU LIU, YILIANG LIU

Abstract. We study boundary-value problems of nonlinear fractional differ-

ential equations with fractional non-separated (integral) boundary conditions.

Existence and uniqueness results are obtained by using fixed point theorems
and examples are given to illustrate the results.

1. Introduction

The study of fractional differential equations ranges from the theoretical aspects
of existence and uniqueness of solutions to the analytic and numerical methods for
finding solutions. A strong motivation for studying fractional differential equations
comes from the fact that they have been proved to be valuable tools in the mod-
eling of many phenomena in engineering and sciences such as physics, mechanics,
chemistry, economics and biology, etc. [10, 11, 12]. For some recent developments
on the existence results of fractional differential equations, we can refer to, for in-
stance, [2, 3, 4, 9, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33] and
the references therein.

Ahmad and Nieto [5] investigated the existence and uniqueness of solutions for
an anti-periodic fractional boundary-value problem

cDqx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 1 < q ≤ 2,

x(0) = −x(T ), cDpx(0) = −cDpx(T ), 0 < p < 1,
(1.1)

where cDq denotes the Caputo fractional derivative of order q, f is a given contin-
uous function.

Fractional differential equations with non-separated integral boundary conditions
of the following form was considered in [6] by Ahmad, Nieto and Alsaedi.

cDqx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 1 < q ≤ 2,

x(0)− λ1x(T ) = µ1

∫ T

0

g(s, x(s))ds,

x′(0)− λ2x
′(T ) = µ2

∫ T

0

h(s, x(s))ds,

2000 Mathematics Subject Classification. 34A08, 34B15, 34B10.
Key words and phrases. Fractional differential equation; non-separated boundary condition;

integral boundary condition, existence of solutions.
c©2013 Texas State University - San Marcos.

Submitted September 28, 2012. Published January 27, 2013.

1



2 X. LIU, Y. LIU EJDE-2013/25

where cDq denotes the Caputo fractional derivative of order q, f, g, h : [0, T ]×R→ R
are given continuous functions and λ1, λ2, µ1, µ2 ∈ R with λ1 6= 1, λ2 6= 1. The
results obtained in [5, 6] are based on some standard fixed point theorems.

Boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two, three, multi-point
and non-local BVP as special cases. Integral boundary conditions appear in the
study of population dynamics [15] and cellular systems [1]. We can see the papers
[3, 6, 7, 8, 14], etc., for fractional differential equations with integral boundary
conditions.

Motivated by the above papers, in this article, we are concerned with the exis-
tence, uniqueness of solutions to fractional differential equations with a new class
of non-separated (integral) boundary value conditions.

We first study fractional differential equations with fractional non-separated
boundary values in the form

cDαx(t) = f(t, x(t)), t ∈ [0, T ], 1 < α ≤ 2, T > 0,

a1x(0) + b1x(T ) = c1, a2(cDγx(0)) + b2(cDγx(T )) = c2, 0 < γ < 1,
(1.2)

where cDq denotes the Caputo fractional derivative of order q, f is a continuous
function on [0, T ]×R and ai, bi, ci, i = 1, 2 are real constants such that a1 + b1 6= 0
and b2 6= 0.

Then the results obtained for problem (1.2) in this paper are extended to frac-
tional differential equations with fractional non-separated integral boundary condi-
tions of the form

cDαx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 1 < α ≤ 2,

a1x(0) + b1x(T ) = c1

∫ T

0

g(s, x(s))ds,

a2(cDγx(0)) + b2(cDγx(T )) = c2

∫ T

0

h(s, x(s))ds, 0 < γ < 1,

(1.3)

where g, h : [0, T ]× R→ R are given continuous functions.
We remark that when a1 = 1, b1 = 1, c1 = 0, a2 = 1, b2 = 1 and c2 = 0, the

problem (1.2) reduces to an anti-periodic fractional boundary value problem (1.1)
(cf.[27]).

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel, Sections 3, 4 are dedicated to the existence results of the
problem (1.2), respectively, the problem (1.3), in the final Section 5, two examples
are given to illustrate the results.

2. Preliminaries

Definition 2.1 ([21]). The Riemann-Liouville fractional integral of order q for a
function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

f(s)
(t− s)1−q ds, q > 0,

provided the integral exists.
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Definition 2.2 ([21]). For a continuous function f , the Caputo derivative of order
q is defined as

cDqf(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Lemma 2.3 ([32]). Let α > 0, then the differential equation
cDαh(t) = 0

has solutions h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1 and

Iα cDαh(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

here ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = [α] + 1.

