Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 251, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS

HUA GU, TIANQING AN

Abstract

By using the variant of the fountain theorem, we study the existence of infinitely many periodic solutions for a class of superquadratic nonautonomous second-order Hamiltonian systems.

1. Introduction

Consider the second-order Hamiltonian system

$$
\begin{gather*}
\ddot{u}(t)-U(t) u(t)+\nabla_{u} W(t, u)=0, \quad \forall t \in \mathbb{R}, \\
u(0)=u(T), \quad \dot{u}(0)=\dot{u}(T), \quad T>0 \tag{1.1}
\end{gather*}
$$

where $U(\cdot)$ is a continuous T-periodic symmetric positive definite matrix and W : $\mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is T-periodic in its first variable. Moreover, we assume that $W(t, x)$ is continuous in t for each $x \in \mathbb{R}^{N}$, continuously differentiable in x for each $t \in[0, T]$ and $\nabla W(t, x)$ denotes its gradient with respect to the x variable.

Inspired by the monographs [5, 6], the existence and multiplicity of periodic solutions for Hamiltonian systems have been investigated in many papers (see [2, [3, 4, 7, 8, 9, 10, 12 and the references therein) via the variational methods. In 2008, He and Wu [4] studied the existence of nontrivial T-periodic solutions for system (1.1) by a mountain pass theorem and a local link theorem. In 2010, Zhang and Tang [10] obtained some new results of T-periodic solutions for system 1.1) under weaker assumptions, which generalized the corresponding results in 4]. In [9, Zhang and Liu considered the second-order Hamiltonian system

$$
\begin{align*}
\ddot{u}(t)+\nabla_{u} V(t, u) & =0, \quad \forall t \in \mathbb{R}, \\
u(0)=u(T), \quad \dot{u}(0) & =\dot{u}(T), \quad T>0, \tag{1.2}
\end{align*}
$$

where $V \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$ is T-periodic in t and has the form

$$
V(t, u)=\frac{1}{2}\langle U(t) u, u\rangle+W(t, u)
$$

Here and in the sequel, $\langle\cdot, \cdot\rangle$ and $|\cdot|$ denote the standard inner product and norm in \mathbb{R}^{N} respectively. They obtained infinitely many periodic solutions of 1.2 by

[^0]using the variant of the fountain theorem under superquadratic assumptions (see [9, Theorem 1.2]).

Now motivated by the above papers [9, 10, we will use the following conditions to obtain the existence of infinitely many periodic solutions of system 1.1).
(S1) There exist constants $d_{1}>0$ and $\alpha>1$ such that

$$
\left|\nabla_{u} W(t, u)\right| \leq d_{1}\left(1+|u|^{\alpha}\right), \quad \forall t \in[0, T], u \in \mathbb{R}^{N}
$$

(S2) $W(t, u) \geq 0$ for all $(t, u) \in[0, T] \times \mathbb{R}^{N}$, and

$$
\liminf _{|u| \rightarrow \infty} \frac{W(t, u)}{|u|^{2}}=\infty, \quad \forall t \in[0, T]
$$

(S3) There exist constants $\mu>2,0<\beta<2, L>0$ and a function $a(t) \in$ $L^{1}\left(0, T ; R^{+}\right)$such that

$$
\mu W(t, u) \leq\left\langle\nabla_{u} W(t, u), u\right\rangle+a(t)|u|^{\beta}, \quad \forall|u| \geq L, u \in \mathbb{R}^{N}, t \in[0, T]
$$

Then our main result is the following theorem.
Theorem 1.1. Assume that (S1)-(S3) hold and that $W(t, u)$ is even in u. Then (1.1) possesses infinitely many solutions.

Note that by (S1), we can obtain that there exists a constant $d_{2}>0$ such that

$$
\begin{equation*}
|W(t, u)| \leq d_{1}\left(|u|+|u|^{\alpha+1}\right)+d_{2}, \quad \forall(t, u) \in[0, T] \times \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

As is known, the so-called global Ambrosetti-Rabinowitz condition (AR-condition for short) was introduced by Ambrosetti and Rabinowitz in [1] and is wildly used in the study of the superquadratic case of Hamiltonian systems: there is a constant μ such that

$$
\begin{equation*}
0<\mu W(t, u) \leq\left\langle\nabla_{u} W(t, u), u\right\rangle, \quad \forall(t, u) \in \mathbb{R} \times \mathbb{R}^{N} \backslash\{0\} \tag{1.4}
\end{equation*}
$$

When we take $a(t) \equiv 0$, the condition (S3) reduces to 1.4). So the condition (S3) is weaker than AR-condition.

