Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 253, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EIGENVALUE PROBLEMS FOR $p(x)$-KIRCHHOFF TYPE EQUATIONS

GHASEM A. AFROUZI, MARYAM MIRZAPOUR

Abstract. In this article, we study the nonlocal $p(x)$-Laplacian problem

$$
\begin{gathered}
-M\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{q(x)-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions.

1. Introduction

The purpose of this article is to show the existence of solutions of the $p(x)$ Kirchhoff type eigenvalue problem

$$
\begin{gather*}
-M\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{q(x)-2} u \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a bounded domain with smooth boundary $\partial \Omega, M$: $\mathbb{R}^{+} \rightarrow \mathbb{R}$ is a continuous function, p, q are continuous functions on $\bar{\Omega}$ such that $1<p(x)<N$ and $q(x)>1$ for any $x \in \bar{\Omega}$ and λ is a positive number. The study of problems involving variable exponent growth conditions has a strong motivation due to the fact that they can model various phenomena which arise in the study of elastic mechanics [28, electrorheological fluids [1] or image restoration [6].

Equation (1.1) is called a nonlocal problem because of the the term M, which implies that the equation in $\sqrt{1.1}$ is no longer a pointwise equation. This causes some mathematical difficulties which make the study of such a problem particularly interesting. Nonlocal differential equations are also called Kirchhoff-type equations because Kirchhoff [23] investigated an equation of the form

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{\rho_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.2}
\end{equation*}
$$

which extends the classical D'Alembert's wave equation, by considering the effect of the changing in the length of the string during the vibration. A distinct feature

[^0]is that the 1.2 contains a nonlocal coefficient $\frac{\rho_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x$ which depends on the average $\frac{1}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x$, and hence the equation is no longer a pointwise equation. The parameters in $\sqrt{1.2}$ have the following meanings: L is the length of the string, h is the area of the cross-section, E is the Young modulus of the material, ρ is the mass density and P_{0} is the initial tension. Lions [25] has proposed an abstract framework for the Kirchhoff-type equations. After the work by Lions [25], various equations of Kirchhoff-type have been studied extensively, see e.g. [3, 5] and [9]-14]. The study of Kirchhoff type equations has already been extended to the case involving the p-Laplacian (for details, see [13, 14, 9, 10]) and $p(x)$-Laplacian (see [4, 8, 11, 12, 22]). Motivated by the above papers and the results in [7, 26, we consider 1.1) to study the existence of weak solutions.

2. Preliminaries

For the reader's convenience, we recall some necessary background knowledge and propositions concerning the generalized Lebesgue-Sobolev spaces. We refer the reader to [15, 16, 18, 19] for details.

Let Ω be a bounded domain of \mathbb{R}^{N}, denote

$$
\begin{gathered}
C_{+}(\bar{\Omega})=\{p(x): p(x) \in C(\bar{\Omega}), p(x)>1, \text { for all } x \in \bar{\Omega}\} ; \\
p^{+}=\max \{p(x): x \in \bar{\Omega}\}, \quad p^{-}=\min \{p(x) ; x \in \bar{\Omega}\} \\
L^{p(x)}(\Omega)=\left\{u: u \text { is a measurable real-valued function, } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\},
\end{gathered}
$$

with the norm

$$
|u|_{L^{p(x)}(\Omega)}=|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

becomes a Banach space [24]. We also define the space

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in L^{p(x)}(\Omega)\right\}
$$

equipped with the norm

$$
\|u\|_{W^{1, p(x)}(\Omega)}=|u(x)|_{L^{p(x)}(\Omega)}+|\nabla u(x)|_{L^{p(x)}(\Omega)} .
$$

We denote by $W_{0}^{1, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$. Of course the norm $\|u\|=|\nabla u|_{L^{p(x)}(\Omega)}$ is an equivalent norm in $W_{0}^{1, p(x)}(\Omega)$. In this paper, we denote by $X=W_{0}^{1, p(x)}(\Omega)$.

Proposition $2.1\left([15,19)\right.$. (i) The conjugate space of $L^{p(x)}(\Omega)$ is $L^{p^{\prime}(x)}(\Omega)$, where $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$, we have

$$
\int_{\Omega}|u v| d x \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)} \leq 2|u|_{p(x)}|v|_{p^{\prime}(x)}
$$

(ii) If $p_{1}(x), p_{2}(x) \in C_{+}(\bar{\Omega})$ and $p_{1}(x) \leq p_{2}(x)$ for all $x \in \bar{\Omega}$, then $L^{p_{2}(x)}(\Omega) \hookrightarrow$ $L^{p_{1}(x)}(\Omega)$ and the embedding is continuous.

