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POINTWISE ESTIMATES FOR SOLUTIONS TO A SYSTEM OF
NONLINEAR DAMPED WAVE EQUATIONS

WENJUN WANG

Abstract. In this article, we consider the existence of global solutions and
pointwise estimates for the Cauchy problem of a nonlinear damped wave equa-

tion. We obtain the existence by using the approach introduced by Li and

Chen in [7] and some estimates of the solution. The proofs of the estimates
are based on a detailed analysis of the Green function of the linear damped

wave equations. Also, we show the Lp convergence rate of the solution.

1. Introduction

In this paper, we consider the nonlinear damped wave equation

∂2
t u−∆u+ ∂tu = F (u), t > 0, x ∈ Rn,

u(0, x) = a(x), ∂tu(0, x) = b(x), x ∈ Rn,
(1.1)

where u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x)) : (0, T )×Rn → Rm is the unknown
vector valued function and a(x) = (a1(x), . . . , am(x)) and b(x) = (b1(x), . . . , bm(x))
are given initial data. The nonlinear smooth vector function F : Rm → Rm,
F (u) = (F1(u), . . . , Fm(u)) such that

Fj(u) = O
( l∏
k=1

u
pj,k
k

)
, (1.2)

with pj,k ≥ 1 or pj,k = 0 for j, k = 1, . . . ,m.
The first aim of this paper is to obtain the existence of classical global solutions

to system (1.1). We show the existence directly by using the Banach fixed point
theorem with a detailed analysis of the Green function. At the same time, we have
the following decay rates of the solutions

‖uj(t)‖L∞ ≤ C(1 + t)−n/2, ‖uj(t)‖L2 ≤ C(1 + t)−n/4, j = 1, . . . ,m. (1.3)

The second aim is to get the pointwise estimate of the solutions to system (1.1).
With the help of the pointwise estimates of the Green function and using the
method of the Green function, we show the pointwise estimates of the solutions to
system (1.1). This estimates represent a clear decaying structure of the solutions.
Furthermore, we get the optimal Lp decay estimates of the solutions.
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There are many authors working in this field. For the single nonlinear damped
wave equation

∂2
t u−∆u+ ∂tu = f(u), t > 0, x ∈ Rn,

u(0, x) = a1(x), ∂tu(0, x) = b1(x), x ∈ Rn,
(1.4)

many results have been published. For the case f(u) = −|u|θu, Kawashima, Nakao
and Ono [6] studied the decay properties of solutions to (1.4) by using the energy
method combined with Lp-Lq estimates. Ono [19] derived sharp decay rates in
the subcritical case of solutions in unbounded domains in Rn. Nakao and Ono in
[12] proved the existence and decay of global solutions weak solutions for (1.4) by
using the potential well method. By employing the weighted L2 energy method,
Nishihara and Zhao [16] obtained that the behavior of solutions to (1.4) as t→∞
is expected to be same as that for the corresponding heat equation. The global
asymptotic behaviors were studied by Nishihara [14, 15] for n = 3, 4 and Ikehata,
Nishihara and Zhao [4] for n ≥ 1. In [9, 11], the pointwise estimates of classical
solutions to (1.4) were obtained.

For the case of f(u) = |u|θu, Ikehata, Miyaoka and Nakatake [3] obtained the
global existence of weak solutions to (1.4). Furthermore, Hosono and Ogawa [1]
obtained the Lp-Lq type estimate of the difference between the solution to (1.4)
and the solutions of corresponding heat and wave equations in the two-dimensional
space. Meanwhile, when 2 ≤ n ≤ 5, the same type estimate was studied by Narazaki
in [13].

For the general case f(u) = O(uθ+1), Wang and Wang [25] proved the pointwise
estimates of classical solutions to (2.1). There also have been a lot of investigations
for those cases. For detail results, please refer to [2, 5, 8, 20, 21, 24, 28].

For the system of the nonlinear damped wave equations

∂2
t u1 −∆u1 + ∂tu1 = |um|p1 , t > 0, x ∈ Rn,
∂2
t u2 −∆u2 + ∂tu2 = |u1|p2 , t > 0, x ∈ Rn,

. . .

∂2
t um −∆um + ∂tum = |um−1|pm , t > 0, x ∈ Rn,

uj(0, x) = aj(x), ∂tuj(0, x) = bj(x), x ∈ Rn, (1 ≤ j ≤ m),

(1.5)

Sun and Wang [22] for m = 2 and Takeda [23] for m ≥ 2 obtained global weak
solutions to system (1.5).

For the general case (1.1), Ogawa and Takeda in [17] obtained the existence of
the global solution under some conditions, which include the results of [22] and [23].
Recently, Ogawa and Takeda in [18] proved the asymptotic behavior of solutions to
the problem (1.1) by using the Lp-Lq type decomposition of the fundamental solu-
tion of the linear damped wave equations into the dissipative part and hyperbolic
part.

