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A UNIQUENESS RESULT FOR AN INVERSE PROBLEM IN A
SPACE-TIME FRACTIONAL DIFFUSION EQUATION

SALIH TATAR, SÜLEYMAN ULUSOY

Abstract. Fractional (nonlocal) diffusion equations replace the integer-order

derivatives in space and time by fractional-order derivatives. This article con-
siders a nonlocal inverse problem and shows that the exponents of the fractional

time and space derivatives are determined uniquely by the data u(t, 0) = g(t),

0 < t < T . The uniqueness result is a theoretical background for determining
experimentally the order of many anomalous diffusion phenomena, which are

important in physics and in environmental engineering.

1. Introduction

The classical diffusion equation ∂tu = ∆u is used to describe a cloud of spreading
particles at the macroscopic level. The point source solution is a Gaussian prob-
ability density that predicts the relative particle concentration. For microscopic
picture, Brownian motion is employed, which describes the path of individual par-
ticles. The space-time fractional diffusion equation ∂βt u = ∆α/2u with 0 < β < 1
and 0 < α < 2 is used to model anomalous diffusion [11]. Here, the fractional deriv-
ative in time is used to describe particle sticking and trapping phenomena and the
fractional space derivative is used to model long particle jumps. These two effects
combined together produce a concentration profile with a sharper peak, and heav-
ier tails. The fractional-time derivative considered here is the Caputo fractional
derivative of order 0 < β < 1 and is defined as

∂βf(t)
∂tβ

:=
1

Γ(1− β)

∫ t

0

∂f(r)
∂r

dr

(t− r)β
, (1.1)

where Γ is the Gamma function. This is intended to properly handle initial values
[2, 3, 5], since its Laplace transform sβ f̃(s)−sβ−1f(0) incorporates the initial value
in the same way the first derivative does. Here, f̃(s) is the usual Laplace transform.
It is well-known that the Caputo derivative has a continuous spectrum [3, 12], with
eigenfunctions given in terms of the Mittag-Leffler function

Eβ(z) :=
∞∑
k=0

zk

Γ(1 + βk)
.
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In fact, it is easy to see that, f(t) = Eβ(−λtβ) solves the eigenvalue equation

∂βf(t)
∂tβ

= −λf(t),

for any λ > 0. This is easily verified by differentiating term-by-term and using
the fact that tp has Caputo derivative tp−β Γ(p+1)

Γ(p+1−β) for p > 0 and 0 < β ≤ 1.
For slow diffusion we take 0 < β < 1, which is related to parameter specification
of the large-time behaviour of the waiting-time distribution function, see [12] and
references therein.

For 0 < α < 2, ∆α/2f denotes the fractional Laplacian, defined for

f ∈ Dom(∆α/2) =
{
f ∈ L2(Rd; dx) :

∫
Rd
|ξ|α|f̂(ξ)|2 dξ <∞

}
as the function with Fourier transform

∆̂α/2f(ξ) = −|ξ|αf̂(ξ), (1.2)

where f̂(ξ) denotes the Fourier transform of f(x). For sufficiently regular func-
tions (for example, C2 functions with bounded second derivatives), the fractional
Laplacian can be defined pointwise by

∆α/2f(x) =
∫

Rd\{0}

(
f(x+ y)− f(x)−∇f(x) · y1{|y|≤1}

) cd,α
|y|d+α

dy, (1.3)

where cd,α > 0 is given by

cd,α

∫
y∈Rd

1− cos(y1)
|y|d+α

dy = 1.

Similar formulations have been observed before, see [3] and references therein. We
note that the fractional Laplacian used here is usually called the Riesz fractional
derivative (see [15] for details) in the fractional calculus community. Following [3],
we observe that if f is bounded and continuous on Rd and f is C2 in an open set D,
then ∆α/2f exists pointwise and is continuous in D. Moreover, if f is C1-function
on [0,∞) satisfying |f ′(t)| ≤ Ctγ−1 for some γ > 0, then by (1.1), the Caputo
derivative ∂βf(t)

∂tβ
of f exists for all t > 0 and the derivative is continuous in t > 0.