Proposition $2.2\left([\boxed{20})\right.$. Set $\rho(u)=\int_{\Omega}|\nabla u(x)|^{p(x)} d x$, then for $u \in X$ and $\left(u_{k}\right) \subset$ X, we have
(1) $\|u\|<1$ (respectively $=1 ;>1$) if and only if $\rho(u)<1$ (respectively $=1 ;>1$);
(2) for $u \neq 0,\|u\|=\lambda$ if and only if $\rho\left(\frac{u}{\lambda}\right)=1$;
(3) if $\|u\|>1$, then $\|u\|^{p^{-}} \leq \rho(u) \leq\|u\|^{p^{+}}$;
(4) if $\|u\|<1$, then $\|u\|^{p^{+}} \leq \rho(u) \leq\|u\|^{p^{-}}$;
(5) $\left\|u_{k}\right\| \rightarrow 0$ (respectively $\rightarrow \infty$) if and only if $\rho\left(u_{k}\right) \rightarrow 0$ (respectively $\rightarrow \infty$).

For $x \in \Omega$, let us define

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-p(x)} & \text { if } p(x)<N \\ \infty & \text { if } p(x) \geq N\end{cases}
$$

Proposition 2.3 ([19]). If $q \in C_{+}(\bar{\Omega})$ and $q(x) \leq p^{*}(x)\left(q(x)<p^{*}(x)\right)$ for $x \in \bar{\Omega}$, then there is a continuous (compact) embedding $X \hookrightarrow L^{q(x)}(\Omega)$.

Lemma 2.4 ([21]). Denote

$$
I(u)=\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x, \quad \text { for all } \quad u \in X
$$

then $I(u) \in C^{1}(X, R)$ and the derivative operator I^{\prime} of I is

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \quad \text { for all } u, v \in X
$$

and we have
(1) I is a convex functional;
(2) $I^{\prime}: X \rightarrow X^{*}$ is a bounded homeomorphism and strictly monotone operator;
(3) I^{\prime} is a mapping of type $\left(S_{+}\right)$, namely: $u_{n} \rightharpoonup u$ and $\lim \sup _{n \rightarrow+\infty} I^{\prime}\left(u_{n}\right)\left(u_{n}-\right.$ $u) \leq 0$, imply $u_{n} \rightarrow u$.

Definition 2.5. A function $u \in X$ is said to be a weak solution of (1.1) if

$$
M\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x-\lambda \int_{\Omega}|u|^{q(x)-2} u v d x=0
$$

for all $v \in X$.
The Euler-Lagrange functional associated to 1.1 is

$$
J_{\lambda}(u)=\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x
$$

where $\widehat{M}(t)=\int_{0}^{t} M(\tau) d \tau$. Then

$$
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=M\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x-\lambda \int_{\Omega}|u|^{q(x)-2} u v d x
$$

for all $u, v \in X$, then we know that the weak solution of (1.1) corresponds to the critical point of the functional J_{λ}. Hereafter $M(t)$ is supposed to verify the following assumptions:
(M1) There exists $m_{2} \geq m_{1}>0$ and $\beta \geq \alpha>1$ such that $m_{1} t^{\alpha-1} \leq M(t) \leq$ $m_{2} t^{\beta-1}$.
(M2) For all $t \in \mathbb{R}^{+}, \widehat{M}(t) \geq M(t) t$.
For simplicity, we use c_{i}, to denote the general nonnegative or positive constant (the exact value may change from line to line).

3. Main Results and proofs

Theorem 3.1. Assume that M satisfies (M1) and (M2) and the function $q \in C(\bar{\Omega})$ satisfies

$$
\begin{equation*}
\beta p^{+}<q^{-} \leq q^{+}<p^{*}(x) \tag{3.1}
\end{equation*}
$$

Then for any $\lambda>0$ problem (1.1) possesses a nontrivial weak solution.
Lemma 3.2. There exist $\eta>0$ and $\alpha>0$ such that $J_{\lambda}(u) \geq \alpha>0$ for any $u \in X$ with $\|u\|=\eta$.
Proof. First, we point out that

$$
|u(x)|^{q(x)} \leq|u(x)|^{q^{-}}+|u(x)|^{q^{+}}, \quad \text { for all } x \in \bar{\Omega}
$$