2. Preliminaries

In this section, we will establish the variational setting for our problem and give a variant fountain theorem. Let $E=H_{T}^{1}$ be the usual Sobolev space with the inner product

$$
\langle u, v\rangle_{E}=\int_{0}^{T}\langle u(t), v(t)\rangle d t+\int_{0}^{T}\langle\dot{u}(t), \dot{v}(t)\rangle d t
$$

We define a functional Φ on E by

$$
\begin{equation*}
\Phi(u)=\frac{1}{2}\left(\int_{0}^{T}|\dot{u}|^{2} d t+\int_{0}^{T}\langle U(t) u, u\rangle d t\right)-\Psi(u), \tag{2.1}
\end{equation*}
$$

where $\Psi(u)=\int_{0}^{T} W(t, u(t)) d t$. Then Φ and Ψ are continuously differentiable and

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{0}^{T}\langle\dot{u}, \dot{v}\rangle d t+\int_{0}^{T}\langle U(t) u, v\rangle d t-\int_{0}^{T}\left\langle\nabla_{u} W(t, u), v\right\rangle d t
$$

Define a selfadjoint linear operator $\mathcal{B}: L^{2}\left([0, T], \mathbb{R}^{N}\right) \rightarrow L^{2}\left([0, T], \mathbb{R}^{N}\right)$ by

$$
\langle\mathcal{B} u, v\rangle_{L^{2}}=\int_{0}^{T}\langle\dot{u}, \dot{v}\rangle d t+\int_{0}^{T}\langle U(t) u, v\rangle d t
$$

with domain $D(\mathcal{B})=E$. Then \mathcal{B} has a sequence of eigenvalues

$$
\lambda_{-m} \leq \lambda_{-m+1} \leq \cdots \leq \lambda_{-1}<0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots
$$

such that $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. Note that 0 may be not a eigenvalue. Let e_{j} be the eigenvector of \mathcal{B} corresponding to λ_{j} (esp. e_{0} is an eigenvector corresponding to the eigenvalue 0 .), then $\left\{e_{-m}, e_{-m+1}, \ldots, e_{-1}, e_{0}, e_{1}, \ldots\right\}$ forms an orthogonal basis in L^{2}. Set

$$
\begin{gathered}
E^{0}=\operatorname{ker} \mathcal{B}=\operatorname{span}\left\{e_{0}\right\}, \\
E^{-}=\operatorname{span}\left\{e_{j}: j=-m,-m+1, \ldots,-1\right\}, \\
E^{+}=\operatorname{span}\left\{e_{j}: j=1,2, \ldots,\right\}
\end{gathered}
$$

Then E possess an orthogonal decomposition $E=E^{-} \oplus E^{0} \oplus E^{+}$. For $u \in E$, we have

$$
u=u^{-}+u^{0}+u^{+} \in E^{-} \oplus E^{0} \oplus E^{+}
$$

We can define on E a new inner product and the associated norm by

$$
\begin{gathered}
\langle u, v\rangle_{0}=\left\langle\mathcal{B} u^{+}, v^{+}\right\rangle_{L^{2}}-\left\langle\mathcal{B} u^{-}, v^{-}\right\rangle_{L^{2}}+\left\langle u^{0}, v^{0}\right\rangle_{L^{2}} \\
\|u\|=\langle u, u\rangle_{0}^{1 / 2}
\end{gathered}
$$

Therefore, Φ can be written as

$$
\begin{equation*}
\Phi(u)=\frac{1}{2}\left(\left\|u^{+}\right\|^{2}-\left\|u^{-}\right\|^{2}\right)-\Psi(u) \tag{2.2}
\end{equation*}
$$

Direct computations show that

$$
\begin{gather*}
\left\langle\Psi^{\prime}(u), v\right\rangle=\int_{0}^{T}\left\langle\nabla_{u} W(t, u), v\right\rangle d t \tag{2.3}\\
\left\langle\Phi^{\prime}(u), v\right\rangle=\left\langle u^{+}, v^{+}\right\rangle_{0}-\left\langle u^{-}, v^{-}\right\rangle_{0}-\left\langle\Psi^{\prime}(u), v\right\rangle
\end{gather*}
$$

for all $u, v \in E$ with $u=u^{-}+u^{0}+u^{+}$and $v=v^{-}+v^{0}+v^{+}$respectively. It is known that $\Psi^{\prime}: E \rightarrow E$ is compact.

Denote by $|\cdot|_{p}$ the usual norm of $L^{p} \equiv L^{p}\left([0, T], \mathbb{R}^{N}\right)$ for all $1 \leq p \leq \infty$, then by the Sobolev embedding theorem, there exists a $\tau_{p}>0$ such that

$$
\begin{equation*}
|u|_{p} \leq \tau_{p}\|u\|, \quad \forall u \in E . \tag{2.4}
\end{equation*}
$$

