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EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS
FOR SECOND-ORDER HAMILTONIAN SYSTEMS

HUA GU, TIANQING AN

Abstract. By using the variant of the fountain theorem, we study the exis-

tence of infinitely many periodic solutions for a class of superquadratic nonau-
tonomous second-order Hamiltonian systems.

1. Introduction

Consider the second-order Hamiltonian system

ü(t)− U(t)u(t) +∇uW (t, u) = 0, ∀t ∈ R,
u(0) = u(T ), u̇(0) = u̇(T ), T > 0,

(1.1)

where U(·) is a continuous T -periodic symmetric positive definite matrix and W :
R×RN → R is T -periodic in its first variable. Moreover, we assume that W (t, x) is
continuous in t for each x ∈ RN , continuously differentiable in x for each t ∈ [0, T ]
and ∇W (t, x) denotes its gradient with respect to the x variable.

Inspired by the monographs [5, 6], the existence and multiplicity of periodic
solutions for Hamiltonian systems have been investigated in many papers (see [2,
3, 4, 7, 8, 9, 10, 12] and the references therein) via the variational methods. In
2008, He and Wu [4] studied the existence of nontrivial T -periodic solutions for
system (1.1) by a mountain pass theorem and a local link theorem. In 2010, Zhang
and Tang [10] obtained some new results of T -periodic solutions for system (1.1)
under weaker assumptions, which generalized the corresponding results in [4]. In
[9], Zhang and Liu considered the second-order Hamiltonian system

ü(t) +∇uV (t, u) = 0, ∀t ∈ R,
u(0) = u(T ), u̇(0) = u̇(T ), T > 0,

(1.2)

where V ∈ C1(R× RN ) is T -periodic in t and has the form

V (t, u) =
1
2
〈U(t)u, u〉+W (t, u).

Here and in the sequel, 〈·, ·〉 and | · | denote the standard inner product and norm
in RN respectively. They obtained infinitely many periodic solutions of (1.2) by
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using the variant of the fountain theorem under superquadratic assumptions (see
[9, Theorem 1.2]).

Now motivated by the above papers [9, 10], we will use the following conditions
to obtain the existence of infinitely many periodic solutions of system (1.1).

(S1) There exist constants d1 > 0 and α > 1 such that

|∇uW (t, u)| ≤ d1(1 + |u|α), ∀t ∈ [0, T ], u ∈ RN ;

(S2) W (t, u) ≥ 0 for all (t, u) ∈ [0, T ]× RN , and

lim inf
|u|→∞

W (t, u)
|u|2

=∞, ∀t ∈ [0, T ];

(S3) There exist constants µ > 2, 0 < β < 2, L > 0 and a function a(t) ∈
L1(0, T ;R+) such that

µW (t, u) ≤ 〈∇uW (t, u), u〉+ a(t)|u|β , ∀|u| ≥ L, u ∈ RN , t ∈ [0, T ].

Then our main result is the following theorem.

Theorem 1.1. Assume that (S1)–(S3) hold and that W (t, u) is even in u. Then
(1.1) possesses infinitely many solutions.

Note that by (S1), we can obtain that there exists a constant d2 > 0 such that

|W (t, u)| ≤ d1(|u|+ |u|α+1) + d2, ∀(t, u) ∈ [0, T ]× RN . (1.3)

As is known, the so-called global Ambrosetti-Rabinowitz condition (AR-condition
for short) was introduced by Ambrosetti and Rabinowitz in [1] and is wildly used
in the study of the superquadratic case of Hamiltonian systems: there is a constant
µ such that

0 < µW (t, u) ≤ 〈∇uW (t, u), u〉, ∀(t, u) ∈ R× RN \ {0}. (1.4)

When we take a(t) ≡ 0, the condition (S3) reduces to (1.4). So the condition (S3)
is weaker than AR-condition.

