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GROUND STATE SOLUTION OF A NONLOCAL
BOUNDARY-VALUE PROBLEM

CYRIL JOEL BATKAM

Abstract. In this article, we apply the Nehari manifold method to study the
Kirchhoff type equation

−
“
a + b

Z
Ω
|∇u|2dx

”
∆u = f(x, u)

subject to Dirichlet boundary conditions. Under a general 4-superlinear con-
dition on the nonlinearity f , we prove the existence of a ground state solution,

that is a nontrivial solution which has least energy among the set of nontriv-

ial solutions. If f is odd with respect to the second variable, we also obtain
the existence of infinitely many solutions. Under our assumptions the Nehari

manifold does not need to be of class C1.

1. Introduction

In this paper, we are concerned with the nonlocal boundary-value problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u), in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN with smooth boundary (N = 1, 2, 3), a > 0
and b > 0, and the nonlinearity f : Ω× R→ R satisfies the following conditions.

(F1) f is continuous and there exists a constant c > 0 such that |f(x, u)| ≤
c
(
1 + |u|p−1

)
, where p > 4 for N = 1, 2 and 4 < p < 2? := 2N/(N − 2) for

N = 3.
(F2) f(x, u) = ◦(u) uniformly in x as |u| → 0.
(F3) F (x, u)/u4 →∞ uniformly in x as |u| → ∞, where F (x, u) =

∫ u
0
f(x, s)ds.

(F4) u 7→ f(x, u)/u3 is positive for u 6= 0, non-increasing on (−∞, 0) and non-
decreasing on (0,∞).

Usually, in the study of (1.1) the following Ambrosetti-Rabinowitz’s type condition
is used: There exist µ > 4 and R > 0 such that

0 < µF (x, u) ≤ uf(x, u) ∀x ∈ Ω, |u| ≥ R. (1.2)
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Integrating (1.2) yields the existence of constants c1, c2 > 0 such that F (x, u) ≥
c1|u|µ−c2 for all u; therefore (1.2) is stronger that (F3). It is well known that (1.2)
is mainly used to verify the boundedness of the Palais-Smale sequences of the energy
functional, and without it the problem becomes more complicated. However, there
are many functions which are 4-superlinear but do not satisfy (1.2). An example
of f satisfying assumptions (F1)–(F4), which does not satisfy (1.2) is given at the
end of this article.

We call problem (1.1) nonlocal because of the presence of the term
∫

Ω
|∇u|2dx,

which implies that the first equation in (1.1) is no longer a pointwise equality.
This causes some mathematical difficulties which make the study of such problems
particularly interesting. On the other hand, for a physical point of view problem
(1.1) is related to the stationary analogue of the hyperbolic equations

utt −
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u),

proposed by Kirchhoff [7] as an extension of the classical d’Alembert wave equations
for free vibrations of elastic strings. The Kirchhoff’s model takes into account the
changing in length of the string produced by transverse vibrations. Problem (1.1)
has been widely studied by variational methods since the paper of Lions [8], where
an abstract framework to attack it was introduced. Perera and Zhang [9] considered
(1.1) in the case that f is asymptotically linear at 0 and asymptotically 4-linear at
infinity, and they obtained a nontrivial solution by using the Yang index and critical
group. He and Zou [5], under condition (1.2) and without condition (1.2), obtained
the existence of infinitely many solutions of (1.1) by using the fountain theorems.
Alves et al. [1] considered (1.1) with a critical term and obtained a nontrivial
solution of mountain pass type. In [3, 13, 6] the authors obtained some existence
results for a Kirchhoff’s type problem by using the Nehari manifold approach.

In this article, we also study (1.1) via a reduction on the Nehari manifold. We
are firstly interested in the existence of a ground state solution of (1.1); that is a
nontrivial solution which has least energy among the set of nontrivial solutions of
(1.1). Let X := H1

0 (Ω) be the usual Sobolev space endowed with the inner product
〈·, ·〉 and the associated norm ‖ · ‖,

〈u, v〉 =
∫

Ω

∇u∇vdx, ‖u‖2 = 〈u, u〉.

Under assumption (F1), the solutions of (1.1) are critical points of the functional
Φ ∈ C1(X,R),

Φ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx. (1.3)

We define the Nehari manifold

N :=
{
u ∈ X\{0} : 〈Φ′(u), u〉 = 0

}
. (1.4)

Then any nontrivial solution of (1.1) belongs to N . We would like to show that
infN Φ is attained at some u0 ∈ N which is a critical point of Φ. Since under our
assumptions on f above we do not know if the sub-manifold N of X is of class
C1, we cannot apply the minimax theorems in [10, 11, 14] directly to N in order
to extract the critical points of the functional Φ. To circumvent this difficulty we
follow, as in [13, 6], an approach by Szulkin and Weth [12]. Our main result is the
following theorem.
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Theorem 1.1. Let a > 0 and b > 0. If f satisfies (F1)–(F4), then (1.1) has a
ground state solution. Moreover, if in addition

(F5) f(x,−u) = −f(x, u) for all (x, u) ∈ Ω× R,
then (1.1) has infinitely many solutions.