However, there are few studies concerning the global existence and decay prop-
erty of classical solutions to the Cauchy problem of the nonlinear damped wave
system. In this paper, we investigate the global existence and pointwise estimates
of classical solution to system (1.1). First of all, we employ the Green function of
the linear damped wave equation to express the solution of system (1.1). Then, we
obtain the global solution directly by using the method introduced by Li and Chen
in [7]. Unlike the usual energy method, this method needn’t to prove the local
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existence and extend the local solution to the global one in time. In this process,
the decay properties of the Green function play an important role. We employ G1

and G2 to define the Green function of linear equation. By a detailed analysis of
the Green function, we obtain the pointwise estimates of the Green function. Com-
pared with the methods in [11, 13, 14], the method of dealing with the existence
theory in this paper is more useful to show a clear decaying structure of the solution.
Secondly, with the obtained pointwise estimates of the Green function, we give the
pointwise estimates of the solution to (1.4) by the method of the Green function.
Finally, as a corollary of the pointwise estimates, the optimal Lp (1 ≤ p ≤ ∞)
convergence rate can be obtained easily.

Throughout this paper, we assume that the nonlinear term {Fj(u)}mj=1 satisfies
the following conditions, for pj,k ∈ [0,+∞) ∪ {0}, (j = 1, . . . ,m; k = 1, . . . ,m),

|∂α̃jFj(u)| ≤ Cα̃j ,δ
∑

αj,1+···+αj,m=α̃j

m∏
k=1

|uk|(pj,k−αj,k)+ , |uj | ≤ δ, 0 ≤ α̃j ≤ p̃j ,

(1.6)

|∂α̃jFj(u)| ≤ Cα̃j ,δ, |uj | ≤ δ, p̃j ≤ α̃j ≤ l, (1.7)

and for |uj | ≤ δ, |vj | ≤ δ, α̃j ≤ l,

|∂α̃jFj(u)− ∂α̃jFj(v)|

≤ Cα̃j ,δ
∑

αj,1+···+αj,m=α̃j

m∑
l=1

{ s−1∏
k=1

|uk|(pj,k−αj,k)+
m∏

k=s+1

|vk|(pj,k−αj,k)+

×
(
|ul|(pj,s−αj,s−1)+ + |vl|(pj,s−αj,s−1)+

)
|us − vs|

}
,

(1.8)

where

p̃j =
m∑
k=1

pj,k, α̃j =
m∑
k=1

αj,k

with αj,k ≥ 0 and (a)+ = max{a, 0}.
Our main results are the following two theorems.

Theorem 1.1. Assume that p̃j ≥ 2, p̃j > 1 + 2
n , l ≥ n + 1 and the initial data

{(aj , bj)|mj=1 ⊂ (H l+1(Rn) ∩W l,1(Rn))× (H l(Rn) ∩W l,1(Rn)) and

N0 :=
m∑
j=1

(
‖aj‖Hl+1(Rn)∩W l,1(Rn) + ‖bj‖Hl(Rn)∩W l,1(Rn)

)
, (1.9)

is sufficiently small and the nonlinear coupling F (u) satisfies the assumptions (1.6),
(1.7) and (1.8). Then there exists a unique global classical solution {uj(t)}mj=1 of
system (1.1).

Moreover, for j = 1, 2, . . . ,m, we have the decay estimates

‖uj‖W l−n−1,∞(Rn) ≤ C(1 + t)−n/2, and ‖uj‖Hl ≤ C(1 + t)−n/4 . (1.10)

For the solution in the above theorem, we have the following pointwise estimates.

Theorem 1.2. Under the assumptions of Theorem 1.1, if for any multi-index α,
|α| < l, there exist some constant r > n and a small positive constant ε0, such that

|∂αx aj |+ |∂αx bj | ≤ ε0(1 + |x|2)−r, (1.11)
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then for |α| < l − n the solution to (1.1) satisfies:

|Dα
xuj(t)| ≤ C(1 + t)−

n+|α|
2 Bn

2
(|x|, t), (1.12)

where BN (|x|, t) =
(
1 + |x|2

1+t

)−N . And for p ∈ [1,∞], we have

‖Dα
xuj(t)‖Lp(Rn) ≤ C(1 + t)−

n
2 (1− 1

p )− |α|2 . (1.13)

Notation. Various positive constants will be denoted by C. Wm,p(Rn), with m ∈
Z+ and p ∈ [1,∞], denotes the usual Sobolev space with the norm

‖f‖Wm,p(Rn) :=
m∑
k=0

‖∂kxf‖Lp(Rn).

In particular, we use Wm,2(Rn) = Hm(Rn), ‖·‖ = ‖·‖L2(Rn), ‖·‖m,p = ‖·‖Wm,p(Rn)

and ‖ · ‖m = ‖ · ‖Hm(Rn).
The rest of this article is organized as follows. In the next section, we show the

pointwise estimates of the Green function. Then the existence of global solutions is
proved in Section 3. Furthermore, the pointwise estimates of solutions for nonlinear
equations are obtained in Section 4.

2. Green Function

To obtain the global existence and pointwise estimates of the solutions, we should
first derive representation formulas of the solutions through the Green function.
The single linearized equation of (1.1) is

∂2
t uj −∆uj + ∂tuj = 0,

uj |t=0 = aj , ujt|t=0 = bj .
(2.1)

Then, the Green function of (2.1) can be defined as follows:

∂2
tG1 −∆G1 + ∂tG1 = 0,

G1|t=0 = δ(x), G1t|t=0 = 0,

and

∂2
tG2 −∆G2 + ∂tG2 = 0,

G2|t=0 = 0, G2t|t=0 = δ(x).