2. Preliminaries

In this section, we will establish the variational setting for our problem and give
a variant fountain theorem. Let E = H1

T be the usual Sobolev space with the inner
product

〈u, v〉E =
∫ T

0

〈u(t), v(t)〉dt+
∫ T

0

〈u̇(t), v̇(t)〉dt.

We define a functional Φ on E by

Φ(u) =
1
2

(∫ T

0

|u̇|2dt+
∫ T

0

〈U(t)u, u〉dt
)
−Ψ(u), (2.1)

where Ψ(u) =
∫ T

0
W (t, u(t))dt. Then Φ and Ψ are continuously differentiable and

〈Φ′(u), v〉 =
∫ T

0

〈u̇, v̇〉dt+
∫ T

0

〈U(t)u, v〉dt−
∫ T

0

〈∇uW (t, u), v〉dt.

Define a selfadjoint linear operator B : L2([0, T ],RN )→ L2([0, T ],RN ) by

〈Bu, v〉L2 =
∫ T

0

〈u̇, v̇〉dt+
∫ T

0

〈U(t)u, v〉dt
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with domain D(B) = E. Then B has a sequence of eigenvalues

λ−m ≤ λ−m+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . .
such that λk → +∞ as k → +∞. Note that 0 may be not a eigenvalue. Let ej be
the eigenvector of B corresponding to λj (esp. e0 is an eigenvector corresponding
to the eigenvalue 0.), then {e−m, e−m+1, . . . , e−1, e0, e1, . . . } forms an orthogonal
basis in L2. Set

E0 = kerB = span{e0},
E− = span{ej : j = −m,−m+ 1, . . . ,−1},

E+ = span{ej : j = 1, 2, . . . , }.

Then E possess an orthogonal decomposition E = E− ⊕ E0 ⊕ E+. For u ∈ E, we
have

u = u− + u0 + u+ ∈ E− ⊕ E0 ⊕ E+.

We can define on E a new inner product and the associated norm by

〈u, v〉0 = 〈Bu+, v+〉L2 − 〈Bu−, v−〉L2 + 〈u0, v0〉L2 ,

‖u‖ = 〈u, u〉1/20 .

Therefore, Φ can be written as

Φ(u) =
1
2

(‖u+‖2 − ‖u−‖2)−Ψ(u). (2.2)

Direct computations show that

〈Ψ′(u), v〉 =
∫ T

0

〈∇uW (t, u), v〉dt

〈Φ′(u), v〉 = 〈u+, v+〉0 − 〈u−, v−〉0 − 〈Ψ′(u), v〉
(2.3)

for all u, v ∈ E with u = u− + u0 + u+ and v = v− + v0 + v+ respectively. It is
known that Ψ′ : E → E is compact.

Denote by | · |p the usual norm of Lp ≡ Lp([0, T ],RN ) for all 1 ≤ p ≤ ∞, then
by the Sobolev embedding theorem, there exists a τp > 0 such that

|u|p ≤ τp‖u‖, ∀u ∈ E. (2.4)

Now we state an abstract critical point theorem founded in [11]. Let E be a
Banach space with the norm ‖ · ‖ and E = ⊕j∈NXj with dimXj < ∞ for any
j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the following C1-functional
Φλ : E → R defined by

Φλ(u) := A(u)− λB(u), λ ∈ [1, 2].

Theorem 2.1 ([11, Theorem 2.1]). Assume that the functional Φλ defined above
satisfies

(F1) Φλ maps bounded sets to bounded sets for λ ∈ [1, 2], and Φλ(−u) = Φλ(u)
for all (λ, u) ∈ [1, 2]× E;

(F2) B(u) ≥ 0 for all u ∈ E; moreover, A(u)→∞ or B(u)→∞ as ‖u‖ → ∞;
(F3) There exist rk > ρk > 0 such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u), ∀λ ∈ [1, 2].



4 H. GU, T. AN EJDE-2013/251

Then
αk(λ) ≤ ζk(λ) := inf

γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2],

where Bk = {u ∈ Yk : ‖u‖ ≤ rk} and Γk := {γ ∈ C(Bk, E) : γis odd, γ|∂Bk
= id}.