Using the above inequality and (M1), we find that

$$
\begin{aligned}
J_{\lambda}(u) & =\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x \\
& \geq \frac{m_{1}}{\alpha}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)^{\alpha}-\frac{\lambda}{q^{-}}\left(|u|_{q^{-}}^{q^{-}}+|u|_{q^{+}}^{q^{+}}\right) .
\end{aligned}
$$

From the assumptions of Theorem 3.1, X is continuously embedded in $L^{q^{-}}(\Omega)$ and $L^{q^{+}}(\Omega)$. Then, there exist two positive constants c_{1} and c_{2} such that

$$
|u(x)|_{q^{-}} \leq c_{1}\|u\|, \quad|u(x)|_{q^{+}} \leq c_{2}\|u\|, \quad \text { for all } u \in X
$$

Hence, for any $u \in X$ with $\|u\|<1$, we obtain

$$
J_{\lambda}(u) \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}\|u\|^{\alpha p^{+}}-\frac{\lambda}{q^{-}}\left(c_{1}^{q^{-}}\|u\|^{q^{-}}+c_{2}^{q^{+}}\|u\|^{q^{+}}\right) .
$$

Since the function $g:[0,1] \rightarrow \mathbb{R}$ defined by

$$
g(t)=\frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}-\frac{\lambda c_{1}^{q^{-}}}{q^{-}} t^{q^{-}-\alpha p^{+}}-\frac{\lambda c_{2}^{q^{+}}}{q^{-}} t^{q^{+}-\alpha p^{+}}
$$

is positive in a neighborhood of the origin, the proof is complete.
Lemma 3.3. There exists $e \in X$ with $\|e\|>\eta$ (where η is given in Lemma 3.2) such that $J_{\lambda}(e)<0$.

Proof. Let $\psi \in C_{0}^{\infty}(\Omega), \psi \geq 0$ and $\psi \neq 0$ and $t>1$. By (M1) we have

$$
\begin{aligned}
J_{\lambda}(t \psi) & =\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla t \psi|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}|t \psi|^{q(x)} d x \\
& \leq \frac{m_{2}}{\beta}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla t \psi|^{p(x)} d x\right)^{\beta}-\lambda \frac{t^{q^{-}}}{q^{+}} \int_{\Omega}|\psi|^{q(x)} d x \\
& \leq \frac{m_{2}}{\beta\left(p^{-}\right)^{\beta}} t^{\beta p^{+}}\left(\int_{\Omega}|\nabla \psi|^{p(x)} d x\right)^{\beta}-\lambda \frac{t^{q^{-}}}{q^{+}} \int_{\Omega}|\psi|^{q(x)} d x .
\end{aligned}
$$

Since $\beta p^{+}<q^{-}$, we obtain $\lim _{t \rightarrow \infty} J_{\lambda}(t \psi)=-\infty$. Then for $t>1$ large enough, we can take $e=t \psi$ such that $\|e\|>\eta$ and $J_{\lambda}(e)<0$.
Proof of Theorem 3.1. By Lemmas 3.23 .3 and the mountain pass theorem of Ambrosetti and Rabinowitz [2], we deduce the existence of a sequence $\left(u_{n}\right) \subset X$ such that

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right) \rightarrow c_{3}>0, \quad J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

We prove that $\left(u_{n}\right)$ is bounded in X. Arguing by contradiction. We assume that, passing eventually to a subsequence, still denote by $\left(u_{n}\right),\left\|u_{n}\right\| \rightarrow \infty$ and $\left\|u_{n}\right\|>1$ for all n. By (3.2) and (M1)-(M2), for n large enough, we have

$$
\begin{aligned}
& 1+c_{3}+\left\|u_{n}\right\| \\
& \geq J_{\lambda}\left(u_{n}\right)-\frac{1}{q^{-}}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq M\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x-\lambda \int_{\Omega} \frac{1}{q(x)}\left|u_{n}\right|^{q(x)} d x \\
&-\frac{1}{q^{-}} M\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)} d x+\frac{\lambda}{q^{-}} \int_{\Omega}\left|u_{n}\right|^{q(x)} d x \\
& \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha-1}}\left(\frac{1}{p^{+}}-\frac{1}{q^{-}}\right)\left\|u_{n}\right\|^{\alpha p^{-}}+\lambda\left(\frac{1}{q^{-}}-\frac{1}{q(x)}\right) \int_{\Omega}\left|u_{n}\right|^{q(x)} d x \\
& \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha-1}}\left(\frac{1}{p^{+}}-\frac{1}{q^{-}}\right)\left\|u_{n}\right\|^{\alpha p^{-}}+\lambda\left(\frac{1}{q^{-}}-\frac{1}{q(x)}\right)\left(c_{1}\left\|u_{n}\right\|^{q^{-}}+c_{2}\left\|u_{n}\right\|^{q^{+}}\right)
\end{aligned}
$$