Now, we show the formulas of the solutions in the following theorem. The proof
of the theorem is similar to that of [27, Theorem 2.5]. We show the proof here for
the convenience of the readers.

Theorem 2.1. The solution of (2.1) is

uj(x, t) = G1 ∗ aj +G2 ∗ bj +
∫ t

0

G2(t− s) ∗ Fj(u)(s)ds. (2.2)

Proof. It is obvious that

uj(x, 0) = G1(x, 0) ∗ aj +G2(x, 0) ∗ bj = δ(x) ∗ aj = aj . (2.3)

ujt(x, t) = G1t(x, 0) ∗ aj +G2t(x, 0) ∗ bj +G2(t− t) ∗ Fj(u)(t)

+
∫ t

0

G2t(t− s) ∗ Fj(u)(s)ds.
(2.4)
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Then, we have

ujt(x, 0) = δ(x) ∗ bj = bj , (2.5)

∆uj = ∆G1 ∗ aj + ∆G2 ∗ bj +
∫ t

0

∆G2(t− s) ∗ Fj(u)(s)ds, (2.6)

∂tuj = ∂tG1 ∗ aj + ∂tG2 ∗ bj +G2(t− t) ∗ Fj(u)(t) +
∫ t

0

∂tG2(t− s) ∗ Fj(u)(s)ds,

(2.7)

∂2
t uj = ∂2

tG1 ∗ aj + ∂2
tG2 ∗ bj +G2t(t− t) ∗ Fj(u)(t)

+
∫ t

0

∂2
tG2(t− s) ∗ Fj(u)(s)ds

= ∂2
tG1 ∗ aj + ∂2

tG2 ∗ bj + Fj(u)(t) +
∫ t

0

∂2
tG2(t− s) ∗ Fj(u)(s)ds.

(2.8)

Then, by the definition of the Green function, we obtain

∂2
t uj −∆uj + ∂tuj

= (∂2
tG1 −∆G1 + ∂tG1) ∗ aj + (∂2

tG2 −∆G2 + ∂tG2) ∗ bj

+ Fj(u)(t) +
∫ t

0

(∂2
tG2 −∆G2 + ∂tG2)(t− s) ∗ Fj(u)(s)ds

= Fj(u)(t).

(2.9)

The proof is complete. �

By the Fourier transform and a direct calculation, we have

Ĝ1(ξ, t) = − τ−
τ+ − τ−

eτ+t +
τ+

τ+ − τ−
eτ−t, (2.10)

Ĝ2(ξ, t) =
1

τ+ − τ−
eτ+t − 1

τ+ − τ−
eτ−t, (2.11)

where Ĝi(ξ, t) (i = 1, 2) are the Fourier transform corresponding to Gi(x, t) and

τ± =
−1±

√
1− 4|ξ|2
2

. (2.12)

In what follows, we show the asymptotic behavior of u by using the pointwise
estimates of G1, G2. First, we divide |ξ| into three cases: |ξ| is small, bounded and
big enough. Here, we set

χ1(ξ) =

{
1, if ξ < ε,

0, if ξ > 2ε,
and χ3(ξ) =

{
1, if ξ > R,

0, if ξ < R− 1,
(2.13)

where ε is small enough, R is large enough, and χ1, χ3 are smooth functions. We
denote χ2(ξ) = 1 − χ1(ξ) − χ3(ξ). Then, we set Ĝi,j(ξ, t) = χj(ξ)Gi(ξ, t) where
i = 1, 2; j = 1, 2, 3.

To deal with the coupling of Green function, we need the following two lemmas.
The following lemma corresponds to [26, Lemma 3.2]. We omit its proof here.

Lemma 2.2. Assume that supp f̂ ⊂ {ξ : |ξ| > R} with R large enough, |∂βξ f̂ | ≤
C|ξ|−|β|−1, then there exist distributions f1(x), f2(x), such that f(x) = f1(x) +
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f2(x). And |∂αx f1(x)| ≤ C(1 + |x|2)−N for positive number 2N > n+ |α|, ‖f2‖L1 ≤
C, supp f2(x) ⊂ {x, |x| < 2ε} with ε being sufficiently small.

The proof of the following lemma can be founded in [10]. We omit it here.

Lemma 2.3. If the functions H(x, t) and S(x, t) satisfy

|∂αxH(x, t)| ≤ C(1 + t)−(n+|α|)/2BN (|x|, t),

|∂αxS(x, t)| ≤ C(1 + t)−(2n+|α|)/2Bn(|x|, t),

then ∣∣∣∂αx ∫ t

0

(H(t− τ) ∗ S(τ))dτ
∣∣∣ ≤ C(1 + t)−(n+|α|)/2Bn

2
(|x|, t).

Next we estimate Gi,j(x, t), (i = 1, 2; j = 1, 2, 3) which are the inverse Fourier
transform corresponding to Ĝi,j(ξ, t). First of all, for Gi,j , (i = 1, 2; j = 1, 2), we
can use the following results from [11].

