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EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS
FOR SECOND-ORDER HAMILTONIAN SYSTEMS

HUA GU, TIANQING AN

ABSTRACT. By using the variant of the fountain theorem, we study the exis-
tence of infinitely many periodic solutions for a class of superquadratic nonau-
tonomous second-order Hamiltonian systems.

1. INTRODUCTION

Consider the second-order Hamiltonian system
i(t) — U@)u(t) + V, W (t,u) =0, VteR,

w(0) = u(T), u(0)=uT), T >0, (1.1)

where U(+) is a continuous T-periodic symmetric positive definite matrix and W :
R x RY — R is T-periodic in its first variable. Moreover, we assume that W (¢, z) is
continuous in ¢ for each x € RY, continuously differentiable in z for each t € [0, 7]
and VW (t,x) denotes its gradient with respect to the x variable.

Inspired by the monographs [5l [6], the existence and multiplicity of periodic
solutions for Hamiltonian systems have been investigated in many papers (see [2]
3, [, [7, [8, 9, 10, 2] and the references therein) via the variational methods. In
2008, He and Wu [4] studied the existence of nontrivial T-periodic solutions for
system by a mountain pass theorem and a local link theorem. In 2010, Zhang
and Tang [I0] obtained some new results of T-periodic solutions for system
under weaker assumptions, which generalized the corresponding results in [4]. In
[9], Zhang and Liu considered the second-order Hamiltonian system

i(t) + Vo V(t,u) =0, VteR,

u(0) = u(T), (0) = i(T), T >0, (12)
where V € C}(R x R¥) is T-periodic in ¢ and has the form
V(t,u) = %(U(t)u, u) + W(t, u).
Here and in the sequel, (-,-) and | - | denote the standard inner product and norm

in R respectively. They obtained infinitely many periodic solutions of (1.2)) by
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using the variant of the fountain theorem under superquadratic assumptions (see
[0, Theorem 1.2]).

Now motivated by the above papers [9, [10], we will use the following conditions
to obtain the existence of infinitely many periodic solutions of system .

(S1) There exist constants d; > 0 and a > 1 such that
VW (t,w)] < di(1+[ul®), Vtel[0,T], ueRY;
(S2) W(t,u) >0 for all (t,u) € [0,T] x RV, and

Wit
lim inf () =00, Vte[0,T];

|u|—o00 |u|2

(S3) There exist constants u > 2, 0 < § < 2, L > 0 and a function a(t) €
LY(0,T; RT) such that

W () < (VW () + a(®)]ul®, Viu| > L, w e RY, t € [0,T).
Then our main result is the following theorem.

Theorem 1.1. Assume that (S1)-(S3) hold and that W (t,u) is even in u. Then
(1.1) possesses infinitely many solutions.

Note that by (S1), we can obtain that there exists a constant dy > 0 such that
(W (t,w)| < dy(jul + |u|*) +do,  V(t,u) €[0,T] x RY. (1.3)

As is known, the so-called global Ambrosetti-Rabinowitz condition (AR-condition
for short) was introduced by Ambrosetti and Rabinowitz in [I] and is wildly used
in the study of the superquadratic case of Hamiltonian systems: there is a constant
w such that

0 < uW(t,u) < (V W (t,u),u), V(t,u)€R xRN\ {0}. (1.4)
When we take a(t) = 0, the condition (S3) reduces to (1.4). So the condition (S3)
is weaker than AR-condition.
2. PRELIMINARIES

In this section, we will establish the variational setting for our problem and give
a variant fountain theorem. Let E = H1. be the usual Sobolev space with the inner
product

T T
(wo)e = [ (o), o)+ [ ), o)
0 0
We define a functional ® on E by

O(u) = ;(/OT u|2dt+/0T<U(t)u,u>dt) — (), (2.1)

where ¥(u) = fOT W (t,u(t))dt. Then ® and ¥ are continuously differentiable and

T T T
(@ (w),v) = / (i, 0t +/ (U (), v)dt — / (VW (£ u), v)dt.
0 0 0
Define a selfadjoint linear operator B : L2([0,T],RY) — L%([0,T],RY) by