Lemma 2.4. For any y ∈ C([0, T ],R), the unique solution of the fractional non-
separated boundary-value problem

cDαx(t) = y(t), t ∈ [0, T ], 1 < α ≤ 2,

a1x(0) + b1x(T ) = c1, a2(cDγx(0)) + b2(cDγx(T )) = c2, 0 < γ < 1,
(2.1)

is given by

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds− tΓ(2− γ)

T 1−γ

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds

+
tΓ(2− γ)c2
T 1−γb2

− b1
a1 + b1

{∫ T

0

(T − s)α−1

Γ(α)
y(s)ds

− T γΓ(2− γ)
∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds

}
− 1
a1 + b1

(b1c2T γΓ(2− γ)
b2

− c1
)
.

(2.2)

Proof. For 1 < α ≤ 2, by Lemma 2.3, we know that the general solution of the
equation cDαx(t) = y(t) can be written as

x(t) = Iαy(t)− k1 − k2t =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds− k1 − k2t, (2.3)

where k1, k2 ∈ R are arbitrary constants. Since cDγk = 0 (k is a constant), cDγt =
t1−γ

Γ(2−γ) , cDγIαy(t) = Iα−γy(t) (see [21]), from (2.3) we have

cDγx(t) = Iα−γy(t)− k2t
1−γ

Γ(2− γ)
=
∫ t

0

(t− s)α−γ−1

Γ(α− γ)
y(s)ds− k2t

1−γ

Γ(2− γ)
.

Using the boundary conditions, we obtain

a1(−k1) + b1

(∫ T

0

(T − s)α−1

Γ(α)
y(s)ds− k1 − k2T

)
= c1,

a2 × 0 + b2

(∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds− k2T

1−γ

Γ(2− γ)

)
= c2.
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Therefore, we have

k1 =
1

a1 + b1

(b1c2T γΓ(2− γ)
b2

− c1
)

+
b1

a1 + b1

(∫ T

0

(T − s)α−1

Γ(α)
y(s)ds− T γΓ(2− γ)

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds

)
,

k2 =
Γ(2− γ)
T 1−γ

(∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds− c2

b2

)
.

Substituting the values of k1, k2 in (2.3), we obtain (2.2). This completes the
proof. �

From the proof of the above Lemma, we notice that the solution (2.2) of problem
(2.1) does not depend on the parameter a2, that is to say, the parameter a2 is of
arbitrary nature for this problem.

Theorem 2.5 (Schauder fixed point theorem). Let U be a closed, convex and non-
empty subset of a Banach space X, let P : U → U be a continuous mapping such
that P (U) is a relatively compact subset of X. Then P has at least one fixed point
in U .

Theorem 2.6 (Nonlinear alternative of Leray-Schauder type). Let X be a Banach
space, C a closed, convex subset of X, U an open subset of C and 0 ∈ U . Suppose
that P : U → C is a continuous and compact map. Then either (a) P has a fixed
point in U , or (b) there exist a x ∈ ∂U (the boundary of U) and λ ∈ (0, 1) with
x = λP (x).

3. Existence results for problem (1.2)

Let C = C([0, T ],R) denote the Banach space of all continuous functions from
[0, T ] into R equipped with the norm ‖x‖ = supt∈[0,T ] |x(t)|.

In view of Lemma 2.4, we define an operator F : C → C as

(Fx)(t)

=
∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds− tΓ(2− γ)

T 1−γ

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds

+
tΓ(2− γ)c2
T 1−γb2

− b1
a1 + b1

{∫ T

0

(T − s)α−1

Γ(α)
f(s, x(s))ds

− T γΓ(2− γ)
∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds

}
− 1
a1 + b1

(b1c2T γΓ(2− γ)
b2

− c1
)
.

(3.1)

Observe that problem (1.2) has solutions if and only if the operator equation Fx
has fixed points. We put Fx = F1x+ F2x where

(F1x)(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds, (F2x)(t) = −kx2 t− kx1 .
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Here kx1 and kx2 are constants given by

kx1 =
b1c2T

γΓ(2− γ)
(a1 + b1)b2

− c1
a1 + b1

+
b1

a1 + b1

{∫ T

0

(T − s)α−1

Γ(α)
f(s, x(s))ds

− T γΓ(2− γ)
∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds

}
,

kx2 =
Γ(2− γ)
T 1−γ

(∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds− c2

b2

)
.