Proposition 2.4. For any positive number N , we have

|∂αxGi,1| ≤ C(1 + t)−
n+|α|

2 BN (|x|, t), i = 1, 2.

Proposition 2.5. There exists a positive number c0, such that

|∂αxGi,2| ≤ Ce−c0tBN (|x|, t), i = 1, 2.

For Gi,3, (i = 1, 2), we show a subtle analysis as follows. When |ξ| is large
enough, using the Taylor expansion, we have√

1− 4|ξ|2 = |ξ|
√
|ξ|−2 − 4 = 2

√
−1|ξ| −

√
−1
4
|ξ|−1 +O(|ξ|−3), (2.14)

1√
1− 4|ξ|2

= |ξ|−1 1√
|ξ|−2 − 4

= −
√
−1
2
|ξ|−1 +

√
−1
16
|ξ|−3 +O(|ξ|−5), (2.15)

By using the Taylor expansion, we have

eτ±t = e(− 1
2±
√
−1|ξ|)t

(
1 +

( k−1∑
j=1

(±aj)|ξ|1−2j
)
t+ . . .

+
1
k!
( k−1∑
j=1

(±aj)|ξ|1−2j
)k
tk +R±(ξ, t)

)
,

(2.16)

where R±(ξ, t) ≤ (1 + t)k+1(1 + |ξ|)1−2k.
Then, by using (2.15) and (2.16), we have

1
τ+ − τ−

eτ+t = e(− 1
2+
√
−1|ξ|)t

( 2k−2∑
j=1

p+
j (t)|ξ|−j + p+

2k−1(t)O(|ξ|1−2k)
)
, (2.17)

1
τ+ − τ−

eτ−t = e(− 1
2−
√
−1|ξ|)t

( 2k−2∑
j=1

p−j (t)|ξ|−j + p−2k−1(t)O(|ξ|1−2k)
)
, (2.18)

τ+
τ+ − τ−

eτ−t = e(− 1
2−
√
−1|ξ|)t

( 2k−2∑
j=0

q−j (t)|ξ|−j + q−2k−1(t)O(|ξ|1−2k)
)
, (2.19)
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τ−
τ+ − τ−

eτ+t = e(− 1
2+
√
−1|ξ|)t

( 2k−2∑
j=0

q+j (t)|ξ|−j + q+2k−1(t)O(|ξ|1−2k)
)
. (2.20)

Here, p±j , q
±
j are polynomials in t with degree no more then j.

Since |ξ| > R, it is observed that

|Ĝ1,3(ξ, t)|+ |Ĝ2,3(ξ, t)| ≤ Ce−t/4. (2.21)

Now, we take

F̂1α = −χ3(ξ)e(− 1
2+
√
−1|ξ|)t

|α|+n+1∑
j=0

q+j (t)|ξ|−j

+ χ3(ξ)e(− 1
2−
√
−1|ξ|)t

|α|+n+1∑
j=0

q−j (t)|ξ|−j ,

(2.22)

and

F̂2α = χ3(ξ)e(− 1
2+
√
−1|ξ|)t

|α|+n+1∑
j=1

p+
j (t)|ξ|−j

− χ3(ξ)e(− 1
2−
√
−1|ξ|)t

|α|+n+1∑
j=1

p−j (t)|ξ|−j .

(2.23)

Then, for the high frequency part, we have the following result.

Proposition 2.6. There exists a positive number c1, such that

|∂αx (Gi,3 − Fiα)| ≤ Ce−c1tBN (|x|, t), i = 1, 2. (2.24)

Proof. It is obvious that

|xβ(∂αx (Gi,3 − Fiα))| ≤
∫
|∂βξ (ξα(Ĝi,3 − F̂iα))|dξ

≤ Ce−c1t
∫
|ξ||α|−|β|−(|α|+n+1)−1dξ

≤ Ce−c1t.

(2.25)

Take |β| = 0 or |β| = 2N , we obtain the the statement of Proposition 2.6. �

3. Global classical solutions

The solution can be constructed in the complete metric space

X = {u(t) = (u1(t), u2(t), . . . , um(t))|‖u‖X ≤ E}, (3.1)

where E is a positive constant and

‖u‖X = sup
t≥0

m∑
j=1

(1 + t)
n
2 ‖uj(·, t)‖W l−n−1,∞(Rn) + sup

t≥0

m∑
j=1

(1 + t)
n
4 ‖uj(·, t)‖Hl(Rn).

Then (X, ‖ · ‖X) is a Banach space. Let

T [u](t) := (T1[u](t), T2[u](t), . . . , Tm[u](t)), (3.2)

where

Tj [u](t) = G1 ∗ aj +G2 ∗ bj +
∫ t

0

G2(t− s) ∗ Fj(u(s))(x)ds, (1 ≤ j ≤ m). (3.3)
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In the following lemma, we show that T is a map from X to itself.

Lemma 3.1. If E and N0 are sufficiently small with N0 � E, then T is a map
from X to X.