Moreover, for a.e. λ ∈ [1, 2], there exists a sequence {ukm(λ)}∞m=1 such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0, Φλ(ukm(λ))→ ζk(λ) as m→∞.

To apply this theorem to prove our main result, we define the functionals A, B
and Φλ on our working space E by

A(u) =
1
2
‖u+‖2, B(u) =

1
2
‖u−‖2 +

∫ T

0

W (t, u)dt, (2.5)

Φλ(u) = A(u)− λB(u) =
1
2
‖u+‖2 − λ(

1
2
‖u−‖2 +

∫ T

0

W (t, u)dt) (2.6)

for all u = u−+u0 +u+ ∈ E = E−+E0 +E+ and λ ∈ [1, 2]. Then Φλ ∈ C1(E,R)
for all λ ∈ [1, 2] and

〈Φ′λ(u), v〉 = 〈u+, v+〉0 − λ(〈u−, v−〉0 +
∫ T

0

〈∇uW (t, u), v〉dt). (2.7)

Let Xj = span{ej}, j = −m,−m+ 1, . . . ,−1, 0, 1, 2, . . . . Note that Φ1 = Φ, where
Φ is the functional defined in (2.2).

3. Proof of Theorem 1.1

We first establish the following lemmas and then give the proof of Theorem 1.1.

Lemma 3.1. Assume that (S1)–(S2) hold. Then B(u) ≥ 0 for all u ∈ E. Further-
more, A(u)→∞ or B(u)→∞ as ‖u‖ → ∞.

Proof. Since W (t, u) ≥ 0, by (2.5), it is obvious that B(u) ≥ 0 for all u ∈ E. By the
proof of [9, Lemma 2.6], for any finite-dimensional subspace F ⊂ E, there exists a
constant ε > 0 such that

m({t ∈ [0, T ] : |u| ≥ ε‖u‖}) ≥ ε, ∀u ∈ F \ {0}, (3.1)

where m(·) is the Lebesgue measure.
Now for the finite-dimensional subspace E− ⊕ E0 ⊂ E, there exist a constant ε

corresponding to the one in (3.1). Let

Λu = {t ∈ [0, T ] : |u| ≥ ε‖u‖}, ∀u ∈ E− ⊕ E0 \ {0}.
Then m(Λu) ≥ ε. By (S2), there exist positive constants d3 and R1 such that

W (t, u) ≥ d3|u|2, ∀t ∈ [0, T ] and |u| ≥ R1. (3.2)

Note that
|u(t)| ≥ R1, ∀t ∈ Λu (3.3)

for any u ∈ E− ⊕ E0 with ‖u‖ ≥ R1/ε. Combining (3.2) and (3.3), for any
u ∈ E− ⊕ E0 with ‖u‖ ≥ R1/ε, we have

B(u) =
1
2
‖u−‖2 +

∫ T

0

W (t, u)dt

≥
∫

Λu

W (t, u)dt ≥
∫

Λu

d3|u|2dt
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≥ d3ε
2‖u‖2 ·m(Λu) ≥ d3ε

3‖u‖2 .

This implies B(u) → ∞ as ‖u‖ → ∞ on E− ⊕ E0. Combining this with E =
E− ⊕ E0 ⊕ E+ and (2.5), we have

A(u)→∞ or B(u)→∞ as ‖u‖ → ∞.

The proof is complete. �

Lemma 3.2. Let (S1)–(S3) be satisfied. Then there exist a positive integer k1 and
two sequences rk > ρk →∞ as k →∞ such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k ≥ k1, (3.4)

and
βk(λ) := max

u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ∈ N, (3.5)

where Yk = ⊕kj=−mXj = span{e−m, e−m+1, . . . , ek} and

Zk = ⊕∞j=kXj = span{ek, ek+1, . . . }

for all k ∈ {−m,−m+ 1, . . . , 1, 2, . . . }.