Now we are in a position to present our main results. The methods used to prove
the existence results are standard, however, their exposition in the framework of
problem (1.2) is new.

Theorem 3.1. Suppose that f : [0, T ]× R→ R is continuous and satisfies

|f(t, x)− f(t, y)| ≤ m(t)|x− y|

for t ∈ [0, T ], x, y ∈ R with m ∈ L∞([0, T ],R+). If

‖m‖L∞Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
< 1, (3.2)

then problem (1.2) has a unique solution.

Proof. For x, y ∈ C and for each t ∈ [0, T ], we have

|(F1x)(t)− (F1y)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)

∣∣f(s, x(s))− f(s, y(s))
∣∣ds

≤ ‖m‖L∞‖x− y‖
Tα

Γ(α+ 1)
,

|(F2x)(t)− (F2y)(t)| ≤ T |kx2 − k
y
2 |+ |kx1 − k

y
1 |,

T |kx2 − k
y
2 | ≤ T γΓ(2− γ)

∣∣∣ ∫ T

0

(T − s)α−γ−1

Γ(α− γ)
(
f(s, x(s))− f(s, y(s))

)
ds
∣∣∣

≤ ‖m‖L∞‖x− y‖
Γ(2− γ)Tα

Γ(α− γ + 1)
,

|kx1 − k
y
1 | ≤

|b1|
|a1 + b1|

∣∣∣ ∫ T

0

(T − s)α−1

Γ(α)
(
f(s, x(s))− f(s, y(s))

)
ds
∣∣∣

+
|b1|T γΓ(2− γ)
|a1 + b1|

∣∣∣ ∫ T

0

(T − s)α−γ−1

Γ(α− γ)
(
f(s, x(s))− f(s, y(s))

)
ds
∣∣∣

≤ ‖m‖L∞‖x− y‖
|b1|

|a1 + b1|

( Tα

Γ(α+ 1)
+

Γ(2− γ)Tα

Γ(α− γ + 1)

)
.

Therefore, we have

‖Fx−Fy‖ ≤ ‖m‖L∞Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
‖x− y‖.

This together with (3.2) implies that the map F is a contraction mapping. Hence
the contraction mapping principle yields that F has a unique fixed point which is
the unique solution of problem (1.2). The proof is complete. �
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Corollary 3.2. Suppose that f : [0, T ]× R→ R is continuous and satisfies

|f(t, x)− f(t, y)| ≤ L|x− y|,
for t ∈ [0, T ], x, y ∈ R and L > 0. Then problem (1.2) has a unique solution
provided

LTα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
< 1.

Theorem 3.3. Let f : [0, T ]× R→ R be a continuous function. Assume that

|f(t, x)| ≤ m(t) + d|x|ρ

for t ∈ [0, T ], x ∈ R with m ∈ L∞([0, T ],R+), d ≥ 0 and 0 ≤ ρ < 1. Then problem
(1.2) has at least one solution on [0, T ].

Proof. Define Br = {x : x ∈ C and ‖x‖ ≤ r}, where

r ≥ max{2A, (2Bd)
1

1−ρ },

A =
T γΓ(2− γ)|c2|

|b2|
+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣
+ ‖m‖L∞Tα

(
1 +

|b1|
|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
,

B = Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
. (3.3)

It is obvious that Br is a closed, bounded and convex subset of the Banach space
C.

Firstly, we prove that F : Br → Br. For any x ∈ Br, we have

|(F1x)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
(
m(s) + d|x(s)|ρ

)
ds ≤

(
‖m‖L∞ + drρ

) Tα

Γ(α+ 1)
,

|(F2x)(t)| ≤ T |kx2 |+ |kx1 |,

T |kx2 | ≤ T γΓ(2− γ)
∣∣∣ ∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds− c2

b2

∣∣∣
≤ T γΓ(2− γ)

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
|f(s, x(s))|ds+

T γΓ(2− γ)|c2|
|b2|

≤
(
‖m‖L∞ + drρ

) Γ(2− γ)Tα

Γ(α− γ + 1)
+
T γΓ(2− γ)|c2|

|b2|
,

|kx1 | ≤
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣+
|b1|

|a1 + b1|

∫ T

0

(T − s)α−1

Γ(α)
|f(s, x(s))|ds

+
|b1|T γΓ(2− γ)
|a1 + b1|

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
|f(s, x(s))|ds

≤
(
‖m‖L∞ + drρ

) |b1|
|a1 + b1|

( Tα

Γ(α+ 1)
+

Γ(2− γ)Tα

Γ(α− γ + 1)

)
+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣.
Hence we obtain

‖Fx‖ ≤ T γΓ(2− γ)|c2|
|b2|

+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣
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+ ‖m‖L∞Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
+ drρTα

(
1 +

|b1|
|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
≤ A+ drρB ≤ r

2
+
r

2
= r.