Proof. Firstly, we note that

‖Tj [u](t)‖l−n−1,∞ ≤ ‖(G1 − F1α)(t) ∗ aj‖l−n−1,∞ + ‖(G2 − F2α)(t) ∗ bj‖l−n−1,∞

+ ‖F1α(t) ∗ aj‖l−n−1,∞ + ‖F2α(t) ∗ bj‖l−n−1,∞

+
∫ t

0

‖(G2 − F2α)(t− τ) ∗ Fj(u)(τ)‖l−n−1,∞dτ

+
∫ t

0

‖F2α(t− τ) ∗ Fj(u)(τ)‖l−n−1,∞dτ

:=
6∑
i=1

Ii.

For I1, it follows from the Young inequality and Propositions 2.4–2.6 that

I1 ≤ ‖(G1 − F1α)(t)‖L∞‖aj‖l−n−1,1 ≤ C(1 + t)−n/2‖aj‖l−n−1,1. (3.4)

Similarly to the estimates of I1, we obtain

I2 ≤ C(1 + t)−n/2‖bj‖l−n−1,1. (3.5)

By noticing |α| ≤ l− n− 1 and the definition of F1α, for some positive number c2,
we have

|∂αxF1α ∗ aj | ≤
∫
|ξαF̂1αâj |dξ

≤ C‖aj‖l,1e−c2t
∫
χ3(ξ)|ξ||α|−ldξ

≤ C‖aj‖l,1e−c2t.

(3.6)

Similarly, we have
|∂αxF2α ∗ bj | ≤ C‖bj‖l−1,1e−c2t. (3.7)

Then, we obtain

I3 ≤ C(1 + t)−n/2‖aj‖l,1 and I4 ≤ C(1 + t)−n/2‖bj‖l−1,1. (3.8)

To estimate I5 and I6, we give the estimates of Fj(u)(t) as follows:

|∂αxFj(u)(t)| ≤ |∂1
uFj(u)(t)|

m∑
i=1

|∂αx ui|

+ |∂2
uFj(u)(t)|

∑
1≤k1,k2≤m;α1+α2=α

|∂α1
x uk1∂

α2
x uk2 |+ . . .

+ |∂αuFj(u)(t)|
∑

1≤k1,...,km≤m, α1+···+αm=α

|∂α1
x uk1 . . . ∂

αm
x ukm |,

(3.9)

where 0 ≤ αk ≤ α, (k = 1, . . . ,m).
Then, by using (1.6), (1.7), (3.9), the Hölder inequality (‖fg‖L1 ≤ ‖f‖L2‖g‖L2)

and the assumption ‖u‖X ≤ E, we have

‖Fj(u)(t)‖l−n−1,1 ≤ C(1 + t)−
n
2 (p̃j−1)Ep̃j , (3.10)
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‖Fj(u)(t)‖l ≤ C(1 + t)−
n
2 (p̃j−1)−n4Ep̃j . (3.11)

Using the Young inequality, (3.10) and Proposition 2.4 and noticing p̃j > 1 + 2
n ,

for I5, we have

I5 ≤
∫ t

0

‖(G1 − F1α)(t− τ)‖L∞‖Fj(u)(τ)‖l−n−1,1dτ

≤ C
∫ t

0

(1 + t− τ)−n/2‖Fj(u)(τ)‖l−n−1,1dτ

≤ CEp̃j
∫ t

0

(1 + t− τ)−n/2(1 + τ)−
n
2 (p̃j−1)dτ

≤ C(1 + t)−n/2Ep̃j .

For I6, it follows from Lemma 2.2, (3.11) and the Sobolev inequality that

I6 ≤ C
∫ t

0

e−(t−τ)/4‖(f1 + f2) ∗ Fj(u)(τ)‖l−n−1,1dτ

≤ C
∫ t

0

e−(t−τ)/4(‖f1‖L1 + ‖f2‖L1)‖Fj(u)(τ)‖l−n−1,∞dτ

≤ C
∫ t

0

e−(t−τ)/4‖Fj(u)(τ)‖l−n−1,∞dτ

≤ C
∫ t

0

e−(t−τ)/4‖Fj(u)(τ)‖l−[n2 ]dτ

≤ CEp̃j
∫ t

0

e−(t−τ)/4(1 + τ)−
n
2 (p̃j−1)−n4 dτ

≤ C(1 + t)−n/2Ep̃j .

(3.12)

Thus, the combination of (3.4)-(3.12) gives

‖Tj [u](t)‖l−n−1,∞

≤ C(1 + t)−n/2
(
‖aj‖l,1 + ‖bj‖l−1,1 + ‖aj‖l−n−1,1 + ‖bj‖l−n−1,1 + Ep̃j

)
.

(3.13)

To estimate H l norm of Tj [u](t), we consider

‖Tj [u](t)‖l ≤ ‖(G1 −G1,3)(t) ∗ aj‖l + ‖∂t(G2 −G2,3)(t) ∗ bj‖l
+ ‖G1,3(t) ∗ aj‖l + ‖G2,3(t) ∗ bj‖l

+
∫ t

0

‖(G2 −G2,3)(t− τ) ∗ Fj(u)(τ)‖ldτ

+
∫ t

0

‖G2,3(t− τ) ∗ Fj(u)(τ)‖ldτ

:=
6∑
i=1

Ji.