Dividing the above inequality by $\left\|u_{n}\right\|^{\alpha p^{-}}$, taking into account (3.1) holds true and passing to the limit as $n \rightarrow \infty$, we obtain a contradiction. It follows that $\left(u_{n}\right)$ is bounded in X. This information, combined with the fact that X is reflexive, implies that there exists a subsequence, still denote by $\left(u_{n}\right)$ and $u_{1} \in X$ such that $\left(u_{n}\right)$ converges weakly to u_{1} in X. Note that Proposition 2.3 yields that X is compactly embedded in $L^{q(x)}(\Omega)$, it follows that $\left(u_{n}\right)$ converges strongly to u_{1} in $L^{q(x)}(\Omega)$. Then by Hölder inequality we deduce

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{q(x)-2} u_{n}\left(u_{n}-u_{1}\right) d x=0 \tag{3.3}
\end{equation*}
$$

Using (3.2), we infer that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}-u_{1}\right\rangle=0 \tag{3.4}
\end{equation*}
$$

Since $\left(u_{n}\right)$ is bounded in X, passing to a subsequence, if necessary, we may assume that

$$
\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x \rightarrow t_{0} \geq 0 \quad \text { as } n \rightarrow \infty
$$

If $t_{0}=0$ then $\left(u_{n}\right)$ converges strongly to $u_{1}=0$ in X and the proof is complete. If $t_{0}>0$ then since the function M is continuous, we obtain

$$
M\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \rightarrow M\left(t_{0}\right) \geq 0 \quad \text { as } n \rightarrow \infty
$$

Thus, by (M1), for sufficiently large n, we have

$$
\begin{equation*}
0<c_{4} \leq M\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \leq c_{5} \tag{3.5}
\end{equation*}
$$

From (3.3)-(3.5), we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u_{1}\right) d x=0 \tag{3.6}
\end{equation*}
$$

Using Lemma 2.4 we deduce that actually $\left(u_{n}\right)$ converges strongly to u_{1} in X. Then by relation (3.2) we have

$$
J_{\lambda}\left(u_{1}\right)=c_{3}>0, \quad J_{\lambda}^{\prime}\left(u_{1}\right)=0
$$

that is, u_{1} ia a nontrivial weak solution of (1.1).
Theorem 3.4. If we assume that (M1)-(M2) hold and $q \in C_{+}(\bar{\Omega})$ satisfies

$$
\begin{equation*}
1<q^{-} \leq q^{+}<\alpha p^{-} \tag{3.7}
\end{equation*}
$$

then there exists $\lambda^{*}>0$ such that for any $\lambda>\lambda^{*}$, problem (1.1) possesses a nontrivial weak solution.

Under the theorem's conditions, we want to construct a global minimizer of the functional. We start with the following auxiliary result.

Lemma 3.5. The functional J_{λ} is coercive on X.
Proof. By Theorem 3.1 and Proposition 2.2 , we deduce that for all $u \in X$,

$$
\left.J_{\lambda}(u) \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}\left(\int_{\Omega}|\nabla u|^{p(x)} d x\right)\right)^{\alpha}-\frac{\lambda}{q^{-}}\left(c_{1}\|u\|^{q-}+c_{2}\|u\|^{q^{+}}\right) .
$$

Now we set $\|u\|>1$, then

$$
J_{\lambda}(u) \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}\|u\|^{\alpha p^{-}}-\frac{\lambda}{q^{-}}\left(c_{1}\|u\|^{q-}+c_{2}\|u\|^{q^{+}}\right) .
$$

Since by relation (3.7) we have $\alpha p^{-}>q^{+} \geq q^{-}$, we infer that $J_{\lambda}(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$. In other words, J_{λ} is coercive in X.