Now we state an abstract critical point theorem founded in [11. Let E be a Banach space with the norm $\|\cdot\|$ and $E=\overline{\oplus_{j \in \mathbb{N}} X_{j}}$ with $\operatorname{dim} X_{j}<\infty$ for any $j \in \mathbb{N}$. Set $Y_{k}=\oplus_{j=1}^{k} X_{j}$ and $Z_{k}=\overline{\oplus_{j=k}^{\infty} X_{j}}$. Consider the following C^{1}-functional $\Phi_{\lambda}: E \rightarrow \mathbb{R}$ defined by

$$
\Phi_{\lambda}(u):=A(u)-\lambda B(u), \quad \lambda \in[1,2] .
$$

Theorem 2.1 ([11, Theorem 2.1]). Assume that the functional Φ_{λ} defined above satisfies
(F1) Φ_{λ} maps bounded sets to bounded sets for $\lambda \in[1,2]$, and $\Phi_{\lambda}(-u)=\Phi_{\lambda}(u)$ for all $(\lambda, u) \in[1,2] \times E$;
(F2) $B(u) \geq 0$ for all $u \in E$; moreover, $A(u) \rightarrow \infty$ or $B(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$;
(F3) There exist $r_{k}>\rho_{k}>0$ such that

$$
\alpha_{k}(\lambda):=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u)>\beta_{k}(\lambda):=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u), \quad \forall \lambda \in[1,2] .
$$

Then

$$
\alpha_{k}(\lambda) \leq \zeta_{k}(\lambda):=\inf _{\gamma \in \Gamma_{k}} \max _{u \in B_{k}} \Phi_{\lambda}(\gamma(u)), \quad \forall \lambda \in[1,2],
$$

where $B_{k}=\left\{u \in Y_{k}:\|u\| \leq r_{k}\right\}$ and $\Gamma_{k}:=\left\{\gamma \in C\left(B_{k}, E\right): \gamma i s\right.$ odd, $\left.\left.\gamma\right|_{\partial B_{k}}=i d\right\}$. Moreover, for a.e. $\lambda \in[1,2]$, there exists a sequence $\left\{u_{m}^{k}(\lambda)\right\}_{m=1}^{\infty}$ such that

$$
\sup _{m}\left\|u_{m}^{k}(\lambda)\right\|<\infty, \quad \Phi_{\lambda}^{\prime}\left(u_{m}^{k}(\lambda)\right) \rightarrow 0, \quad \Phi_{\lambda}\left(u_{m}^{k}(\lambda)\right) \rightarrow \zeta_{k}(\lambda) \quad \text { as } m \rightarrow \infty
$$

To apply this theorem to prove our main result, we define the functionals A, B and Φ_{λ} on our working space E by

$$
\begin{gather*}
A(u)=\frac{1}{2}\left\|u^{+}\right\|^{2}, \quad B(u)=\frac{1}{2}\left\|u^{-}\right\|^{2}+\int_{0}^{T} W(t, u) d t \tag{2.5}\\
\Phi_{\lambda}(u)=A(u)-\lambda B(u)=\frac{1}{2}\left\|u^{+}\right\|^{2}-\lambda\left(\frac{1}{2}\left\|u^{-}\right\|^{2}+\int_{0}^{T} W(t, u) d t\right) \tag{2.6}
\end{gather*}
$$

for all $u=u^{-}+u^{0}+u^{+} \in E=E^{-}+E^{0}+E^{+}$and $\lambda \in[1,2]$. Then $\Phi_{\lambda} \in C^{1}(E, \mathbb{R})$ for all $\lambda \in[1,2]$ and

$$
\begin{equation*}
\left\langle\Phi_{\lambda}^{\prime}(u), v\right\rangle=\left\langle u^{+}, v^{+}\right\rangle_{0}-\lambda\left(\left\langle u^{-}, v^{-}\right\rangle_{0}+\int_{0}^{T}\left\langle\nabla_{u} W(t, u), v\right\rangle d t\right) \tag{2.7}
\end{equation*}
$$

Let $X_{j}=\operatorname{span}\left\{e_{j}\right\}, j=-m,-m+1, \ldots,-1,0,1,2, \ldots$ Note that $\Phi_{1}=\Phi$, where Φ is the functional defined in (2.2).

3. Proof of Theorem 1.1

We first establish the following lemmas and then give the proof of Theorem 1.1 .
Lemma 3.1. Assume that (S1)-(S2) hold. Then $B(u) \geq 0$ for all $u \in E$. Furthermore, $A(u) \rightarrow \infty$ or $B(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$.
Proof. Since $W(t, u) \geq 0$, by 2.5 , it is obvious that $B(u) \geq 0$ for all $u \in E$. By the proof of [9, Lemma 2.6], for any finite-dimensional subspace $F \subset E$, there exists a constant $\epsilon>0$ such that

$$
\begin{equation*}
m(\{t \in[0, T]:|u| \geq \epsilon\|u\|\}) \geq \epsilon, \quad \forall u \in F \backslash\{0\} \tag{3.1}
\end{equation*}
$$

where $m(\cdot)$ is the Lebesgue measure.
Now for the finite-dimensional subspace $E^{-} \oplus E^{0} \subset E$, there exist a constant ϵ corresponding to the one in (3.1). Let

$$
\Lambda_{u}=\{t \in[0, T]:|u| \geq \epsilon\|u\|\}, \quad \forall u \in E^{-} \oplus E^{0} \backslash\{0\}
$$