Proof. Step 1. First we prove (3.4). By (1.3) and (2.6), for all u ∈ E+ we have

Φλ(u) ≥ 1
2
‖u‖2 − 2

∫ T

0

W (t, u)dt

≥ 1
2
‖u‖2 − 2d1(|u|1 + |u|α+1

α+1)− 2d2T, ∀λ ∈ [1, 2].
(3.6)

where d1, d2 are the constants in (1.3). Let

ια+1(k) = sup
u∈Zk,‖u‖=1

|u|α+1, ∀k ∈ N. (3.7)

Then
ια+1(k)→ 0 as k →∞ (3.8)

since E is compactly embedded into Lα+1. Note that

Zk ⊂ E+, ∀k ≥ 1. (3.9)

Combining (2.4), (3.6), (3.7) and (3.9), for k ≥ 1, we have

Φλ(u) ≥ 1
2
‖u‖2 − 2d1τ1‖u‖ − 2d2T − 2d1ι

α+1
α+1(k)‖u‖α+1, (3.10)

for all (λ, u) ∈ [1, 2] × Zk, where τ1 is the constant given in (2.4). By (3.8), there
exists a positive integer k1 ≥ 1 such that

ρk := (16d1ι
α+1
α+1(k))1/(1−α) > max{16d1τ1 + 1, 16d2T}, ∀k ≥ k1 (3.11)

since α > 1. Clearly,
ρk →∞ as k →∞. (3.12)

Combining (3.10) and (3.11), direct computation shows

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ ρ2
k/4 > 0, ∀k ≥ k1.
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Step 2. We prove (3.5). Note that for any k ∈ {−m,−m+ 1, . . . , 1, 2, . . . }, Yk is of
finite dimension, so we can choose M1 > 0 sufficiently large such that

‖u‖ ≤M1(
∫ T

0

|u|2)1/2, ∀u ∈ Yk. (3.13)

By (S2) and (1.3), for the former M1, there exists a M2 > 0 such that

W (t, u) ≥M2
1 |u|2 −M2, ∀(t, u) ∈ [0, T ]× RN . (3.14)

Consequently, by (3.13) and (3.14), we have

Φλ(u) ≤ 1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫ T

0

W (t, u)dt

≤ 1
2
‖u+‖2 − 1

2
‖u−‖2 −M2

1

∫ T

0

|u|2dt+M2T

≤ 1
2
‖u+‖2 − 1

2
‖u−‖2 −M2

1 (
1
M2

1

‖u+‖2 +
1
M2

1

‖u0‖2) +M2T

≤ −1
2
‖u+‖2 − 1

2
‖u−‖2 − ‖u0‖2 +M2T

≤ −1
2
‖u‖2 +M2T

(3.15)

for all u = u− + u0 + u+ ∈ Yk. Now for any k ∈ {−m,−m+ 1, . . . , 1, 2, . . . }, if we
choose

rk > max{ρk,
√

2M2T}
then (3.15) implies

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ∈ N.

The proof is complete. �

Now we prove our main result.

Proof of Theorem 1.1. In view of (1.3), (2.4) and (2.6), Φλ maps bounded sets to
bounded sets uniformly for λ ∈ [1, 2]. By the evenness of W (t, u) in u, it holds that
Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2] × E. Therefore condition (F1) of Theorem
2.1 holds. Lemma 3.1 shows that condition (F2) holds, whereas Lemma 3.2 implies
that condition (F3) holds for all k ≥ k1, where k1 is given in Lemma 3.2. Thus,
by Theorem 2.1, for each k ≥ k1 and a.e. λ ∈ [1, 2], there exists a sequence
{ukm(λ)}∞m=1 ⊂ E such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0 and Φλ(ukm(λ))→ ζk(λ) (3.16)

as m→∞, where

ζk(λ) := inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2]

with Bk = {u ∈ Yk : ‖u‖ ≤ rk} and Γk := {γ ∈ C(Bk, E) : γ is odd, γ |∂Bk
= id}.