The reader is referred to Kilbas et al. [7] and Podlubny [12] for properties of the
Caputo derivative.

Important references documenting the recent interest on inverse problems with
fractional derivatives are [4, 6, 9, 10, 13, 14, 16, 17, 18]. A substantial difference
between our study and those in the latter references is that we consider fractional
derivatives both in the time and space variable whereas those study only consider
fractional derivatives in the time variable. On the other hand, our work shares
with those studies the use of eigenfunction expansion of weak solutions to the
initial/boundary value problem.

The main purpose of this article is to establish the determination of the unique
exponents β and α in the fractional time and space derivatives by means of the
observation data u(t, 0) = g(t), 0 < t < T . This uniqueness result may lead to
the identification of anomalous diffusions. For the sake of simplicity and for the
technical reasons on eigenvalue bounds, throughout this paper we consider d = 1
and α ∈ (1/2, 2).
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This article is organized as follows: In the next section we provide a review of
main properties of the direct problem and introduce the inverse problem. Section
3 includes both the statement and the proof of the main result of this paper.

2. Analysis of the direct problem and formulation of the inverse
problem

First we consider the direct problem

∂β

∂tβ
u(t, x) = ∆α/2u(t, x), −1 < x < 1, 0 < t < T,

u(t,−1) = u(t, 1) = 0, 0 < t < T,

u(0, x) = f(x), −1 < x < 1.

(2.1)

Here T > 0 is a final time and f is a given function.

Definition 2.1 ([3]). A function u(t, x) is said to be a weak solution of (2.1) if the
following conditions hold:

u(t, ·) ∈Wα/2,2
0 (D) for each t > 0,

lim
t↓0

u(x, t) = f(x) a.e.,

∂β

∂tβ
u(t, x) = ∆α/2u(t, x) in the distrubitional sense.

(2.2)

Here Wα/2,2
0 (D) is the

√
ε1-completion of the space C∞c (D) of smooth functions

with compact support in D where ε1(u, u) = ε(u, u) +
∫

R u(x)2dx and ε(u, v) =
εD(u, v) for u, v ∈ W

α/2,2
0 (D). We note that such a definition can be given for

any bounded domain D in Rd, replacing (−1, 1). The last condition of (2.2) is
equivalent to the following (which comes from multiplying the equation by the test
function φ(x)ψ(t), integration by parts and symmetry, for details see [3]): for each
ψ ∈ C1

c (0,∞) and φ ∈ C2
c (D),∫

R

(∫ ∞
0

u(t, x)
∂βψ(t)
∂tβ

dt

)
φ(x) dx =

∫ ∞
0

εD(u(t, ·), φ)ψ(t) dt,

where D = (−1, 1), C1
c (0,∞) is the space of compactly supported C1 (the class of

continuously differentiable functions) functions, C2
c (D) is the space of compactly

supported C2 (the class of twice continuously differentiable functions) functions,

εD(u, v) =
cα
2

∫∫
R×R

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|1+α

dx dy,

for u, v ∈ F , cα > 0 is a constant, εD(u, v) comes from variational formulation and
symmetry (see [3] for details),

F := W
α
2 ,2(R) :=

{
u ∈ L2(R; dx) :

∫∫
R×R

(u(x)− u(y))2

|x− y|1+α
dx dy <∞

}
.
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Following [3], we obtain a useful formula for the weak solution of (2.1):

u(t, x) =
∫ ∞

0

Ex[f(Xs); s < τD]ft(s) ds

=
∫ ∞

0

( ∞∑
n=1

e−sλn〈f, ψn〉ψn(x)
)
ft(s) ds

=
∞∑
n=1

Eβ(−λntβ)〈f, ψn〉ψn(x),

(2.3)

where the last equality comes from a conditioning argument (see [3] for more de-
tails), Ex is the expected value with respect to x, {λn}n≥1 is a sequence of positive
numbers 0 < λ1 ≤ λ2 ≤ . . . , {ψn}n≥1 is an orthonormal basis for L2(D; dx) and
for any f ∈ L2(D; dx) has the representation

f(x) =
∞∑
n=1

〈f, ψn〉ψn(x).