Then $m\left(\Lambda_{u}\right) \geq \epsilon$. By (S2), there exist positive constants d_{3} and R_{1} such that

$$
\begin{equation*}
W(t, u) \geq d_{3}|u|^{2}, \quad \forall t \in[0, T] \text { and }|u| \geq R_{1} \tag{3.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
|u(t)| \geq R_{1}, \quad \forall t \in \Lambda_{u} \tag{3.3}
\end{equation*}
$$

for any $u \in E^{-} \oplus E^{0}$ with $\|u\| \geq R_{1} / \epsilon$. Combining (3.2) and (3.3), for any $u \in E^{-} \oplus E^{0}$ with $\|u\| \geq R_{1} / \epsilon$, we have

$$
\begin{aligned}
B(u) & =\frac{1}{2}\left\|u^{-}\right\|^{2}+\int_{0}^{T} W(t, u) d t \\
& \geq \int_{\Lambda_{u}} W(t, u) d t \geq \int_{\Lambda_{u}} d_{3}|u|^{2} d t
\end{aligned}
$$

$$
\geq d_{3} \epsilon^{2}\|u\|^{2} \cdot m\left(\Lambda_{u}\right) \geq d_{3} \epsilon^{3}\|u\|^{2}
$$

This implies $B(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$ on $E^{-} \oplus E^{0}$. Combining this with $E=$ $E^{-} \oplus E^{0} \oplus E^{+}$and 2.5), we have

$$
A(u) \rightarrow \infty \text { or } B(u) \rightarrow \infty \quad \text { as }\|u\| \rightarrow \infty
$$

The proof is complete.
Lemma 3.2. Let (S1)-(S3) be satisfied. Then there exist a positive integer k_{1} and two sequences $r_{k}>\rho_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that

$$
\begin{equation*}
\alpha_{k}(\lambda):=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u)>0, \quad \forall k \geq k_{1}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{k}(\lambda):=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u)<0, \quad \forall k \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

where $Y_{k}=\oplus_{j=-m}^{k} X_{j}=\operatorname{span}\left\{e_{-m}, e_{-m+1}, \ldots, e_{k}\right\}$ and

$$
Z_{k}=\overline{\oplus_{j=k}^{\infty} X_{j}}=\overline{\operatorname{span}\left\{e_{k}, e_{k+1}, \ldots\right\}}
$$

for all $k \in\{-m,-m+1, \ldots, 1,2, \ldots\}$.
Proof. Step 1. First we prove (3.4). By (1.3) and (2.6), for all $u \in E^{+}$we have

$$
\begin{align*}
\Phi_{\lambda}(u) & \geq \frac{1}{2}\|u\|^{2}-2 \int_{0}^{T} W(t, u) d t \tag{3.6}\\
& \geq \frac{1}{2}\|u\|^{2}-2 d_{1}\left(|u|_{1}+|u|_{\alpha+1}^{\alpha+1}\right)-2 d_{2} T, \quad \forall \lambda \in[1,2]
\end{align*}
$$

where d_{1}, d_{2} are the constants in 1.3). Let

$$
\begin{equation*}
\iota_{\alpha+1}(k)=\sup _{u \in Z_{k},\|u\|=1}|u|_{\alpha+1}, \quad \forall k \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\iota_{\alpha+1}(k) \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{3.8}
\end{equation*}
$$

since E is compactly embedded into $L^{\alpha+1}$. Note that

$$
\begin{equation*}
Z_{k} \subset E^{+}, \quad \forall k \geq 1 \tag{3.9}
\end{equation*}
$$

Combining (2.4, (3.6), 3.7) and (3.9), for $k \geq 1$, we have

$$
\begin{equation*}
\Phi_{\lambda}(u) \geq \frac{1}{2}\|u\|^{2}-2 d_{1} \tau_{1}\|u\|-2 d_{2} T-2 d_{1} \iota_{\alpha+1}^{\alpha+1}(k)\|u\|^{\alpha+1} \tag{3.10}
\end{equation*}
$$

for all $(\lambda, u) \in[1,2] \times Z_{k}$, where τ_{1} is the constant given in 2.4). By (3.8), there exists a positive integer $k_{1} \geq 1$ such that

$$
\begin{equation*}
\rho_{k}:=\left(16 d_{1} \iota_{\alpha+1}^{\alpha+1}(k)\right)^{1 /(1-\alpha)}>\max \left\{16 d_{1} \tau_{1}+1,16 d_{2} T\right\}, \quad \forall k \geq k_{1} \tag{3.11}
\end{equation*}
$$

since $\alpha>1$. Clearly,

$$
\begin{equation*}
\rho_{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty \tag{3.12}
\end{equation*}
$$

Combining (3.10) and 3.11, direct computation shows

$$
\alpha_{k}(\lambda):=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u) \geq \rho_{k}^{2} / 4>0, \quad \forall k \geq k_{1}
$$

Step 2. We prove (3.5). Note that for any $k \in\{-m,-m+1, \ldots, 1,2, \ldots\}, Y_{k}$ is of finite dimension, so we can choose $M_{1}>0$ sufficiently large such that

$$
\begin{equation*}
\|u\| \leq M_{1}\left(\int_{0}^{T}|u|^{2}\right)^{1 / 2}, \quad \forall u \in Y_{k} \tag{3.13}
\end{equation*}
$$