Moreover, by the proof of Lemma 3.2, we have

ζk(λ) ∈ [αk, ζk], ∀k ≥ k1, (3.17)

where ζk := maxu∈Bk
Φ1(u) and αk := ρ

2

k/4→∞ as k →∞ by (3.12).
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Since the sequence {ukm(λ)}∞m=1 obtained by (3.16) is bounded, it is clear that
for each k ≥ k1, we can choose λn → 1 such that the sequence {ukm(λn)}∞m=1 has a
strong convergent subsequence.

In fact, without loss of generality, we assume that

ukm(λn)− → uk0(λn)−, ukm(λn)0 → uk0(λn)0, ukm(λn)+ ⇀ uk0(λn)+ (3.18)

as m→∞ and
ukm(λn) ⇀ uk0(λn) as m→∞ (3.19)

for some uk0(λn) = uk0(λn)− + uk0(λn)0 + uk0(λn)+ ∈ E = E− ⊕ E0 ⊕ E+ since
dim(E− ⊕ E0) <∞. Note that

Φ′λn
(ukm(λn)) = ukm(λn)+ − λn(ukm(λn)− + Ψ′(ukm(λn)), ∀n ∈ N.

That is,

ukm(λn)+ = Φ′λn
(ukm(λn)) + λn(ukm(λn)− + Ψ′(ukm(λn)), ∀m ∈ N. (3.20)

In view of (3.16), (3.18), (3.19) and the compactness of Ψ′, the right-hand side of
(3.20) converges strongly in E and hence ukm(λn)+ → uk0(λn)+ in E. Together with
(3.18), {ukm(λn)}∞m=1 has a strong convergent subsequence in E.

Without loss of generality, we may assume that

lim
m→∞

ukm(λn) = ukn, ∀n ∈ N and k ≥ k1.

This together with (3.16) and (3.17) yields

Φ′λn
(ukn) = 0, Φλn

(ukn) ∈ [αk, ζk], ∀n ∈ N and k ≥ k1. (3.21)

Now we claim that the sequence {ukn}∞n=1 in (3.21) is bounded in E and possesses
a strong convergent subsequence with the limit uk ∈ E for all k ≥ k1. For the sake
of notational simplicity, throughout the remaining proof of Theorem 1.1 we denote
un = ukn. For un ∈ E, let un = 1

T

∫ T
o
un(t)dt, un = ũn + un. By (2.4), there exists

a constant τ∞ for any u ∈ E such that

|u|∞ ≤ τ∞‖u‖. (3.22)

Assume by contradiction, first, we prove that {un} is bounded in E. Otherwise,
going to a subsequence if necessary, we can assume that ‖un‖ → ∞ as n → ∞.
Put vn = un

‖un‖ , then vn is bounded in E. Hence, there exists a subsequence, still
denoted by vn, such that

vn ⇀ v0 in E, vn → v0 in C([0, T ],RN ).

Then, we have
vn → v0. (3.23)

By (1.3), for all |u| ≤ L, we have

W (t, u) ≤ d1(|u|+ |u|α+1) + d2 ≤ d1(L+ Lα+1) + d2,

which together with (S3) yields

µW (t, u) ≤ 〈∇uW (t, u), u〉+ a(t)|u|β + µd1(L+ Lα+1) + µd2, (3.24)

for all u ∈ RN and t ∈ [0, T ]. It follows from (2.6), (2.7) that

µΦλn
(un)− 〈Φ′λn

(un), un〉 = (
µ

2
− 1)(‖u+

n ‖2 − ‖u−n ‖2)− (λn − 1)(
µ

2
− 1)‖u−n ‖2

− λn
∫ T

0

(µW (t, un)− 〈∇uW (t, un), un〉)dt .
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In the following, we denote Ci > 0(i = 0, 1, 2, . . . ) for different positive constants.
Comparing (2.1) with (2.2), we learn that

(
µ

2
− 1)‖u̇n‖2L2

= µΦλn
(un)− 〈Φ′λn

(un), un〉 − (
µ

2
− 1)

∫ T

0

〈U(t)un, un〉dt

+ (λn − 1)(
µ

2
− 1)‖u−n ‖2 + λn

∫ T

0

(µW (t, un)− 〈∇uW (t, un), un〉)dt.