This implies that F : Br → Br.
Secondly, we show that F maps bounded sets into equicontinuous sets. Let B

be any bounded subset of C. Since f is continuous, we can assume without any loss
of generality that there is positive constant N such that

|f(t, x(t))| ≤ N

for any t ∈ [0, T ] and x ∈ B. Now let 0 ≤ t1 < t2 ≤ T . For each x ∈ B, we have
the following facts:

|(F1x)(t2)− (F1x)(t1)|

≤
∣∣∣ ∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, x(s))ds

∣∣∣+
∣∣∣ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
f(s, x(s))ds

∣∣∣
≤ N(t2 − t1)α

Γ(α+ 1)
+
N
(
tα2 − (t2 − t1)α − tα1

)
Γ(α+ 1)

≤ N(tα2 − tα1 )
Γ(α+ 1)

,

|(F2x)(t2)− (F2x)(t1)| ≤ |kx2 |(t2 − t1)

≤ Γ(2− γ)
T 1−γ

( NTα−γ

Γ(α− γ + 1)
+
|c2|
|b2|

)
(t2 − t1).

Therefore, as t2 → t1,
|(Fx)(t2)− (Fx)(t1)| → 0

independently of x ∈ B.
In view of the continuity of the function f , it is clear that the operator F is

continuous. Now consider F : Br → Br. From the above analysis, Arzela-Ascoli
theorem tells us that F(Br) is a relatively compact subset of C. Thus the conclusion
of Theorem 2.5 implies that the problem (1.2) has at least one solution. This
completes the proof. �

Corollary 3.4. Let f : [0, T ]× R→ R be a continuous function. Assume that

|f(t, x)| ≤ ν(t)

for t ∈ [0, T ], x ∈ R with ν ∈ C([0, T ],R+). Then problem (1.2) has at least one
solution.

In this situation, since ν ∈ L∞([0, T ],R+), we let d = 0 in Theorem 3.3, we
obtain the following result.

Corollary 3.5. Let f : [0, T ]×R→ R be a continuous function. Assume that there
exists a function m ∈ L∞([0, T ],R+) such that

|f(t, x)| ≤ m(t) + d|x|, d ≥ 0.

If dB < 1 (B is defined by (3.3)), then problem (1.2) has at least one solution.
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The proof of this Corollary is similar to that of Theorem 3.3.

Theorem 3.6. Let f : [0, T ] × R → R be a continuous function. Assume that:
(1) there exist a function m ∈ L∞([0, T ],R+) and a nondecreasing function ϕ :
[0,∞)→ [0,∞) such that

|f(t, x)| ≤ m(t)ϕ(|x|), for t ∈ [0, T ], x ∈ R.

(2) there exists a constant M > 0 such that

M

O + ϕ(M)Q
> 1, (3.4)

where

O =
T γΓ(2− γ)|c2|

|b2|
+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣,
Q = ‖m‖L∞Tα

(
1 +

|b1|
|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
.

Then problem (1.2) has at least one solution.

Proof. We, firstly, prove that F maps bounded sets into bounded sets in C. Let B
be a bounded subset of C and assume that ‖x‖ ≤ r for any x ∈ B. As in the proof
of the above theorems, we have the following estimates

|(F1x)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
|f(s, x(s))|ds ≤ ϕ(r)‖m‖L∞

Tα

Γ(α+ 1)
,

|(F2x)(t)| ≤ T |kx2 |+ |kx1 |,

T |kx2 | ≤ ϕ(r)‖m‖L∞
Γ(2− γ)Tα

Γ(α− γ + 1)
+
T γΓ(2− γ)|c2|

|b2|
,

|kx1 | ≤
|b1|

|a1 + b1|

(
ϕ(r)‖m‖L∞

Tα

Γ(α+ 1)
+ ϕ(r)‖m‖L∞

Γ(2− γ)Tα

Γ(α− γ + 1)

)
+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣.
Hence we have

‖Fx‖ ≤ T γΓ(2− γ)|c2|
|b2|

+
∣∣∣b1c2T γΓ(2− γ)

(a1 + b1)b2
− c1
a1 + b1

∣∣∣
+ ϕ(r)‖m‖L∞Tα

(
1 +

|b1|
|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
≤ O + ϕ(r)Q.