Proof of Theorem 3.4, $J_{\lambda}(u)$ is a coercive functional and weakly lower semi-continuous on X. These two facts enable us to apply [27, Theorem 1.2] in order to find that there exists $u_{\lambda} \in X$ a global minimizer of J_{λ} and thus a weak solution of problem (1.1).

We show u_{λ} is not trivial for λ large enough. Letting $t_{0}>1$ be a constant and Ω_{1} be an open subset of Ω with $\left|\Omega_{1}\right|>0$, we assume that $v_{0} \in C_{0}^{\infty}(\bar{\Omega})$ is such that $v_{0}(x)=t_{0}$ for any $x \in \overline{\Omega_{1}}$ and $0 \leq v_{0}(x) \leq t_{0}$ in $\Omega \backslash \Omega_{1}$. We have

$$
\begin{aligned}
J_{\lambda}\left(v_{0}\right) & =\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla v_{0}\right|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}\left|v_{0}\right|^{q(x)} d x \\
& \leq c_{6}-\frac{\lambda}{q^{+}} \int_{\Omega}\left|v_{0}\right|^{q(x)} d x \leq c_{6}-\frac{\lambda}{q^{+}} t_{0}^{q^{-}}\left|\Omega_{1}\right| .
\end{aligned}
$$

So there exists $\lambda^{*}>0$ such that $J_{\lambda}\left(v_{0}\right)<0$ for any $\lambda \in\left[\lambda^{*},+\infty\right)$. It follows that for any $\lambda \geq \lambda^{*}, u_{\lambda}$ is a nontrivial weak solution of problem (1.1) for λ large enough.

Theorem 3.6. If $q \in C_{+}(\bar{\Omega})$ with

$$
\begin{equation*}
1<q(x)<p(x)<p^{*}(x) \tag{3.8}
\end{equation*}
$$

then there exists $\lambda^{* *}>0$ such that for any $\lambda \in\left(0, \lambda^{* *}\right)$, problem 1.1) possesses a nontrivial weak solution.

We plan to apply Ekeland variational principle [17] to get a nontrivial solution to problem (1.1). We start with two auxiliary results.

Lemma 3.7. There exists $\lambda^{* *}>0$ such that for any $\lambda \in\left(0, \lambda^{* *}\right)$ there are $\rho, a>0$ such that $J_{\lambda}(u) \geq a>0$ for any $u \in X$ with $\|u\|=\rho$.

Proof. Under the assumption of Theorem 3.6. X is continuously embedded in $L^{q(x)}(\Omega)$. Thus, there exists a positive constant c_{7} such that

$$
\begin{equation*}
|u|_{q(x)} \leq c_{7}\|u\| \quad \text { for all } u \in X \tag{3.9}
\end{equation*}
$$

Now, Let us assume that $\|u\|<\min \left\{1, \frac{1}{c_{7}}\right\}$, where c_{7} is the positive constant from above. Then we have $|u|_{q(x)}<1$. Using Proposition 2.2 we obtain

$$
\begin{equation*}
\int_{\Omega}|u|^{q(x)} d x \leq|u|_{q(x)}^{q^{-}} \quad \text { for all } u \in X \text { with }\|u\|=\rho \in(0,1) \tag{3.10}
\end{equation*}
$$

Relations (3.9) and 3.10 imply

$$
\begin{equation*}
\int_{\Omega}|u|^{q(x)} d x \leq c_{7}^{q^{-}}\|u\|^{q^{-}} \quad \text { for all } u \in X \text { with }\|u\|=\rho . \tag{3.11}
\end{equation*}
$$

Using the hypotheses (M1) and (3.11), we deduce that for any $u \in X$ with $\|u\|=\rho$, the following hold

$$
\begin{aligned}
J_{\lambda}(u) & =\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x \\
& \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}\|u\|^{\alpha p^{+}}-\frac{\lambda}{q^{-}} c_{7}^{q^{-}}\|u\|^{q^{-}} \\
& =\rho^{q^{-}}\left(\frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}} \rho^{\alpha p^{+}-q^{-}}-\frac{\lambda}{q^{-}} c_{7}^{q^{-}}\right) .
\end{aligned}
$$

By (3.8) we have $q^{-} \leq q^{+}<p^{-} \leq p^{+}<\alpha p^{+}$. So, if we take

$$
\begin{equation*}
\lambda^{* *}=\frac{m_{1} q^{-}}{2 \alpha\left(p^{+}\right)^{\alpha}} \rho^{\alpha p^{+}-q^{-}} \tag{3.12}
\end{equation*}
$$

then for any $\lambda \in\left(0, \lambda^{* *}\right)$ and $u \in X$ with $\|u\|=\rho$, there exists $a=\frac{\rho^{\alpha p^{+}}}{2 \alpha\left(p^{+}\right)^{\alpha}}$ such that $J_{\lambda}(u) \geq a>0$.