(Bu,v) 2 :/0 <u7b>dt+/0 (U(t)u,v)dt
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with domain D(B) = E. Then B has a sequence of eigenvalues
Am SA i < S A <0<y S S-S S

such that A\, — 400 as &k — +00. Note that 0 may be not a eigenvalue. Let e; be
the eigenvector of B corresponding to A; (esp. eq is an eigenvector corresponding
to the eigenvalue 0.), then {e_,,,e_mi1,...,€-1,€0,€1,...} forms an orthogonal
basis in L?. Set
E° = ker B = span{eg},
E~ =span{e; : j =—m,—m+1,...,—1},
ET =spanf{e; : j =1,2,...,}.
Then E possess an orthogonal decomposition £ = E~ @ E° @ E+. For v € E, we
have
v=u +u+ut e E-aE g ET.
We can define on F a new inner product and the associated norm by
(u,v)o = (BuT, v 12 — (Bu™, v )2 + (u®, %) 2,

1/2
ul| = (u,u)y'>.

Therefore, ® can be written as

= %(IIU*II2 — [ I?) = ¥(w). (2.2)

Direct computations show that

D(u)

T

(V' (u),v) = / (VW (t,u),v)dt
0
(@ (u),v) = (u™, 0" )0 — (u™,v7)o — (¥'(u),v)

for all u,v € E with u = u~ +u® + u and v = v~ + v° + vT respectively. It is
known that ¥’/ : E — FE is compact.

Denote by | - |, the usual norm of LP = LP([0,T],RY) for all 1 < p < oo, then
by the Sobolev embedding theorem, there exists a 7, > 0 such that

lulp < 7pllull, VueEE. (2.4)

(2.3)

Now we state an abstract critical point theorem founded in [II]. Let E be a
Banach space with the norm || - || and E = @jenX; with dim X; < oo for any
j€N. Set Yy, = @§:1Xj and Zj, = ®52, X;. Consider the following C!-functional
®) : E — R defined by

Dy (u) := A(u) = AB(u), X €[L,2].
Theorem 2.1 ([II, Theorem 2.1]). Assume that the functional ® defined above

satisfies
(F1) @) maps bounded sets to bounded sets for A € [1,2], and ®y(—u) = @) (u)
for all (A u) € [1,2] x E;
(F2) B(u) >0 for all u € E; moreover, A(u) — oo or B(u) — 00 as ||ul| — oo;
(F3) There exist i, > pr, > 0 such that
ap(A) = inf Dy(u) > Bp(N):= max  Dy(u), VAe]L,2].

u€EZy,||ull=pr u€Yy,[|ull=rk
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Then
ar(A) < G(A) := inf max ®x(y(u)), Vel 2],

~YET, uEBy
where B, = {u € Yy : |Ju|| < ri} and Ty := {y € C(By, E) : vis odd, |op, = id}.

Moreover, for a.e. A € [1,2], there exists a sequence {uk (\)}°_, such that
sup [, ()| < 00, BA(E, () = 0, B (u,(N) — Ge(A) s m — oo,

To apply this theorem to prove our main result, we define the functionals A, B
and @, on our working space E by

T
A(w) = gt 2, Bl = 5|+ [ W, (25)

By (u) = A(u) — AB(u) = 1||u+|\2 | w2 + / W (t, u)dt) (2.6)

forallu=u"+u’+ut € E=E~ +E0+E+and)\€ 1,2]. Then ®, € C1(E,R)
for all A € [1,2] and

T
(@) (u),v) = (v ) = A({u™, 07 )o +/0 (VW (t,u),v)dt). (2.7)

Let X; =span{e;}, j = —m,—m+1,...,-1,0,1,2,.... Note that ®; = ®, where
® is the functional defined in (2.2)).