This together with the positive definite assumption of matrix U , (2.4), (3.21), (3.24)
and µ > 2 implies

(
µ

2
− 1)‖u̇n‖2L2 ≤ C1 + (

µ

2
− 1)(λn − 1)‖u−n ‖2

+ λn

∫ T

0

(a(t)|un|β + µd1(L+ Lα+1) + µd2)dt

≤ C2 + C3(λn − 1)‖u−n ‖2 + C4‖un‖β .

(3.25)

Note that 0 < β < 2, λn → 1 and ‖u−n ‖2 ≤ ‖un‖2 , we have

‖u̇n‖2L2

‖un‖2
≤ C5

‖un‖2
+ C6(λn − 1)

‖u−n ‖2

‖un‖2
+ C7

‖un‖β

‖un‖2
→ 0 as n→∞;

i.e., ‖v̇n‖L2 → 0 as n → ∞. Together with (3.23), we have vn → v0 as n → ∞.
Therefore, we obtain

v0 = v0, T |v0|2 = ‖v0‖2 = 1 .

Consequently, |un| → ∞ as n → ∞ uniformly for a.e. t ∈ [0.T ]. From (S2), we
obtain

lim inf
|un|→∞

∫ T
0
W (t, un)dt
‖un‖2

≥
∫ T

0
lim inf |un|→∞W (t, un)dt

‖un‖2

=
∫ T

0

[ lim inf
|un|→∞

W (t, un)
|un|2

|vn|2]dt

=
∫ T

0

[ lim inf
|un|→∞

W (t, un)
|un|2

|v0|2]dt > 0 .

Hence,

lim inf
|un|→∞

∫ T
0
W (t, un)dt
‖un‖2

> 0. (3.26)

On the other hand, from (2.4), (2.6), (2.7), (3.21)and (3.24), we have

(
µ

2
− 1)(‖u+

n ‖2 − λn‖u−n ‖2) = µΦλn(un)− 〈Φ′λn
(un), un〉

+ λn

∫ T

0

(µW (t, un)− 〈∇uW (t, un), un〉)dt

≤ C1 + λn

∫ T

0

(a(t)|un|β + µd1(L+ Lα+1) + µd2)dt

≤ C8 + C9λn‖un‖β .
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Note that µ > 2; then we obtain

(‖u+
n ‖2 − λn‖u−n ‖2) ≤ 2C8

µ− 2
+

2C9

µ− 2
λn‖un‖β . (3.27)

By the boundedness of Φλn
(un), and (3.27), we have

Φλn(un)
‖un‖2

=
1
2 (‖u+

n ‖2 − λn‖u−n ‖2)
‖un‖2

−
λn
∫ T

0
W (t, un)dt
‖un‖2

≤
C8
µ−2

‖un‖2
+

C9
µ−2λn‖un‖

β

‖un‖2
−
λn
∫ T

0
W (t, un)dt
‖un‖2

,

which together with 0 < β < 2 implies

lim
|un|→∞

inf

∫ T
0
W (t, un)dt
‖un‖2

= 0.

This contradicts to (3.26). Thus, {un} is bounded in E.
The proof that {un} has a strong convergent subsequence is the same as the

preceding proof of {ukm(λn)}∞m=1.
Now for each k ≥ k1, by (3.21), the limit uk is just a critical point of Φ = Φ1

with Φ(uk) ∈ [αk, ζk]. Since αk → ∞ as k → ∞ in (3.17), we obtain infinitely
many nontrivial critical points of Φ. Therefore, system (1.1) possesses infinitely
many nontrivial solutions. The proof of Theorem 1.1 is complete. �
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