Lemma 3.8. For any $\lambda \in\left(0, \lambda^{* *}\right)$ given by (3.12), there exists $\varphi \in X$ such that $\varphi \geq 0, \varphi \neq 0$ and $J_{\lambda}(t \varphi)<0$ for all $t>0$ small enough.

Proof. Assumption (3.8) implies that $q(x)<\beta p(x)$. Let $\epsilon_{0}>0$ such that $q^{-}+\epsilon_{0}<$ βp^{-}. Since $q \in C(\bar{\Omega})$, there exists an open set $\Omega_{0} \subset \Omega$ such that $\left|q(x)-q^{-}\right|<\epsilon_{0}$ for all $x \in \Omega_{0}$. It follows that $q(x)<q^{-}+\epsilon_{0}<\beta p^{-}$for all $x \in \Omega_{0}$.

Let $\varphi \in C_{0}^{\infty}(\Omega)$ be such that $\operatorname{supp}(\varphi) \supset \overline{\Omega_{0}}, \varphi(x)=1$ for all $x \in \overline{\Omega_{0}}$ and $0 \leq \varphi \leq 1$ in Ω. Then for any $t \in(0,1)$, we have

$$
\begin{aligned}
J_{\lambda}(t \varphi) & =\widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla t \varphi|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}|t \varphi|^{q(x)} d x \\
& \leq \frac{m_{2}}{\beta}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla t \varphi|^{p(x)} d x\right)^{\beta}-\lambda \int_{\Omega} \frac{1}{q(x)} t^{q(x)}|\varphi|^{q(x)} d x \\
& \leq \frac{m_{2}}{\beta\left(p^{-}\right)^{\beta}} t^{\beta p^{-}}\left(\int_{\Omega}|\nabla \varphi|^{p(x)} d x\right)^{\beta}-\frac{\lambda}{q^{+}} t^{q^{-}+\epsilon_{0}} \int_{\Omega_{0}}|\varphi|^{q(x)} d x<0,
\end{aligned}
$$

for all $t<\delta^{\frac{1}{\beta p^{-}-q^{-}-\epsilon_{0}}}$ with

$$
0<\delta<\min \left\{1, \frac{\lambda \beta\left(p^{-}\right)^{\beta}}{m_{2} q^{+}} \frac{\int_{\Omega_{0}}|\varphi|^{q(x)} d x}{\left(\int_{\Omega}|\nabla \varphi|^{p(x)} d x\right)^{\beta}}\right\}
$$

Proof of Theorem 3.6. Let $\lambda^{* *}$ be defined as in 3.12 and $\lambda \in\left(0, \lambda^{* *}\right)$. By Lemma 3.7, it follows that on the boundary of the ball centered at the origin and of radius ρ in X, we have

$$
\inf _{\partial B_{\rho}(0)} J_{\lambda}(u)>0
$$

On the other hand, by Lemma 3.8, there exists $\varphi \in X$ such that

$$
J_{\lambda}(t \varphi)<0 \text { for } t>0 \text { small enough. }
$$

Moreover, for $u \in B_{\rho}(0)$,

$$
J_{\lambda}(u) \geq \frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}\|u\|^{\alpha p^{+}}-\frac{\lambda}{q^{-}} c_{7}^{q^{-}}\|u\|^{q^{-}} .
$$

It follows that

$$
-\infty<c_{8}=\frac{\inf }{B_{\rho}(0)} J_{\lambda}(u)<0
$$

We let now $0<\varepsilon<\inf _{\partial B_{\rho}(0)} J_{\lambda}-\inf _{B_{\rho}(0)} J_{\lambda}$. Applying Ekeland variational principle [17] to the functional $J_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$, we find $u_{\varepsilon} \in \overline{B_{\rho}(0)}$ such that

$$
\begin{gathered}
J_{\lambda}\left(u_{\varepsilon}\right)<\frac{\inf }{B_{\rho}(0)} J_{\lambda}+\varepsilon \\
J_{\lambda}\left(u_{\varepsilon}\right)<J_{\lambda}(u)+\varepsilon\left\|u-u_{\varepsilon}\right\|, \quad u \neq u_{\varepsilon} .
\end{gathered}
$$