The following lemma indicates an important property of the Mittag-Leffler function,
see [7, 12] for more details.

Lemma 2.2. For each α < 2 and πα/2 < µ < min{π, πα} there exists a constant
C0 > 0 such that

|Eβ(z)| ≤ C0

1 + |z|
, µ ≤ |arg(z)| ≤ π. (2.4)

We recall the following result from [8] about the asymptotic behavior of the
eigenvalues of the fractional Laplacian in an interval, which is used for further
estimates and proofs. We note that in the higher dimensional case, the estimates
are not so explicit, though we believe that a similar uniqueness result holds.

Theorem 2.3. The eigenvalues of the spectral problem for the one-dimensional
fractional Laplace operator, i.e. (−∆)α/2u(x) = λu(x), in the interval D ⊂ R
satisfy the asymptotic equality

λn =
(nπ

2
− (2− α)π

8

)α
+O

( 1
n

)
. (2.5)

Next, we show that the series on the right-hand side of (2.3) is uniformly conver-
gent in x ∈ [−1, 1] and t ∈ (0, T ]. For this purpose, we use the following inequalities
for the eigenvalues and corresponding eigenvectors of the one-dimensional fractional
Laplacian:

C1n
α ≤ λn ≤ C2n

α, n ≥ 1,

|〈f, ψn〉| ≤
√
Mλ−kn ,

|ψn(x)| ≤ C3λ
1/2α
n ,

(2.6)

where Ci, i = 1, 2, 3 are positive constants, and

M :=
∞∑
n=1

λ2k
n 〈f, ψn〉2 <∞,

for some k that satisfies the following inequality (see [1, 3] for details):

k > −1 +
7

2α
. (2.7)
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Then by (2.4) and (2.6) we have
∞∑
n=1

max
0≤x≤l

|Eβ(−λntβ)〈f, ψn〉ψn(x)| ≤
√
MC0C3

∞∑
n=1

1
1 + |λntβ |

λ−kn λ1/2α
n

≤ C?
∞∑
n=1

1
1 + |λntβ |

nα( 1
2α−k) <∞,

(2.8)

where C? =
√
MC0C

2
2C3 is a positive constant. Now using (2.5), we see that the

series on the last line of (2.8) is uniformly convergent if k > −1 + 3
2α , which is

already guaranteed by the condition (2.7).
The inverse problem consists of determining the unknown orders β and α of the

time and space derivatives in the space-time fractional diffusion problem (2.1) from
the measured output data (also called additional condition)

u(t, 0) = g(t), 0 < t < T. (2.9)

For technical reasons in the proof of determining the exponents β and α uniquely,
we will need a specific class of the initial functions f(x) satisfying

〈f(x), ψn(x)〉 > 0 (or 〈f(x), ψn(x)〉 < 0) for all n ≥ 1, (2.10)

where {ψn(x)}n≥1 is the orthonormal basis for L2(D; dx) considered above. In this
article, we assume that g(t) 6≡ 0. Next section is devoted to the statement and the
proof of the uniqueness result for the inverse problem.

3. Statement and the proof of the main result

The main result of the paper, whose proof is also included in this section, reads
as follows.

Theorem 3.1. Let u be the weak solution of (2.1) and let v be the weak solution
of the following equation with the same initial and boundary conditions:

∂γ

∂tγ
u(t, x) = ∆η/2u(t, x), −1 < x < 1, 0 < t < T. (3.1)

If u(t, 0) = v(t, 0), 0 < t < T and (2.10) holds, then β = γ and α = η.