3. PROOF OF THEOREM [[.T]
We first establish the following lemmas and then give the proof of Theorem

Lemma 3.1. Assume that (S1)—(S2) hold. Then B(u) >0 for allw € E. Further-
more, A(u) — 0o or B(u) — oo as ||ul| — oo.

Proof. Since W (t,u) > 0, by (2.5)), it is obvious that B(u) > 0 for all u € E. By the
proof of [9, Lemma 2.6], for any finite-dimensional subspace F' C F, there exists a
constant € > 0 such that

m({t € [0,T]: ul > elull}) > e, Vue F\ {0}, (3.1)

where m(-) is the Lebesgue measure.
Now for the finite-dimensional subspace E~ @ E° C E, there exist a constant e
corresponding to the one in (3.1). Let

Ay ={t €[0,T): Jul > €|lull}, Vue E~®E°\{0}.
Then m(A,) > €. By (S2), there exist positive constants ds and Ry such that
W(t,u) > ds|ul?, Vt€0,T] and |u| > R;. (3.2)

Note that
() > Ry, VteA, (3.3)

for any v € E~ @ E° with |u > Ri/e. Combining (3.2) and (3.3, for any
u € B~ @ E° with ||u|| > Ry /e, we have

1 T
B = gl + [ Wit

2/ W(t,u)dtz/ ds|u|*dt
Ay Ay
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> dge?|[ul|® - m(Ay) > dse®||ul|®.

This implies B(u) — oo as ||u[|| — oo on E~ & E°. Combining this with E =
E- @ E°® ET and (2.5), we have

A(u) = oo or B(u) — oo as |lu]| — oo.
The proof is complete. O

Lemma 3.2. Let (S1)—(S3) be satisfied. Then there exist a positive integer ki and
two sequences T > pr — 00 as k — oo such that

ar(A) = inf Dy (u) >0, Vk>k, (3.4)

UE Zy, |lull=pk

and
Br(A):==  max P,(u) <0, VkeN, (3.5)
u€Yy,||ul|l=r
where Y3, = @?Ziij = span{e_p,, €_mi1,.-., €5} and

7y, = @j‘?ika = span{eg, €41, - }
forallk € {-m,—-m+1,...,1,2,...}.
Proof. Step 1. First we prove (3.4). By (1.3) and (2.6), for all u € ET we have

1 T
Ba(w) = 5l -2 [ Wit
0

) (3.6)
> 5Hu||2 —2d1 (July + [u|2T]) — 2d2T, VA€ [1,2].
where dy, dy are the constants in . Let
tar1(k) = sup  |u|ay1, VEEN. (3.7
u€Z, ||ull=1
Then
tat1(k) =0 ask — oo (3.8)
since E is compactly embedded into L>+!. Note that
Zy CET, VE>1. (3.9
Combining , , and , for k > 1, we have
Dx(u) = %IIUII2 = 2dy7iJull — 2d>T — 2dyq 0 (k) Ju**, (3.10)

for all (A\,u) € [1,2] x Zj, where 71 is the constant given in (2.4). By (3.8), there
exists a positive integer k1 > 1 such that

Pr = (16d1Lgﬂ(k))1/(1_a) > max{16d; 7 + 1,16dT}, Vk > ky (3.11)
since a > 1. Clearly,
pr — 00 as k — oo. (3.12)
Combining and , direct computation shows
ar(\) = inf  ®y(u) > pi/4>0, Vk> k.