By using Propositions 2.4-2.5 and the Young inequality, for J1, we obtain

J1 ≤ ‖(G1 −G1,3)(t)‖‖aj‖l,1 ≤ C(1 + t)−n/4‖aj‖l,1. (3.14)
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For J3, it follows from the Plancherel theorem and (2.21) that

J3 ≤
l∑

|α|=0

‖G1,3(t) ∗ ∂αx aj‖ =
l∑

|α|=0

‖Ĝ1,3(t)∂̂αx aj‖ ≤ Ce−t/4‖aj‖l. (3.15)

Similar to the estimates of J1 and J3, we obtain

J2 ≤ C(1 + t)−n/4‖bj‖l,1, and J4 ≤ Ce−t/4‖bj‖l. (3.16)

Using Propositions 2.4-2.5, the Young inequality and noticing p̃j > 1 + 2
n , we have

J5 ≤ C
∫ t

0

‖(G2 −G2,3)(t− τ)‖‖Fj(u)(τ)‖ldτ

≤ CEp̃j
∫ t

0

(1 + t− τ)−n/4(1 + t)−
n
2 (p̃j−1)−n4 dτ

≤ C(1 + t)−n/4Ep̃j .

(3.17)

For J6, by using the Plancherel theorem and (2.21), we get

J6 ≤ C
∫ t

0

e−(t−τ)/4‖Fj(u)(τ)‖ldτ ≤ C(1 + t)−n/4Ep̃j . (3.18)

Thus, we obtain

‖Tj [u](t)‖l ≤ C(1 + t)−n/4
(
‖aj‖l + ‖bj‖l + ‖aj‖l,1 + ‖bj‖l,1 + Ep̃j

)
. (3.19)

By using (3.13), (3.19), p̃j > 1 + 2
n and the small assumptions of E and N0 with

N0 � E, we get ‖T [u](t)‖X ≤ E. Thus, the proof of Lemma 3.1 is complete. �

Next, we proof that this map T is a contraction mapping.

Lemma 3.2. Assume u, v ∈ X and E > 0 is sufficiently small, then there exists a
constant γ with 0 < γ < 1, such that

‖T [u]− T [v]‖X ≤ γ‖u− v‖X .

Proof. By the Duhamel principle and the triangle inequality, we have

‖T [u]− T [v]‖l−n−1,∞

≤
∫ t

0

‖(G2 − F2α)(t− τ) ∗ (Fj(u)− Fj(v))(τ)‖l−n−1,∞ dτ

+
∫ t

0

‖F2α(t− τ) ∗ (Fj(u)− Fj(v))(τ)‖l−n−1,∞ dτ

:= H1 +H2.

(3.20)



EJDE-2013/256 POINTWISE ESTIMATES FOR SOLUTIONS 11

By a directly calculation, we have

|∂αxF (u)− ∂αxF (v)|

≤
∣∣∣ m∑
k=1

∂1
uk
F (u)∂αx uk −

m∑
s=1

∂1
vsF (v)∂αx vs

∣∣∣
+
∣∣∣ ∑
1≤k1,k2≤m;αk1+αk2=α

∂2
uk1uk2

F (u)∂αk1x uk1∂
αk2
x uk2

−
∑

1≤s1,s2≤m;αs1+αs2=α

∂2
vs1vs2

F (v)∂αs1x vs1∂
αs2
x vs2

∣∣∣+ . . .

+
∣∣∣ ∑
1≤ki≤m,i=1,...,α;αk1+···+αkα=α

∂αuk1uk2 ...ukα
F (u)∂αk1x uk1 . . . ∂

αkα
x ukα

−
∑

1≤si≤m,i=1,...,α;αs1+···+αsα=α

∂αvs1vs2 ...vsαF (u)∂αs1x vs1 . . . ∂
αsα
x vsα

∣∣∣
≤

m∑
i=1

|∂1
uF (u)∂αx ui − ∂1

vF (v)∂αx vi|

+
∑

1≤k,s≤m;αk+αs=α

|∂2
uF (u)∂αkx uk∂

αs
x us − ∂2

vF (v)∂αkx vk∂
αs
x vs|+ . . .

+
∑

1≤ki≤m,i=1,...,α;αk1+···+αkα=α

|∂αuF (u)∂αk1x uk1 . . . ∂
αkα
x ukα

− ∂αv F (v)∂αk1x vk1 . . . ∂
αkα
x vkα |.

(3.21)

Using (3.21) and the assumption (1.8), we have

‖Fj(u)− Fj(v)‖l,1

≤ C
m∑
s=1

l∑
α̃j=1

( ∑
αj,1+···+αj,m=α̃j

s−1∏
k=1

‖uk‖
pj,k−αj,k
L∞

×
m∏

k=s+1

‖vk‖
(pj,k−αj,k)+
L∞

(
‖us‖

(pj,s−αj,s−1)+
L∞ + ‖vs‖

(pj,s−αj,s−1)+
L∞

)
×
(
‖us − vs‖2

m∑
i=1

(‖ui‖l + ‖vi‖l)
))

+ C

m∑
s=1

l∑
α̃j=1

( ∑
αj,1+···+αj,m=α̃j

s−1∏
k=1

‖vk‖
(pj,k−αj,k)+
L∞

×
m∏

k=s+1

‖vk‖
(pj,k−αj,k)+
L∞

(
‖vs‖

(pj,s−αj,s−1)+
L∞ ‖vs‖L2

))

×
m∑
s=1

l∑
α̃j=1

( ∑
αj,1+···+αj,m=α̃j

s−1∏
k=1

‖∂αkx uk‖L∞
m∏

k=s+1

‖∂αkx vk‖L∞‖us − vs‖l
)
.