Proof. Using the explicit formula (2.3), the weak solutions u(t, x) and v(t, x) can
be written as follows:

u(t, x) =
∞∑
n=1

Eβ(−λntβ)〈f, ψn〉ψn(x), (3.2)

v(t, x) =
∞∑
n=1

Eγ(−µntγ)〈f, ϕn〉ϕn(x). (3.3)

Here ψn and ϕn are the eigenfunctions corresponding to λn and µn which are
the eigenvalues of the equations (−∆)α/2u(x) = λu(x) and (−∆)η/2v(x) = λv(x),
respectively satisfying ψn(0) = 1 and ϕn(0) = 1. Consequently, assuming that
u(t, 0) = v(t, 0) we have

∞∑
n=1

Eβ(−λntβ)〈f, ψn〉 =
∞∑
n=1

Eγ(−µntγ)〈f, ϕn〉. (3.4)
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Now we derive an asymptotic equality for the left-hand side of (3.4) using the
following well known asymptotic property of the Mittag-Leffler function [7, 12]:

Eβ(−t) =
1

tΓ(1− β)
+O(|t|−2). (3.5)

By (2.5) and (3.5), there exists a constant C4 > 0 such that∣∣∣Eβ(−λntβ)− 1
Γ(1− β)

1
λntβ

∣∣∣ ≤ C4

t2β
. (3.6)

Now we use the asymptotic behaviour of (3.6) on the left-hand side of (3.4). For
this purpose, we add and subtract the term 1

Γ(1−β)λntβ
to right hand side of (3.2).

Then, we obtain
∞∑
n=1

Eβ(−λntβ)〈f, ψn〉

=
∞∑
n=1

〈f, ψn〉
[ 1

Γ(1− β)λntβ
+
{
Eβ(−λntβ)− 1

Γ(1− β)λntβ
}]
.

(3.7)

Finally, we get the following asymptotic equality for the left hand side of (3.4) by
using (3.6) in (3.7)

∞∑
n=1

Eβ(−λntβ)〈f, ψn〉 =
∞∑
n=1

〈f, ψn〉
1

Γ(1− β)
1

λntβ
+O

(
| 1
t2β
|
)
. (3.8)

Arguing similarly for
∑∞
n=1Eγ(−µntγ)〈f, ϕn〉, we have

∞∑
n=1

Eγ(−µntγ)〈f, ϕn〉 =
∞∑
n=1

〈f, ϕn〉
1

Γ(1− γ)
1

µntγ
+O

(
| 1
t2γ
|
)
. (3.9)

Therefore, from (3.4), (3.8) and (3.9), we have, as t→∞,
∞∑
n=1

〈f, ψn〉
1

Γ(1− β)
1

λntβ
+O

(
| 1
t2β
|
)

=
∞∑
n=1

〈f, ϕn〉
1

Γ(1− γ)
1

µntγ
+O

(
| 1
t2γ
|
)
.

(3.10)

To complete the proof, for the moment, we suppose that β > γ. Then multiplying
(3.10) by tγ yields that

− tγ

tβ

∞∑
n=1

〈f, ψn〉
1

Γ(1− β)
1
λn

+O
(
| t
γ

t2β
|
)

+
∞∑
n=1

〈f, ϕn〉
1

Γ(1− γ)
1
µn

+O
(
| 1
tγ
|
)

= 0.

(3.11)

Letting t→∞ in (3.11), we deduce that
∞∑
n=1

〈f, ϕn〉
1

Γ(1− γ)
1
µn

= 0. (3.12)

By (2.10), this is a contradiction since the left-hand side of (3.12) can not be zero.
Similarly, the assumption γ > β leads to a contradiction. Therefore, we conclude
that γ = β, and this completes the first part of the proof.
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Now, we prove the second part of the theorem, i.e. α = η. For this purpose we
show λn = µn, n = 1, 2, 3, . . . . By (3.4) and γ = β we have

∞∑
n=1

Eβ(−λntβ)〈f, ψn〉 =
∞∑
n=1

Eβ(−µntβ)〈f, ϕn〉. (3.13)

We take the Laplace transform of Eβ(−λntβ) as follows:∫ ∞
0

e−ztEβ(−λntβ) dt =
zβ−1

zβ + λn
, Re z > 0. (3.14)

Moreover, if we take the Laplace transform of the Mittag-Leffler function term by
term, we obtain ∫ ∞

0

e−ztEβ(−λntβ) dt =
zβ−1

zβ + λn
, Re z > λ1/β

n . (3.15)