UEZk,||ull=pk
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Step 2. We prove (3.5). Note that for any k € {—m,—m +1,...,1,2,...}, Yy is of
finite dimension, so we can choose M; > 0 sufficiently large such that

T
Jull < 3 [ P2 Ve v (3.13)
0
By (S2) and (|1.3)), for the former M, there exists a M > 0 such that
W(t,u) > MEu*> — Ma,  V(t,u) € [0,T] x RV, (3.14)
Consequently, by (3.13) and (3.14)), we have

Lovpz Ly e ’
@a(w) < gt P = Sl 2= [ Wit war
2 2 0
1 1 T
< It = 5l B = M [ P+ 2T

1 o L, o 2, 1 2 L oop2 3.15
< 51 = Sl = ME Gt + g ) + T G

1 1, _

< —sllut)? = STl = W) + MT
2 2
1

< f§||u||2 + M,T

for all u = u~ +u® + u* € Y. Now for any k € {-m,—-m +1,...,1,2,...}, if we

choose
. > max{py, \/W}
then implies
Br(A) ;=  max P,(u) <0, VkeN.
u€Yi,|[ull=rk
The proof is complete. O

Now we prove our main result.

Proof of Theorem[I.1]. In view of (1.3)), (2.4) and (2.6), ®, maps bounded sets to
bounded sets uniformly for A € [1,2]. By the evenness of W (¢, u) in u, it holds that

Dy (—u) = ®x(u) for all (A,u) € [1,2] x E. Therefore condition (F1) of Theorem
holds. Lemma shows that condition (F2) holds, whereas Lemmaimplies
that condition (F3) holds for all k¥ > k;, where k; is given in Lemma Thus,
by Theorem for each k& > k; and a.e. A € [1,2], there exists a sequence
{uk (M\)}_, C E such that

sup g (NI < 00, @4 (up,(A) — 0 and @x(uy, (A) = Ge() (3.16)

as m — 0o, where

Ge() = inf max &x(y(u)), VA €[L2]

with By ={u € Yy, : Ju|| < rg} and Ty := {y € C(By, E) : v is odd, v |sp,= id}.
Moreover, by the proof of Lemma [3.2] we have

(V) € [k, Cils VB >k, (3.17)
where (;, := max,ep, ®1(u) and ay, := p;/4 — 00 as k — oo by (3.12)).
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Since the sequence {uf ()\)}2_; obtained by (3.16]) is bounded, it is clear that
for each k > ki, we can choose \,, — 1 such that the sequence {uF, (\,)}>°_, has a
strong convergent subsequence.

In fact, without loss of generality, we assume that
ul (An)” — Ulg(An)_, uy ()‘n)o - ug(/\n)o, ufn(/\n)+ - ug()‘n)+ (3.18)

as m — oo and
uf (A\n) = uf(\,) asm — oo (3.19)
for some uf(A\,) = ub(A\n)” + uf(\)° +ub(\)t € E = E- @ E° @ EY since
dim(E~ @ EY) < co. Note that
(I)/)\n (ufn(/\n)) = ufn(A”)+ - )‘n(uﬁn(/\n)7 + ‘I/'(u’%(/\n))’ Vn € N.
That is,
up, (M)t = @4 (ul (M) + An(ul, (M) + W (ul (Nn)), YmeN.  (3.20)

In view of (3.16)), (3.18)), (3.19) and the compactness of ¥’ the right-hand side of
3.20)) converges strongly in E and hence uF, (A\,)* — u&(\,)T in E. Together with
3.18), {uk (\,)}°_; has a strong convergent subsequence in E.

Without loss of generality, we may assume that
lim u® (A\,) =u®, VneNandk> k.

This together with (3.16]) and (3.17) yields
D) (ub) =0, @y, (uf)€[ar ¢y, VneNandk> k. (3.21)

Now we claim that the sequence {u*}2%, in (3.21) is bounded in E and possesses
a strong convergent subsequence with the limit u* € E for all k > k;. For the sake
of notational simplicity, throughout the remaining proof of Theorem we denote

u, = uk. For u, € E, let u, = % fOT Up (t)dt, up, = Uy, + Uy By (2.4]), there exists

a constant 7., for any u € E such that
|uloe < Tool|ull- (3.22)