By (S2) and (1.3), for the former M_{1}, there exists a $M_{2}>0$ such that

$$
\begin{equation*}
W(t, u) \geq M_{1}^{2}|u|^{2}-M_{2}, \quad \forall(t, u) \in[0, T] \times \mathbb{R}^{N} \tag{3.14}
\end{equation*}
$$

Consequently, by (3.13) and 3.14, we have

$$
\begin{align*}
\Phi_{\lambda}(u) & \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-\int_{0}^{T} W(t, u) d t \\
& \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-M_{1}^{2} \int_{0}^{T}|u|^{2} d t+M_{2} T \\
& \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-M_{1}^{2}\left(\frac{1}{M_{1}^{2}}\left\|u^{+}\right\|^{2}+\frac{1}{M_{1}^{2}}\left\|u^{0}\right\|^{2}\right)+M_{2} T \tag{3.15}\\
& \leq-\frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-\left\|u^{0}\right\|^{2}+M_{2} T \\
& \leq-\frac{1}{2}\|u\|^{2}+M_{2} T
\end{align*}
$$

for all $u=u^{-}+u^{0}+u^{+} \in Y_{k}$. Now for any $k \in\{-m,-m+1, \ldots, 1,2, \ldots\}$, if we choose

$$
r_{k}>\max \left\{\rho_{k}, \sqrt{2 M_{2} T}\right\}
$$

then 3.15 implies

$$
\beta_{k}(\lambda):=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u)<0, \quad \forall k \in \mathbb{N} .
$$

The proof is complete.
Now we prove our main result.
Proof of Theorem 1.1. In view of (1.3), 2.4 and 2.6, Φ_{λ} maps bounded sets to bounded sets uniformly for $\lambda \in[1,2]$. By the evenness of $W(t, u)$ in u, it holds that $\Phi_{\lambda}(-u)=\Phi_{\lambda}(u)$ for all $(\lambda, u) \in[1,2] \times E$. Therefore condition (F1) of Theorem 2.1 holds. Lemma 3.1 shows that condition (F2) holds, whereas Lemma 3.2 implies that condition (F3) holds for all $k \geq k_{1}$, where k_{1} is given in Lemma 3.2 Thus, by Theorem 2.1, for each $k \geq k_{1}$ and a.e. $\lambda \in[1,2]$, there exists a sequence $\left\{u_{m}^{k}(\lambda)\right\}_{m=1}^{\infty} \subset E$ such that

$$
\begin{equation*}
\sup _{m}\left\|u_{m}^{k}(\lambda)\right\|<\infty, \Phi_{\lambda}^{\prime}\left(u_{m}^{k}(\lambda)\right) \rightarrow 0 \text { and } \Phi_{\lambda}\left(u_{m}^{k}(\lambda)\right) \rightarrow \zeta_{k}(\lambda) \tag{3.16}
\end{equation*}
$$

as $m \rightarrow \infty$, where

$$
\zeta_{k}(\lambda):=\inf _{\gamma \in \Gamma_{k}} \max _{u \in B_{k}} \Phi_{\lambda}(\gamma(u)), \quad \forall \lambda \in[1,2]
$$

with $B_{k}=\left\{u \in Y_{k}:\|u\| \leq r_{k}\right\}$ and $\Gamma_{k}:=\left\{\gamma \in C\left(B_{k}, E\right): \gamma\right.$ is odd, $\left.\left.\gamma\right|_{\partial B_{k}}=\mathrm{id}\right\}$.
Moreover, by the proof of Lemma 3.2, we have

$$
\begin{equation*}
\zeta_{k}(\lambda) \in\left[\bar{\alpha}_{k}, \bar{\zeta}_{k}\right], \quad \forall k \geq k_{1} \tag{3.17}
\end{equation*}
$$

where $\bar{\zeta}_{k}:=\max _{u \in B_{k}} \Phi_{1}(u)$ and $\bar{\alpha}_{k}:=\rho_{k}^{2} / 4 \rightarrow \infty$ as $k \rightarrow \infty$ by 3.12.

Since the sequence $\left\{u_{m}^{k}(\lambda)\right\}_{m=1}^{\infty}$ obtained by 3.16 is bounded, it is clear that for each $k \geq k_{1}$, we can choose $\lambda_{n} \rightarrow 1$ such that the sequence $\left\{u_{m}^{k}\left(\lambda_{n}\right)\right\}_{m=1}^{\infty}$ has a strong convergent subsequence.