This implies that F(B) is bounded in C.
Secondly, we claim that F is equicontinuous on bounded subsets of C. The proof

of this claim is the same as the corresponding part in the proof of Theorem 3.3.
Finally, let x = λFx for some λ ∈ (0, 1). Then for each t ∈ [0, T ], we have

|x(t)| = |λ(Fx)(t)| ≤ O + ϕ(‖x‖)Q.

That is to say, we have
‖x‖

O + ϕ(‖x‖)Q
≤ 1.



EJDE-2013/25 FRACTIONAL DIFFERENTIAL EQUATIONS 9

Due to (3.4), we know that there exists M such that ‖x‖ 6= M . Let

U = {y ∈ C : ‖y‖ < M}.

The operator F : U → C is continuous and completely continuous. From the choice
of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (0, 1). As a consequence
of Theorem 2.6, we deduce that F has a fixed point x ∈ U which is a solution of
(1.2). This completes the proof. �

4. Existence results for problem (1.3)

Lemma 4.1. For any y, ξ, χ ∈ C([0, T ],R), the unique solution of the fractional
non-separated integral boundary-value problem

cDαx(t) = y(t), t ∈ [0, T ], 1 < α ≤ 2,

a1x(0) + b1x(T ) = c1

∫ T

0

ξ(s)ds,

a2(cDγx(0)) + b2(cDγx(T )) = c2

∫ T

0

χ(s)ds, 0 < γ < 1,

is given by

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds− tΓ(2− γ)

T 1−γ

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds

+
tΓ(2− γ)c2
T 1−γb2

∫ T

0

χ(s)ds− b1
a1 + b1

{∫ T

0

(T − s)α−1

Γ(α)
y(s)ds

− T γΓ(2− γ)
∫ T

0

(T − s)α−γ−1

Γ(α− γ)
y(s)ds

}
− b1T

γΓ(2− γ)c2
b2(a1 + b1)

∫ T

0

χ(s)ds+
c1

a1 + b1

∫ T

0

ξ(s)ds.

To obtain the existence results of problem (1.3), in view of Lemma 4.1, we define
an operator S : C → C as

(Sx)(t)

=
∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds− tΓ(2− γ)

T 1−γ

∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds

+
tΓ(2− γ)c2
T 1−γb2

∫ T

0

h(s, x(s))ds− b1
a1 + b1

{∫ T

0

(T − s)α−1

Γ(α)
f(s, x(s))ds

− T γΓ(2− γ)
∫ T

0

(T − s)α−γ−1

Γ(α− γ)
f(s, x(s))ds

}
− b1T

γΓ(2− γ)c2
b2(a1 + b1)

∫ T

0

h(s, x(s))ds+
c1

a1 + b1

∫ T

0

g(s, x(s))ds.

(4.1)

Observe that problem (1.3) has solutions if and only if the operator equation Sx = x
has solution.

From the definitions of the operators F and S, we know that the difference
between them is very apparent; i.e., c1, c2 in (3.1) were replaced by c1

∫ T
0
g(s, x(s))ds

and c2
∫ T

0
h(s, x(s))ds in (4.1). It is easy to prove the following theorems, since they
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are similar to the ones obtained in section 3. Therefore, we omit the proofs of the
following theorems.

Theorem 4.2. Suppose that f, g, h : [0, T ]× R→ R are continuous and satisfy

|f(t, x)− f(t, y)| ≤ m1(t)|x− y|,
|g(t, x)− g(t, y)| ≤ m2(t)|x− y|,
|h(t, x)− h(t, y)| ≤ m3(t)|x− y|,

for each t ∈ [0, T ] and all x, y ∈ R with m1 ∈ L∞([0, T ],R+) and m2,m3 ∈
L1([0, T ],R+). If

‖m1‖L∞Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
+
T γΓ(2− γ)|c2|‖m3‖L1

|b2|

(
1 +

|b1|
|a1 + b1|

)
+
|c1|‖m2‖L1

|a1 + b1|
< 1,

then problem (1.3) has a unique solution.