2. Preliminaries

Throughout this article, we denote by |·|r the norm of the Lebesgue space Lr(Ω).
We considerX, Φ andN as defined in the introduction. A standard argument shows
the following lemma.

Lemma 2.1. If (F1) is satisfied, then Φ ∈ C1(X,R) and we have

〈Φ′(u), v〉 =
(
a+ b‖u‖2

) ∫
Ω

∇u∇vdx−
∫

Ω

vf(x, u)dx. (2.1)

It is well known that the Nehari manifold N is closely linked to the behavior of
the map αu : [0,∞)→ R defined by

αu(t) := Φ(tu), (2.2)

where u ∈ X is fixed. Such a map is known as a fibering map which was introduced
by Drábek and Pohozaev in [4] and discussed in Brown and Zhang [2]. The following
result shows that αu has a unique maximum point if u 6= 0.

Lemma 2.2. Assume that (F1)–(F4) are satisfied. Then for any u ∈ X\{0}, there
exists a unique tu > 0 such that α′u(t) > 0 for every t ∈ (0, tu) and α′u(t) < 0 for
every t > tu.

Proof. (F1) and (F2) imply that for each ε > 0 there exists cε > 0 such that

|f(x, u)| ≤ ε|u|+ cε|u|p−1 and |F (x, u)| ≤ ε|u|2 + cε|u|p. (2.3)

Then using (1.3), we deduce that

αu(t) ≥
(a

2
‖u‖2 − ε|u|22

)
t2 +

b

4
‖u‖4t4 − cεtp|u|pp.

Since u 6= 0, we can choose ε in such a way that a
2‖u‖

2− ε|u|22 > 0. It then follows,
since p > 4, that αu(t) > 0 for t > 0 sufficiently small.

On the other hand (F3) implies: For each δ > 0 there exists cδ > 0 such that

F (x, u) ≥ δ|u|4 − cδ. (2.4)

This implies that

αu(t) ≤ a

2
t2‖u‖2 +

b

4
t4‖u‖4 − δt4|u|44 + cδ|Ω|.

If we choose δ > 0 big enough such that b
4‖u‖

4−δ|u|44 < 0, we see that αu(t)→ −∞
as t→∞. We deduce that αu has a positive maximum.

Now noting that

α′u(t) = 〈Φ′(tu), u〉 = a‖u‖2t+ b‖u‖4t3 −
∫

Ω

uf(x, tu)dx,

the equation α′u(t) = 0 is equivalent to

b‖u‖4 = −a‖u‖
2

t2
+

1
t3

∫
Ω

uf(x, tu)dx.
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By (F4) the map t 7→ 1
t3

∫
Ω
uf(x, tu)dx is increasing on (0,∞). It is then easy to

deduce that the map t 7→ −a‖u‖
2

t2 + 1
t3

∫
Ω
uf(x, tu)dx is strictly increasing on (0,∞).

Hence the maximum point of αu is unique. �

The following lemma gives some properties of tu. Let

S := {u ∈ X : ‖u‖ = 1}.

Lemma 2.3. If (F1)–(F4) are satisfied then:
(1) There exists δ > 0 such that tu ≥ δ for every u ∈ S, where tu is as in

Lemma 2.2 above.
(2) For any compact K ⊂ S, there exists a constant CK such that tu ≤ CK for

every u ∈ K.

Proof. (1) Let u ∈ S and recall that tu is the unique point of maximum of the map
αu(t) = Φ(tu). We deduce from (2.3) and the Sobolev embedding theorem that

Φ(w) ≥
(a

2
− εc1

)
‖w‖2 +

b

4
‖w‖4 − cεc2‖w‖p, ∀w ∈ X\{0},

where c1 > 0 and c2 > 0 are constants. By choosing ε such that a
2 − εc1 ≥

a
4 , we

obtain
Φ(w) ≥ a

4
‖w‖2 +

b

4
‖w‖4 − c3‖w‖p, ∀w ∈ X\{0}.

There then exists δ > 0 sufficiently small such that setting w = δu we obtain

Φ(δu) ≥ a

4
δ2 +

b

4
δ4 − c3δp > 0, ∀u ∈ S.