In fact, without loss of generality, we assume that

$$
\begin{equation*}
u_{m}^{k}\left(\lambda_{n}\right)^{-} \rightarrow u_{0}^{k}\left(\lambda_{n}\right)^{-}, \quad u_{m}^{k}\left(\lambda_{n}\right)^{0} \rightarrow u_{0}^{k}\left(\lambda_{n}\right)^{0}, \quad u_{m}^{k}\left(\lambda_{n}\right)^{+} \rightharpoonup u_{0}^{k}\left(\lambda_{n}\right)^{+} \tag{3.18}
\end{equation*}
$$

as $m \rightarrow \infty$ and

$$
\begin{equation*}
u_{m}^{k}\left(\lambda_{n}\right) \rightharpoonup u_{0}^{k}\left(\lambda_{n}\right) \quad \text { as } m \rightarrow \infty \tag{3.19}
\end{equation*}
$$

for some $u_{0}^{k}\left(\lambda_{n}\right)=u_{0}^{k}\left(\lambda_{n}\right)^{-}+u_{0}^{k}\left(\lambda_{n}\right)^{0}+u_{0}^{k}\left(\lambda_{n}\right)^{+} \in E=E^{-} \oplus E^{0} \oplus E^{+}$since $\operatorname{dim}\left(E^{-} \oplus E^{0}\right)<\infty$. Note that

$$
\Phi_{\lambda_{n}}^{\prime}\left(u_{m}^{k}\left(\lambda_{n}\right)\right)=u_{m}^{k}\left(\lambda_{n}\right)^{+}-\lambda_{n}\left(u_{m}^{k}\left(\lambda_{n}\right)^{-}+\Psi^{\prime}\left(u_{m}^{k}\left(\lambda_{n}\right)\right), \quad \forall n \in \mathbb{N} .\right.
$$

That is,

$$
\begin{equation*}
u_{m}^{k}\left(\lambda_{n}\right)^{+}=\Phi_{\lambda_{n}}^{\prime}\left(u_{m}^{k}\left(\lambda_{n}\right)\right)+\lambda_{n}\left(u_{m}^{k}\left(\lambda_{n}\right)^{-}+\Psi^{\prime}\left(u_{m}^{k}\left(\lambda_{n}\right)\right), \quad \forall m \in \mathbb{N}\right. \tag{3.20}
\end{equation*}
$$

In view of (3.16), 3.18), 3.19) and the compactness of Ψ^{\prime}, the right-hand side of (3.20) converges strongly in E and hence $u_{m}^{k}\left(\lambda_{n}\right)^{+} \rightarrow u_{0}^{k}\left(\lambda_{n}\right)^{+}$in E. Together with (3.18), $\left\{u_{m}^{k}\left(\lambda_{n}\right)\right\}_{m=1}^{\infty}$ has a strong convergent subsequence in E.

Without loss of generality, we may assume that

$$
\lim _{m \rightarrow \infty} u_{m}^{k}\left(\lambda_{n}\right)=u_{n}^{k}, \quad \forall n \in \mathbb{N} \text { and } k \geq k_{1}
$$

This together with 3.16 and 3.17 yields

$$
\begin{equation*}
\Phi_{\lambda_{n}}^{\prime}\left(u_{n}^{k}\right)=0, \quad \Phi_{\lambda_{n}}\left(u_{n}^{k}\right) \in\left[\bar{\alpha}_{k}, \bar{\zeta}_{k}\right], \quad \forall n \in \mathbb{N} \text { and } k \geq k_{1} \tag{3.21}
\end{equation*}
$$

Now we claim that the sequence $\left\{u_{n}^{k}\right\}_{n=1}^{\infty}$ in 3.21) is bounded in E and possesses a strong convergent subsequence with the limit $u^{k} \in E$ for all $k \geq k_{1}$. For the sake of notational simplicity, throughout the remaining proof of Theorem 1.1 we denote $u_{n}=u_{n}^{k}$. For $u_{n} \in E$, let $\bar{u}_{n}=\frac{1}{T} \int_{o}^{T} u_{n}(t) d t, u_{n}=\widetilde{u}_{n}+\bar{u}_{n}$. By 2.4), there exists a constant τ_{∞} for any $u \in E$ such that

$$
\begin{equation*}
|u|_{\infty} \leq \tau_{\infty}\|u\| \tag{3.22}
\end{equation*}
$$

Assume by contradiction, first, we prove that $\left\{u_{n}\right\}$ is bounded in E. Otherwise, going to a subsequence if necessary, we can assume that $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Put $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, then v_{n} is bounded in E. Hence, there exists a subsequence, still denoted by v_{n}, such that

$$
v_{n} \rightharpoonup v_{0} \quad \text { in } E, \quad v_{n} \rightarrow v_{0} \quad \text { in } C\left([0, T], \mathbb{R}^{N}\right)
$$

Then, we have

$$
\begin{equation*}
\bar{v}_{n} \rightarrow \bar{v}_{0} \tag{3.23}
\end{equation*}
$$

By (1.3), for all $|u| \leq L$, we have

$$
W(t, u) \leq d_{1}\left(|u|+|u|^{\alpha+1}\right)+d_{2} \leq d_{1}\left(L+L^{\alpha+1}\right)+d_{2}
$$

which together with (S3) yields

$$
\begin{equation*}
\mu W(t, u) \leq\left\langle\nabla_{u} W(t, u), u\right\rangle+a(t)|u|^{\beta}+\mu d_{1}\left(L+L^{\alpha+1}\right)+\mu d_{2} \tag{3.24}
\end{equation*}
$$

for all $u \in \mathbb{R}^{N}$ and $t \in[0, T]$. It follows from 2.6, 2.7) that

$$
\begin{aligned}
\mu \Phi_{\lambda_{n}}\left(u_{n}\right)-\left\langle\Phi_{\lambda_{n}}^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & \left(\frac{\mu}{2}-1\right)\left(\left\|u_{n}^{+}\right\|^{2}-\left\|u_{n}^{-}\right\|^{2}\right)-\left(\lambda_{n}-1\right)\left(\frac{\mu}{2}-1\right)\left\|u_{n}^{-}\right\|^{2} \\
& -\lambda_{n} \int_{0}^{T}\left(\mu W\left(t, u_{n}\right)-\left\langle\nabla_{u} W\left(t, u_{n}\right), u_{n}\right\rangle\right) d t
\end{aligned}
$$