Assume by contradiction, first, we prove that {u,} is bounded in E. Otherwise,
going to a subsequence if necessary, we can assume that |lu,| — co as n — oo.
Put v, = “7;—';“7 then v, is bounded in E. Hence, there exists a subsequence, still
denoted by vy, such that

vy, — v in B, v, — vy in C([0,T],RY).
Then, we have
Ty — To. (3.23)
By , for all |u| < L, we have
W (t,u) < di(ful + |ul*T") + dy < di(L+ L) + d,

which together with (S3) yields

W (t,u) < (VoW (tu),u) + a(t)|ul® + pdy (L 4+ L) + pdy, (3.24)
for all u € RN and ¢ € [0, 7). It follows from (2.6)), that

H, () = (@, () ) = (5 = (2 = 12) = O = DG = Dlfuz |

- )\n/ (W (t, un) — (Vo W (t, un), upn))dt .
0



8 H. GU, T. AN EJDE-2013/251

In the following, we denote C; > 0(i = 0,1,2,...) for different positive constants.
Comparing (2.1) with (2.2]), we learn that

(5 = Dleial 32

T
= s, ) = (@4, ()0} = (5 =1) [ OO

(O = D5 = Dllug 2+ / (W (8, un) = (VuW (L, un), )t
0

This together with the positive definite assumption of matrix U, (2.4), (3.21)), (3.24)
and p > 2 implies

p : L -
(& = )il < €1+ (5 = 10w = Dl |2

T
+An / (a(t)un|? + pdy (L + LYY + pdy)dt (3.25)
0
< Ca+ C3(An = Dlug |I” + Callunl|”.
Note that 0 < 8 < 2, A, — 1 and [Ju;, ||? < ||ua|/? , we have

[tnlZ: _ Cs e}

lunl® = fJunl® [un 2

|2

+ Cs(An — 1) +Cy

5 — 0 asn— oo;
[[n|

ie., ||[Un|lz — 0 as n — oo. Together with (3.23), we have v, — Ty as n — oc.
Therefore, we obtain

Vg = Vg, Tlﬁol2 = ||50||2 =1.
Consequently, |u,| — oo as n — oo uniformly for a.e. ¢ € [0.7]. From (S2), we
obtain

fOT W (¢, uy,)dt - fOTliminfmnHoo W (t,uy,)dt

lim inf >
unl—oo  [unl|? [lunl?
T
:/ iming V) g,
0 [, |—00 \un|
T
t,uy,
:/ [lim inf M|vo|2]dt>0.
0 lunl—oo Uyl
Hence,
T
W (t, un)dt
lim inf W > 0. (3.26)
Uy | —00 Un

On the other hand, from (2.4), (2.6), (2.7), (3.21))and (3.24), we have

(% = D(lug 7 = Anlluz %) = p®a, (un) — (5, (un), un)

o /0 (W (E, 1) — (VoW (E, ), ) )t

T
<Ci+ A / (a(t)|un|® + pdy (L 4+ LY + pdy)dt
0

< Cg + Copllun® .
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Note that p > 2; then we obtain
2Cy n 2Cy
-2 u—-2

By the boundedness of @y (u,), and (3.27), we have
_ T
Oy, (un) _ Ut P = Aallug [I?) A fy Wt un)dt

(17 = Anlluz %) < o (3.27)

lual® l[wn [[un ]|
C C T
,U.—82 #fz)‘nHunH’B _ An fO W (t,uy,)dt
- )
[[un]? [[unl[? [[un|[?

which together with 0 < 8 < 2 implies

T
W (t, uy)dt
TS AL
|tn |00 [l

This contradicts to (3.26). Thus, {u,} is bounded in E.

The proof that {u,} has a strong convergent subsequence is the same as the
preceding proof of {uf (\,)}%_;.

Now for each k > k1, by , the limit u* is just a critical point of ® = &,
with ®(u*) € [an,(,]. Since @ — oo as k — oo in WC obtain infinitely

many nontrivial critical points of ®. Therefore, system (|1.1)) possesses infinitely
many nontrivial solutions. The proof of Theorem is complete. O
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