Then by (2.4), we conclude that supt≥0 |Eβ(−λntβ)| < ∞, and this implies that∫∞
0
e−ztEβ(−λntβ) dt is analytic in z for Re z > 0. Thus the analytic continuation

yields (3.14) for Re z > 0. By using (2.4), (2.5), (2.6) and Lebesgue’s convergence
theorem, we get that e−tRe zt−β is integrable for t ∈ (0,∞) with fixed z satisfying
Re z > 0 and∣∣∣e−tRe z

∞∑
n=1

〈f, ψn〉Eβ(−λntβ)
∣∣∣ ≤ C0e

−tRe z
( ∞∑
n=2

〈f, ψn〉
1
|λn|

1
tβ

)
≤ C ′0

tβ
e−tRe z

∞∑
n=1

n−α(k+1),

where C ′0 =
√
MC0C2. Here we note that the series

∑∞
n=1 n

−α(k+1) is convergent
by (2.7). Then, for Re z > 0 we obtain∫ ∞

0

e−zt
∞∑
n=1

〈f, ψn〉Eβ(−λntβ) dt =
∞∑
n=1

〈f, ψn〉
zβ−1

zβ + λn
. (3.16)

Similarly, ∫ ∞
0

e−zt
∞∑
n=1

〈f, ϕn〉Eβ(−µntβ) dt =
∞∑
n=1

〈f, ϕn〉
zβ−1

zβ + µn
. (3.17)

Then, from (3.13), (3.16) and (3.17) we deduce that
∞∑
n=1

〈f, ψn〉
zβ + λn

=
∞∑
n=1

〈f, ϕn〉
zβ + µn

, Re z > 0, (3.18)

or equivalently,
∞∑
n=1

〈f, ψn〉
ρ+ λn

=
∞∑
n=1

〈f, ϕn〉
ρ+ µn

, Re ρ > 0. (3.19)

Since we can continue analytically both sides of (3.19) in ρ, this equality holds
for ρ ∈ C \

(
{−λn}n≥1 ∪ {−µn}n≥1

)
. Now we prove that λ1 = µ1. For this

purpose, assume that λ1 6= µ1. Without loss of generality, we can suppose λ1 <
µ1. Then we can find a suitable disk that contains −λ1 but does not contain
{−λn}n≥2 ∪ {−µn}n≥1. If we integrate (3.19) in this disk, the Cauchy’s integral
formula yields

2πi〈f, ψ1〉 = 0.
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By (2.10), this is a contradiction since 〈f, ψ1〉 can not be zero. This means λ1 = µ1.
By repeating the same argument, we obtain λ2 = µ2. Continuing inductively we
finally deduce that

λn = µn, n = 1, 2, 3, . . . . (3.20)

This means that the following equality holds for n = 1, 2, 3, . . . ,(nπ
2
− (2− α)π

8

)α
+O

( 1
n

)
=
(nπ

2
− (2− η)π

8
)η +O

( 1
n

)
. (3.21)

To conclude α = η, we prove that the function H(α) =
(
nπ
2 −

(2−α)π
8

)α, n =
1, 2, 3, . . . is a monotone increasing function of α. For this purpose, we need to find
the derivative of the function H(α). By using the logarithmic differentiation we
obtain

H ′(α) = H(α)
{

ln
(nπ

2
− (2− α)π

8

)
+ α

π/8(
nπ
2 −

(2−α)π
8

)}. (3.22)

Since the function H(α) and the second term in the bracket are positive for n =
1, 2, 3, . . . and α ∈ (1/2, 2), we estimate the first term in the bracket. We know
that the function ln(x) is positive for x > 1. This means we solve the following
inequality with respect to n:

nπ

2
− (2− α)π

8
≥ 1. (3.23)

Solving (3.23) yields

n ≥ 2
π

+
2− α

4
>

2
π

+
2− 1/2

4
≈ 1.01.

Then we deduce that the function H(α) is monotone increasing function for n =
2, 3, 4, . . . . In addition, for n = 1 we need to solve the inequality

ln
(π

2
− (2− α)π

8

)
+ α

π/8(
π
2 −

(2−α)π
8

) ≥ 0. (3.24)

Solving (3.24) yields α ≥ 0.27 which is already guaranteed by the condition α ∈
(1/2, 2). This completes the proof. �
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