In the following, we denote $C_{i}>0(i=0,1,2, \ldots)$ for different positive constants. Comparing (2.1) with 2.2), we learn that

$$
\begin{aligned}
& \left(\frac{\mu}{2}-1\right)\left\|i_{n}\right\|_{L^{2}}^{2} \\
& =\mu \Phi_{\lambda_{n}}\left(u_{n}\right)-\left\langle\Phi_{\lambda_{n}}^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\left(\frac{\mu}{2}-1\right) \int_{0}^{T}\left\langle U(t) u_{n}, u_{n}\right\rangle d t \\
& \quad+\left(\lambda_{n}-1\right)\left(\frac{\mu}{2}-1\right)\left\|u_{n}^{-}\right\|^{2}+\lambda_{n} \int_{0}^{T}\left(\mu W\left(t, u_{n}\right)-\left\langle\nabla_{u} W\left(t, u_{n}\right), u_{n}\right\rangle\right) d t
\end{aligned}
$$

This together with the positive definite assumption of matrix $U,(2.4$, , 3.21, , 3.24) and $\mu>2$ implies

$$
\begin{align*}
\left(\frac{\mu}{2}-1\right)\left\|i_{n}\right\|_{L^{2}}^{2} \leq & C_{1}+\left(\frac{\mu}{2}-1\right)\left(\lambda_{n}-1\right)\left\|u_{n}^{-}\right\|^{2} \\
& +\lambda_{n} \int_{0}^{T}\left(a(t)\left|u_{n}\right|^{\beta}+\mu d_{1}\left(L+L^{\alpha+1}\right)+\mu d_{2}\right) d t \tag{3.25}\\
\leq & C_{2}+C_{3}\left(\lambda_{n}-1\right)\left\|u_{n}^{-}\right\|^{2}+C_{4}\left\|u_{n}\right\|^{\beta}
\end{align*}
$$

Note that $0<\beta<2, \lambda_{n} \rightarrow 1$ and $\left\|u_{n}^{-}\right\|^{2} \leq\left\|u_{n}\right\|^{2}$, we have

$$
\frac{\left\|i_{n}\right\|_{L^{2}}^{2}}{\left\|u_{n}\right\|^{2}} \leq \frac{C_{5}}{\left\|u_{n}\right\|^{2}}+C_{6}\left(\lambda_{n}-1\right) \frac{\left\|u_{n}^{-}\right\|^{2}}{\left\|u_{n}\right\|^{2}}+C_{7} \frac{\left\|u_{n}\right\|^{\beta}}{\left\|u_{n}\right\|^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

i.e., $\left\|\dot{v}_{n}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Together with (3.23), we have $v_{n} \rightarrow \bar{v}_{0}$ as $n \rightarrow \infty$. Therefore, we obtain

$$
v_{0}=\bar{v}_{0}, \quad T\left|\bar{v}_{0}\right|^{2}=\left\|\bar{v}_{0}\right\|^{2}=1
$$

Consequently, $\left|u_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ uniformly for a.e. $t \in[0 . T]$. From (S2), we obtain

$$
\begin{aligned}
\liminf _{\left|u_{n}\right| \rightarrow \infty} \frac{\int_{0}^{T} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}} & \geq \frac{\int_{0}^{T} \liminf _{\left|u_{n}\right| \rightarrow \infty} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}} \\
& =\int_{0}^{T}\left[\liminf _{\left|u_{n}\right| \rightarrow \infty} \frac{W\left(t, u_{n}\right)}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2}\right] d t \\
& =\int_{0}^{T}\left[\liminf _{\left|u_{n}\right| \rightarrow \infty} \frac{W\left(t, u_{n}\right)}{\left|u_{n}\right|^{2}}\left|v_{0}\right|^{2}\right] d t>0
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\liminf _{\left|u_{n}\right| \rightarrow \infty} \frac{\int_{0}^{T} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}}>0 \tag{3.26}
\end{equation*}
$$