Theorem 4.3. Let f, g, h : [0, T ]× R→ R be continuous functions. Assume that

|f(t, x)| ≤ m1(t) + d1|x|ρ1 ,
|g(t, x)| ≤ m2(t) + d2|x|ρ2 ,
|h(t, x)| ≤ m3(t) + d3|x|ρ3 ,

for each t ∈ [0, T ] and x ∈ R with m1 ∈ L∞([0, T ],R+), m2,m3 ∈ L1([0, T ],R+)
and di ≥ 0, 0 ≤ ρi < 1, i = 1, 2, 3. Then problem (1.3) has at least one solution on
[0, T ].

Theorem 4.4. Let f, g, h : [0, T ]× R→ R be continuous functions. Assume that:
(1) there exist functions m1 ∈ L∞([0, T ],R+), m2,m3 ∈ L1([0, T ],R+) and three
nondecreasing functions ϕi : [0,∞) → [0,∞), i = 1, 2, 3, such that for t ∈ [0, T ],
x ∈ R

|f(t, x)| ≤ m1(t)ϕ1(|x|),
|g(t, x)| ≤ m2(t)ϕ2(|x|),
|h(t, x)| ≤ m3(t)ϕ3(|x|).

(2) there exists a constant M > 0 such that

M

ϕ1(M)Q+ ϕ3(M)‖m3‖L1O + |c1|
|a1+b1|ϕ2(M)‖m2‖L1

> 1,

where

O =
T γΓ(2− γ)|c2|

|b2|

(
1 +

|b1|
|a1 + b1|

)
,

Q = ‖m1‖L∞Tα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
.

Then problem (1.3) has at least one solution.
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5. Examples

In this section, we give two simple examples to illustrate the main results.
subsection*Example 1 Consider the fractional boundary-value problem

cD
3
2x(t) =

1
(t+ 4)2

(sinx(t) +
|x(t)|

1 + |x(t)|
), t ∈ [0, 1],

3x(0) +
1
2
x(1) = 2.5,

2(cD1/2x(0)) +
1
3

(cD1/2x(1)) = −1
3
,

(5.1)

Here α = 3
2 , γ = 1

2 , a1 = 3, b1 = 1
2 , c1 = 2.5, a2 = 2, b2 = 1

3 , c2 = − 1
3 , T = 1 and

f(t, x) = 1
(t+4)2 (sinx+ |x|

1+|x| ). Since

|f(t, x)− f(t, y)| ≤ 1
(t+ 4)2

|x− y| ≤ 1
16
|x− y|,

LTα
(

1 +
|b1|

|a1 + b1|

)( 1
Γ(α+ 1)

+
Γ(2− γ)

Γ(α− γ + 1)

)
≈ 1

16
× 8

7
× (0.7523 + 0.8862) = 0.1170 < 1.

Thus, by Corollary 3.2, the boundary value problem (5.1) has a unique solution on
[0, 1].

Example 2. Let α = 5
4 , γ = 1

3 and T = π. Consider the fractional integral
boundary-value problem

cD
5
4x(t) = 2t3 − 3 ln(3 + t) + (3t+ 1)2 |x(t)|1/2

2 + cos2 x(t)
, t ∈ [0, π],

1
2
x(0) + x(π) =

∫ π

0

x1/3(t)
7(1 + |x(t)|)

ds,

2(cD1/3x(0)) + 3(cD1/3x(π)) =
∫ π

0

(3t3 − 5 + e−t|x(t)|2/5)ds,

(5.2)

Since f(t, x) = 2t3 − 3 ln(3 + t) + (3t + 1)2 |x|1/2
2+cos2 x , g(t, x) = x1/3

7(1+|x|) , h(t, x) =
(3t3 − 5 + e−t|x|2/5), a1 = 1

2 , b1 = c1 = c2 = 1, a2 = 2 and b2 = 3, we have

|f(t, x)| ≤ |2t3 − 3 ln(3 + t)|+ (3π + 1)2|x|1/2,

|g(t, x)| ≤ 1
7
|x|1/3, |h(t, x)| ≤ |3t3 − 5|+ |x|2/5.

Now it is easy to verify that all conditions of Theorem 4.3 are satisfied. Therefore,
the fractional boundary value problem (5.2) has at least one solution on [0, π].
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