(3.22)
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For H1, by using the Young inequality and Propositions 2.4–2.6 and noticing the
definition of ‖ · ‖X and p̃j > 1 + 2

n , we have

H1 ≤
∫ t

0

‖(G2 − F2α)(t− τ)‖L∞‖(Fj(u)− Fj(v))(τ)‖l−n−1,1dτ

≤ C
∫ t

0

(1 + t− τ)−n/2‖(Fj(u)− Fj(v))(τ)‖l−n−1,1dτ

≤ CEp̃j−1

∫ t

0

(1 + t− τ)−n/2(1 + τ)−n/2(p̃j−2)−n/4‖u− v‖Xdτ

≤ CEp̃j−1(1 + t)−n/2‖u− v‖X .

(3.23)

Similarly, by using (3.21), we have

‖Fj(u)− Fj(v)‖l

≤ C
m∑
s=1

l∑
α̃j=1

( ∑
αj,1+···+αj,m=α̃j

s−1∏
k=1

‖uk‖
pj,k−αj,k
L∞

×
m∏

k=s+1

‖vk‖
(pj,k−αj,k)+
L∞

(
‖us‖

(pj,s−αj,s−1)+
L∞ + ‖vs‖

(pj,s−αj,s−1)+
L∞

)
×
(
‖us − vs‖L∞

m∑
i=1

(‖ui‖l + ‖vi‖l)
))

+ C

m∑
s=1

l∑
α̃j=1

∑
αj,1+···+αj,m=α̃j

m∏
k=1

‖vk‖
(pj,k−αj,k)+
L∞

×
m∑
s=1

l∑
α̃j=1

( ∑
αj,1+···+αj,m=α̃j

s−1∏
k=1

‖∂αkx uk‖L∞
m∏

k=s+1

‖∂αkx vk‖L∞‖us − vs‖l
)
.

(3.24)

For H2, similar to the estimate of I6, it follows from Lemma 2.2 and the Sobolev
inequality that

H2 ≤ C
∫ t

0

e−(t−τ)/4‖(Fj(u)− Fj(v))(τ)‖l−n−1,∞dτ

≤ C
∫ t

0

e−(t−τ)/4‖(Fj(u)− Fj(v))(τ)‖l−[n2 ]dτ

≤ CEp̃j
∫ t

0

e−(t−τ)/4(1 + τ)−n/2(p̃j−1)−n/4‖u− v‖Xdτ

≤ CEp̃j (1 + t)−n/2‖u− v‖X ,

where we used p̃j > 1 + 2
n . Then, we obtain

‖T [u]− T [v]‖l−n−1,∞ ≤ CEp̃j (1 + t)−n/2‖u− v‖X . (3.25)

On the other hand, by using the Young inequality, the Plancherel theorem, (2.21)
and Propositions 2.4-2.5, we have

‖T [u]− T [v]‖l ≤
∫ t

0

‖(G2 −G2,3)(t− τ) ∗ (Fj(u)− Fj(v))(τ)‖ldτ
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+
∫ t

0

‖G2,3(t− τ)(t− τ) ∗ (Fj(u)− Fj(v))(τ)‖l dτ

≤ C
∫ t

0

(1 + t− τ)−n/4 (‖Fj(u)− Fj(v)‖l,1 + ‖Fj(u)− Fj(v)‖l) dτ

≤ CEp̃j (1 + t)−n/4‖u− v‖X .
Then

‖T [u]− T [v]‖l ≤ CEp̃j (1 + t)−n/4‖u− v‖X . (3.26)
Combining (3.25) with (3.26), we obtain ‖Tu − Tv‖X ≤ CEp̃j‖u − v‖X . Since
the smallness assumption of E and p̃j > 1 + 2

n , we complete the proof of Lemma
3.2. �

Proof of Theorem 1.1. Lemmas 3.1 and 3.2 show that for sufficiently small initial
data

(aj , bj) ∈ (W l,1(Rn) ∩H l+1(Rn))× (W l,1(Rn) ∩H l(Rn))
for j = 1, 2, . . . ,m, T : X → X is a contraction mapping. By the Banach fixed
point theorem, there exists a fixed point u ∈ X. Here, we obtain the solution
{uj(t)}mj=1 to system (1.1) satisfies ‖u‖X ≤ E. Then, the proof is complete. �

4. Pointwise estimates

In this section, we show the pointwise estimates of the solutions to system (1.1).
First of all, we recall
∂αx uj(x, t)

= ∂αxG1 ∗ aj + ∂αxG2 ∗ bj + ∂αx

∫ t

0

G2(t− s) ∗ Fj(u)(s)ds

= (∂αx (G1 − F1α)(t)) ∗ aj + (∂αx (G2 − F2α)(t)) ∗ bj + ∂αxF1α(t) ∗ aj + ∂αxF2α(t) ∗ bj

+
∫ t

0

(∂αx (G2 − F2α)(t− τ)) ∗ Fj(u)(τ)dτ +
∫ t

0

∂αxF2α(t− τ) ∗ Fj(u)(τ)dτ.