Since

$$
J_{\lambda}\left(u_{\varepsilon}\right) \leq \inf _{B_{\rho}(0)} J_{\lambda}+\varepsilon \leq \inf _{B_{\rho}(0)} J_{\lambda}+\varepsilon<\inf _{\partial B_{\rho}(0)} J_{\lambda},
$$

we deduce that $u_{\varepsilon} \in B_{\rho}(0)$. Now, we define $K_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$ by $K_{\lambda}(u)=J_{\lambda}(u)+$ $\varepsilon\left\|u-u_{\varepsilon}\right\|$. It is clear that u_{ε} is a minimum point of K_{λ} and thus

$$
\frac{K_{\lambda}\left(u_{\varepsilon}+t v\right)-K_{\lambda}\left(u_{\varepsilon}\right)}{t} \geq 0
$$

for small $t>0$ and $v \in B_{\rho}(0)$. The above relation yields

$$
\frac{J_{\lambda}\left(u_{\varepsilon}+t v\right)-J_{\lambda}\left(u_{\varepsilon}\right)}{t}+\varepsilon\|v\| \geq 0
$$

Letting $t \rightarrow 0$ it follows that $\left\langle J_{\lambda}^{\prime}\left(u_{\varepsilon}\right), v\right\rangle+\varepsilon\|v\|>0$ and we infer that $\left\|J_{\lambda}^{\prime}\left(u_{\varepsilon}\right)\right\| \leq \varepsilon$. We deduce that there exists a sequence $\left(v_{n}\right) \subset B_{1}(0)$ such that

$$
\begin{equation*}
J_{\lambda}\left(v_{n}\right) \rightarrow c_{8}, \quad J_{\lambda}^{\prime}\left(v_{n}\right) \rightarrow 0 \tag{3.13}
\end{equation*}
$$

It is clear that $\left(v_{n}\right)$ is bounded in X. Thus, there exists $u_{2} \in X$ such that, up to a subsequence, $\left(v_{n}\right)$ converges weakly to u_{2} in X. Actually, with similar arguments as those used in the proof Theorem 3.1. we can show that $v_{n} \rightarrow u_{2}$ in X. Thus, by relation (3.13),

$$
J_{\lambda}\left(u_{2}\right)=c_{8}<0, \quad J_{\lambda}^{\prime}\left(u_{2}\right)=0
$$

i.e., u_{2} is a nontrivial weak solution for problem (1.1).

References

[1] E. Acerbi, G. Mingione; Gradient estimate for the $p(x)$-Laplacian system, J. Reine Angew. Math, 584 (2005), 117-148.
[2] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[3] A. Arosio, S. Panizzi; On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.
[4] G. Autuori, P. Pucci, M. C. Salvatori; Global nonexistence for nonlinear Kirchhoff systems, Arch. Rat. Mech. Anal., 196 (2010), 489-516.
[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano; Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6 (2001), 701-730.
[6] Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.
[7] N. T. Chung; Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ., 42 (2012), 1-13.
[8] F. Colasuonno, P. Pucci; Multiplicity of solutions for $p(x)$-polyharmonic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.
[9] F. J. S. A. Corrêa, G. M. Figueiredo; On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74 (2006), 263-277.
[10] F. J. S. A. Corrêa, G. M. Figueiredo; On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Letters, 22 (2009), 819-822.
[11] G. Dai, R. Hao; Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275-284.
[12] G. Dai, R. Ma; Solutions for a $p(x)$-Kirchhoff-type equation with Neumann boundary data, Nonlinear Anal., 12 (2011), 2666-2680.
[13] M. Dreher; The Kirchhoff equation for the p-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), 217-238.
[14] M. Dreher; The wave equation for the p-Laplacian, Hokkaido Math. J., 36 (2007), 21-52.
[15] D. E. Edmunds, J. Rákosník; Density of smooth functions in $W^{k, p(x)}(\Omega)$, Proc. R. Soc. A, 437 (1992), 229-236.
[16] D. E. Edmunds, J. Rákosník; Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
[17] I. Ekeland; On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
[18] X. L. Fan, J. S. Shen, D. Zhao; Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
[19] X. L. Fan, D. Zhao; On the spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.
[20] X. L. Fan, X. Y. Han; Existence and multiplicity of solutions for $p(x)$-Laplacian equations in \mathbb{R}^{N}, Nonlinear Anal., 59 (2004), 173-188.
[21] X. L. Fan, Q. H. Zhang; Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852.
[22] X. L. Fan; On nonlocal $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal., 72 (2010), 33143323.
[23] G. Kirchhoff; Mechanik, Teubner, Leipzig, 1883.
[24] O. Kováčik, J. Rákosník; On the spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, Czechoslovak Math. J., 41 (1991), 592-618.
[25] J. L. Lions; On some questions in boundary value problems of mathematical physics, in: Proceedings of international Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977, in: de la Penha, Medeiros (Eds.), Math. Stud., NorthHolland, 30 (1978), 284-346.
[26] M. Mihăilescu, P. Pucci, V. Rădulescu; Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.
[27] M. Struwe; Variational methods: Applications to Nonlinear Partial Differential Equatios and Hamiltonian systems, Springer-Verlag, Berlin, 1996.
[28] V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 9 (1987), 33-66.