Since tu > 0 is the unique point of maximum of the function αu we have

αu(tu) ≥ αu(δ) ≥ δ? :=
a

4
δ2 +

b

4
δ4 − c3δp > 0, ∀u ∈ S,

where δ? > 0 does not depend on u ∈ S. We would like to show that tu ≥ γ > 0 for
some γ > 0 and for all u ∈ S. Suppose, on the contrary, that there is a sequence
(tuj , uj), with uj ∈ S such that tuj → 0+. Since uj ∈ S, we have tujuj → 0 in X
and so, in view of the continuity of Φ, we obtain

0 < δ? ≤ αuj
(tuj

) = Φ(tuj
uj)→ 0 = Φ(0)

which is a contradiction. Hence, there is γ > 0 such that tu ≥ γ > 0 for all u ∈ S.
(2) Let K be a compact subset of S. Arguing by contradiction, we assume that

there exists a sequence (un) ⊂ K such that tun → ∞. We know that there exists
δ > 0 such that Φ(tunun) ≥ Φ(δun) > 0. Hence we have

0 <
Φ(tun

un)
t4un

=
1
t4un

[a
2
‖tunun‖2 +

b

4
‖tunun‖4 −

∫
Ω

F (x, tunun)dx
]

=
a

2t2un

+
b

4
−
∫

Ω

F (x, tun
un)

t4un

dx

=
a

2t2un

+
b

4
−
∫

Ω

|un|4
F (x, tunun)
|tun

un|4
dx.

(2.5)

Now since K is compact, the sequence (un) has a converging subsequence. We
can then assume that un → u in X. By the Sobolev embedding theorem un → u
in L2(Ω), and up to a subsequence un(x) → u(x) a.e. in Ω. Clearly ‖u‖ = 1,
and consequently u 6= 0 and |tun

un| → ∞. We point out here that (F2) and (F4)
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imply F (x, u) ≥ 0 for all (x, u) ∈ Ω × R. Hence by using Fatou’s lemma and (F3)
we obtain, by passing to the limit n → ∞ in (2.5), the contradiction 0 ≤ −∞.
Consequently, there exists CK > 0 such that tu ≤ CK for every u ∈ K. �

Now we consider the following two mappings.

M : S → N , M(u) := tuu,

Ψ : S → R, Ψ(u) := Φ ◦M(u).

The next two lemmas are due to Szulkin and Weth [12]. Indeed, Lemmas 2.2 and
2.3 above show that the assumptions in [12] are satisfied.

Lemma 2.4 ([12, Proposition 8]). The mapping M defined above is a homeomor-
phism between S and N whose inverse M−1 is given by

M−1(u) =
u

‖u‖
, ∀u ∈ N .

We recall that a sequence (un) ⊂ X is said to be a Palais-Smale sequence for a
functional ϕ ∈ C1(X,R) if

ϕ′(un)→ 0 and sup
n
|ϕ(un)| <∞.

If every such sequence has a convergent subsequence, then ϕ is said to satisfy the
Palais-Smale condition.

Lemma 2.5 ([12, Corollary 10]). (a) Ψ ∈ C1(S,R) and

〈Ψ′(u), v〉 = ‖M(u)‖〈Φ′(M(u)), v〉 ∀v ∈ Tu(S),

where Tu(S) is the tangent space of S at u.
(b) If (un) is a Palais-Smale sequence for Ψ, then (M(un)) is a Palais-Smale

sequence for Φ. If (un) ⊂ N is a bounded Palais-Smale sequence for Φ,
then (M−1(un)) is a Palais-Smale sequence for Ψ.

(c) u is a critical point of Ψ if and only if M(u) is a nontrivial critical point
of Φ. Moreover, the corresponding critical values coincide and infSΨ =
infNΦ.

(d) If Φ is even, then so is Ψ.

Finally our multiplicity result will be deduced from the following lemma.

Lemma 2.6 ([11]). Let X be an infinite dimensional Hilbert space and let J ∈
C1(S,R) be even. If J is bounded below and satisfies the Palais-Smale condition,
then it possesses infinitely many distinct pairs of critical points.

3. Proof of the main result

We shall prove our main result by applying Lemma 2.5. First we verify the
Palais-Smale condition.

Lemma 3.1. The functional Φ|N satisfies the Palais-Smale condition; that is,
every Palais-Smale sequence for Φ|N has a convergent subsequence.

Proof. Let (un) ⊂ N such that d := supn Φ(un) <∞ and Φ′(un)→ 0. We want to
show that the sequence (un) has a convergent subsequence.
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First we show that (un) is bounded. Arguing by contradiction, we assume that
(un) is unbounded. Hence, up to a subsequence we have ‖un‖ → ∞ and vn :=
un/‖un‖⇀ v. By definition of tvn we have for all t > 0

Φ(tvn
vn) ≥ Φ(tvn) =

a

2
t2 +

b

4
t4 −

∫
Ω

F (x, tvn)dx.