On the other hand, from (2.4), 2.6), 2.7), (3.21) and (3.24), we have

$$
\begin{aligned}
\left(\frac{\mu}{2}-1\right)\left(\left\|u_{n}^{+}\right\|^{2}-\lambda_{n}\left\|u_{n}^{-}\right\|^{2}\right)= & \mu \Phi_{\lambda_{n}}\left(u_{n}\right)-\left\langle\Phi_{\lambda_{n}}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& +\lambda_{n} \int_{0}^{T}\left(\mu W\left(t, u_{n}\right)-\left\langle\nabla_{u} W\left(t, u_{n}\right), u_{n}\right\rangle\right) d t \\
\leq & C_{1}+\lambda_{n} \int_{0}^{T}\left(a(t)\left|u_{n}\right|^{\beta}+\mu d_{1}\left(L+L^{\alpha+1}\right)+\mu d_{2}\right) d t \\
\leq & C_{8}+C_{9} \lambda_{n}\left\|u_{n}\right\|^{\beta}
\end{aligned}
$$

Note that $\mu>2$; then we obtain

$$
\begin{equation*}
\left(\left\|u_{n}^{+}\right\|^{2}-\lambda_{n}\left\|u_{n}^{-}\right\|^{2}\right) \leq \frac{2 C_{8}}{\mu-2}+\frac{2 C_{9}}{\mu-2} \lambda_{n}\left\|u_{n}\right\|^{\beta} \tag{3.27}
\end{equation*}
$$

By the boundedness of $\Phi_{\lambda_{n}}\left(u_{n}\right)$, and (3.27), we have

$$
\begin{aligned}
\frac{\Phi_{\lambda_{n}}\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}} & =\frac{\frac{1}{2}\left(\left\|u_{n}^{+}\right\|^{2}-\lambda_{n}\left\|u_{n}^{-}\right\|^{2}\right)}{\left\|u_{n}\right\|^{2}}-\frac{\lambda_{n} \int_{0}^{T} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}} \\
& \leq \frac{\frac{C_{8}}{\mu-2}}{\left\|u_{n}\right\|^{2}}+\frac{\frac{C_{9}}{\mu-2} \lambda_{n}\left\|u_{n}\right\|^{\beta}}{\left\|u_{n}\right\|^{2}}-\frac{\lambda_{n} \int_{0}^{T} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}}
\end{aligned}
$$

which together with $0<\beta<2$ implies

$$
\lim _{\left|u_{n}\right| \rightarrow \infty} \inf \frac{\int_{0}^{T} W\left(t, u_{n}\right) d t}{\left\|u_{n}\right\|^{2}}=0
$$

This contradicts to 3.26 . Thus, $\left\{u_{n}\right\}$ is bounded in E.
The proof that $\left\{u_{n}\right\}$ has a strong convergent subsequence is the same as the preceding proof of $\left\{u_{m}^{k}\left(\lambda_{n}\right)\right\}_{m=1}^{\infty}$.

Now for each $k \geq k_{1}$, by 3.21, the limit u^{k} is just a critical point of $\Phi=\Phi_{1}$ with $\Phi\left(u^{k}\right) \in\left[\bar{\alpha}_{k}, \bar{\zeta}_{k}\right]$. Since $\bar{\alpha}_{k} \rightarrow \infty$ as $k \rightarrow \infty$ in (3.17), we obtain infinitely many nontrivial critical points of Φ. Therefore, system (1.1) possesses infinitely many nontrivial solutions. The proof of Theorem 1.1 is complete.

Acknowledgements. The authors sincerely thank the referee for his/her careful reading and helpful and insightful comments of the manuscript. The work is supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (No. 61001139).

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (4) (1973), 349-381.
[2] G. Chen, S. Ma; Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0, J. Math. Anal. Appl. 379 (2011), 842-851.
[3] Y. Ding, C. Lee; Periodic solutions for Hamiltonian systems, SIAM J. Math. Anal. 32 (2000), 555-571.
[4] X. He, X. Wu; Periodic solutions for a class of nonautonomous second order Hamiltonian systems, J.Math.Anal.Appl. 341 (2) (2008), 1354-1364.
[5] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[6] P. H. Rabinowitz; Variational methods for Hamiltonian systems, in: Handbook of Dynamical Systems, vol. 1, North-Holland, 2002, Part 1, Chapter 14, pp. 1091-1127.
[7] J. Sun, H. Chen, J. Nieto; Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl. 373 (2011), 20-29.
[8] Z. Wang, J. Zhang; Periodic solutions of a class of second order non-autonomous Hamiltonian systems, Nonlinear Anal. 72 (2010), 4480-4487.
[9] Q. Zhang, C. Liu; Infinitely many periodic solutions for second order Hamiltonian Systems, J. Differential Equations. 251 (2011), 816-833.
[10] Q. Zhang, X. Tang; New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl. 369 (2010), 357-367.
[11] W. Zou; Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), 343-358.
[12] W. Zou; Multiple solutions for second-order Hamiltonian Systems via computation of the critical groups, Nonlinear Anal. 44 (2001) 975-989.

Hua Gu
College of Science, Hohai University, Nanjing 210098, China
E-mail address: guhuasy@hhu.edu.cn
Tianqing An
College of Science, Hohai University, Nanjing 210098, China
E-mail address: antq@hhu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34C25, 58E05.
 Key words and phrases. Periodic solution; Hamiltonian systems; critical point; variational method.
 (C) 2013 Texas State University - San Marcos.

 Submitted June 21, 2013. Published November 20, 2013.