4. Corrigendum posted in August 27, 2014

A reader pointed out that no function $M(t)$ can satisfy both hypotheses (M1) and (M2). In response, we present a proof of our results by adding the following assumption

$$
\begin{equation*}
m_{1} q^{-}\left(p^{-}\right)^{\alpha}>m_{2} \alpha p^{-}\left(p^{+}\right)^{\alpha} \tag{4.1}
\end{equation*}
$$

and without assumption (M2).
Modified assumptions. We delete the assumption (M2) and re-state the following:
(M1) There exist $m_{2} \geq m_{1}>0$ and $\alpha>1$ such that

$$
m_{1} t^{\alpha-1} \leq M(t) \leq m_{2} t^{\alpha-1}, \quad \forall t \in \mathbb{R}^{+}
$$

(The original (M1) implies $\alpha=\beta$, so we rename constant α.);
In the proof of Theorem 3.1, By 3.2 and (M1), for n large enough, we can write

$$
\begin{aligned}
1 & +c_{3}+\left\|u_{n}\right\| \\
\geq & J_{\lambda}\left(u_{n}\right)-\frac{1}{q^{-}}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \widehat{M}\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right)-\lambda \int_{\Omega} \frac{1}{q(x)}\left|u_{n}\right|^{q(x)} d x \\
& -\frac{1}{q^{-}} M\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right)+\frac{\lambda}{q^{-}} \int_{\Omega}\left|u_{n}\right|^{q(x)} d x \\
\geq & \frac{m_{1}}{\alpha}\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right)^{\alpha}-\frac{m_{2}}{q^{-}}\left(\int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right)^{\alpha-1} \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)} d x \\
& +\lambda \int_{\Omega}\left(\frac{1}{q^{-}}-\frac{1}{q(x)}\right)\left|u_{n}\right|^{q(x)} d x \\
\geq & \left(\frac{m_{1}}{\alpha\left(p^{+}\right)^{\alpha}}-\frac{m_{2}}{q^{-}\left(p^{-}\right)^{\alpha-1}}\right)\left\|u_{n}\right\|^{\alpha p^{-}}+\lambda\left(c_{1}\left\|u_{n}\right\|^{q^{-}}+c_{2}\left\|u_{n}\right\|^{q^{+}}\right) .
\end{aligned}
$$

Dividing the above inequality by $\left\|u_{n}\right\|^{\alpha p^{-}}$, taking into account (3.1) and (4.1) hold true and passing to the limit as $n \rightarrow \infty$, we obtain a contradiction. It follows that $\left(u_{n}\right)$ is bounded in X.

Theorem 3.6 remains unchanged. However, Theorems 3.1 and 3.4 need to be stated without assumption (M2). Relation 3.1) need to be changed by $\alpha p^{+}<$ $q^{-} \leq q^{+}<p^{*}(x)$. The proofs of Theorems and Lemmas are similar to the original proofs, but replacing β by α.

The authors would like to thank anonymous reader and the editor for allowing us to correct our mistake.

Ghasem Alizadeh Afrouzi

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir
Maryam Mirzapour
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: mirzapour@stu.umz.ac.ir

[^0]: 2000 Mathematics Subject Classification. 35J60, 35J35, 35J70.
 Key words and phrases. $p(x)$-Kirchhoff type equations; variational methods;
 boundary value problems.
 (c) 2013 Texas State University - San Marcos.

 Submitted August 17, 2013. Published November 20, 2013.