(4.1)

From Propositions 2.4–2.5 and the assumption (1.11), by using Lemma 2.3, we
have

|(∂αx (G1 − F1α)(t)) ∗ aj + (∂αx (G2 − F2α)(t)) ∗ bj |

≤ Cε0(1 + t)−
n+|α|

2 Br(|x|, t).
(4.2)

For some positive number b, by noticing the definition of F1α, |α| < l and assump-
tion (1.11) with r > n, we have

|xβ∂αxF1α ∗ aj | ≤
∫
|∂βξ ξ

αF̂1αâj |dξ ≤ Cε0e−bt. (4.3)

Take |β| = 0 or |β| = n, we obtain

|∂αxF1α ∗ aj | ≤ Cε0e−
b
2 tBn

2
(|x|, t). (4.4)

Similarly, we have
|∂αxF2α ∗ bj | ≤ Cε0e−bt/2Br(|x|, t). (4.5)

To estimate the other parts in (4.1), we set

ϕα(x, t) = (1 + t)
n+|α|

2 (Bn
2

(|x|, t))−1, (4.6)
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and

M(t) = sup
0≤s,τ≤t, |α|≤l

m∑
j=1

|∂αx uj(x, τ)|ϕα(x, s). (4.7)

When |α| ≤ l − 1, from the assumptions (1.6), (1.7) and the definition of M , we
have

|∂αxFj(u)(x, t)| ≤M2(t)(1 + t)−n−
|α|
2 Bn(|x|, t). (4.8)

When |α| = l, from the definition of M , by using Theorem 1.1 and Lemma 3.1, we
have

|∂αxFj(u)(x, s)| ≤M2(t)(1 + t)−n−
|α|
2 Bn(|x|, t) + EM(t)(1 + t)−n−

|α|
2 Bn

2
(|x|, t).

(4.9)
Set

Rα =
∣∣ ∫ t

0

F2α(t− s) ∗ ∂αxFj(u)(s)ds
∣∣.

From Lemma 2.2 and (4.8) and (4.9), we obtain

Rα ≤
∣∣ ∫ t

0

e−b(t−s)(f1 + f2) ∗ ∂αxFj(u)(s)ds
∣∣

≤
∣∣ ∫ t

0

e−b(t−s)f1 ∗ ∂αxFj(u)(s)ds
∣∣+
∣∣ ∫ t

0

e−b(t−s)f2 ∗ ∂αxFj(u)(s)ds
∣∣

:= Rα1 +Rα2 .

(4.10)

The right-hand side of the above inequality can be estimated as follows.

Rα2

≤
∣∣ ∫ t

0

e−b(t−s)
∫

Rn
f2(x− y)∂αxFj(u)(y, s)||y−x|<εdyds

∣∣
≤
∫ t

0

e−b(t−s)
∫

Rn
|f2(x− y)|(M2(t) + EM(t))(1 + t)−n−

|α|
2 Bn

2
(|y|, t)|y−x|<εdyds

≤
∫ t

0

e−b(t−s)‖f2‖L1(M2(t) + EM(t))(1 + t)−n−
|α|
2 Bn

2
(|x|, t)ds

≤ C(1 + t)−
n+|α|

2 (M2(t) + EM(t))Bn
2

(|x|, t).

Since
|∂αx (e−btf1(x))| ≤ C(1 + t)−

n+|α|+1
2 BN (|x|, t),

we have

Rα1 =
∣∣ ∫ t

0

e−b(t−s)f1 ∗ Fj(u)(s)ds
∣∣ ≤ C(1 + t)−

n+|α|
2 (M2(t) +M(t)E)Bn

2
(|x|, t).

From the definition of M , we have

|∂αxFj(u)(x, s)| ≤ CM2(t)(1 + s)−n−
|α|
2 Bn(|x|, s). (4.11)

From Proposition 2.6 and Lemma 2.3, we obtain∣∣ ∫ t

0

(∂αx (G2(t− s)− F2α)) ∗ Fj(u)(s)ds
∣∣

≤ C(M2(t) +M(t)E)(1 + t)−
n+|α|

2 Bn
2

(|x|, t).
(4.12)
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From the above inequalities and the definition of M , we obtain

M(t) ≤ C
(
M2(t) + EM(t) + ε0

)
. (4.13)

Since E and ε0 are small enough, we have M(t) ≤ C. It yields that

|∂αx uj(t)| ≤ C(1 + t)−
n+|α|

2 Bn
2

(|x|, t). (4.14)

Thus, we can easily obtain the optimal Lp, 1 ≤ p ≤ ∞, convergence rate as follows.

Corollary 4.1. Under the assumptions of Theorem 1.1, for p ∈ [1,∞], |α| ≤ l, we
have

‖∂αx uj(·, t)‖Lp ≤ C(1 + t)−
n
2 (1− 1

p )− |α|2 , j = 1, . . . ,m. (4.15)

Thus, we have complete the proof of Theorem 1.2.
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