Since vn = M−1(un), it follows that un = tvn
vn and

d ≥ Φ(un) ≥ a

2
t2 +

b

4
t4 −

∫
Ω

F (x, tvn)dx. (3.1)

If v = 0, then the Rellich-Kondrashov theorem implies that vn → 0 in L2(Ω) and
in Lp(Ω). By using (2.3) we deduce that for every ε > 0,∫

Ω

F (x, tvn)dx ≤ εt2|vn|22 + cεt
p|vn|pp → 0.

We then obtain by taking the limit n→∞ in (3.1)

d ≥ a

2
t2 +

b

4
t4.

But this leads to a contradiction if we take t sufficiently large. Consequently we
have v 6= 0. By (1.3) and the definition of vn we have

0 ≤ Φ(un)
‖un‖4

=
a

2‖un‖2
+
b

4
−
∫

Ω

|vn|4
F (x, ‖un‖vn)∣∣‖un‖vn∣∣4 dx.

Since
∣∣‖un‖vn∣∣→∞, we obtain by using one more time Fatou’s lemma the contra-

diction 0 ≤ −∞. The sequence (un) is then bounded.
Up to a subsequence we have un ⇀ u in X. By Rellich-Kondrashov theorem

un → u in Lp(Ω). One can easily verify, using (1.3) and (2.1) that(
a+ b‖un‖2

)
‖un − u‖2

= 〈Φ′(un)− Φ′(u), un − u〉 − b
(
‖un‖2 − ‖u‖2

) ∫
Ω

∇u∇(un − u)dx

+
∫

Ω

(un − u)
(
f(x, un)− f(x, u)

)
dx.

Clearly we have

〈Φ′(un)− Φ′(u), un − u〉 → 0,
(
‖un‖2 − ‖u‖2

) ∫
Ω

∇u∇(un − u)dx→ 0.

By Hölder’s inequality,∣∣∣ ∫
Ω

(un − u)
(
f(x, un)− f(x, u)

)
dx
∣∣∣ ≤ |un − u|p∣∣f(x, un)− f(x, u)

∣∣
p

p−1
.

By (F1), f satisfies the assumptions of [14, Theorem A.2]. Hence |f(x, un) −
f(x, u)| p

p−1
→ 0, and consequently(

a+ b‖un‖2
)
‖un − u‖2 → 0,

which implies that un → u in X. �
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Proof of Theorem 1.1. We know from Lemma 2.5-(a) that Ψ is of class C1 on S.
Since Ψ is also bounded below on S, Ekeland’s variational principle yields the
existence of a sequence (un) ⊂ S such that

Ψ(un)→ inf
S

Ψ and Ψ′(un)→ 0.

By Lemma 2.5 the sequence
(
vn := M(un)

)
⊂ N is a Palais-Smale sequence for Φ.

By Lemma 3.1, we have vn → v up to a subsequence. Since M is a homeomorphism
we deduce that un → u := M−1(v). Hence Ψ′(u) = 0 and Ψ(u) = infS Ψ. By
Lemma 2.5-(c), v is a nontrivial critical point of Φ, and

Φ(v) = Ψ(u) = inf
S

Ψ = inf
N

Φ.

It follows that v is a ground state solution of (1.1).
Now (F5) implies that Φ is even. Hence by Lemma 2.5-(d), Ψ is also even. We

have seen above that Ψ ∈ C1(S,R) is bounded below and satisfies the Palais-Smale
condition. It then follows from Lemma 2.6 that Ψ has infinite many distinct pairs
of critical points. Hence Φ has infinitely many critical points by Lemma 2.5, and
consequently (1.1) has infinitely many solutions. �

Finally, we present an example to illustrate that there is a nonlinear function f
which satisfies the conditions (F1)–(F5), but does not satisfy the condition (1.2).

Example 3.2. Let f(x, u) = u3 ln(1 + |u|). Integrating by parts we obtain

F (x, u) =
1
4
u4 ln

(
1 + |u|

)
− 1

4

(1
4
u4 − 1

3
|u|3 +

1
2
|u|2 − |u| − ln

(
1 + |u|

))
.

It is readily seen that the assumptions (F1)–(F5) are satisfied. It is well known that
integrating (1.2) yields the existence of a constant c1 > 0 such that F (x, u) ≥ c1|u|µ
for |u| large. Therefore, if (1.2) is satisfied for our example above, then we have
that for |u| large,

1
4
u4 ln

(
1 + |u|

)
− 1

4

(1
4
u4 − 1

3
|u|3 +

1
2
|u|2 − |u| − ln

(
1 + |u|

))
≥ c1|u|µ.

Dividing the two members of this inequality by |u|µ and letting |u| → ∞ we get,
since µ > 4, the contradiction 0 ≥ c1. This shows that the condition (1.2) is not
satisfied in our case.

Acknowledgements. We are grateful to the anonymous referees for their careful
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this article.
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