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EXISTENCE OF SOLUTIONS FOR FRACTIONAL
HAMILTONIAN SYSTEMS

CÉSAR TORRES

Abstract. In this work we prove the existence of solutions for the fractional
differential equation

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)), u ∈ Hα(R,RN ).

where α ∈ (1/2, 1). Assuming L is coercive at infinity we show that this

equation has at least one nontrivial solution.

1. Introduction

Fractional differential equations both ordinary and partial ones are applied in
mathematical modeling of processes in physics, mechanics, control theory, biochem-
istry, bioengineering and economics. Therefore the theory of fractional differential
equations is an area intensively developed during last decades [1, 11, 16, 22, 25].
The monographs [12, 17, 19], enclose a review of methods of solving fractional dif-
ferential equations, which are an extension of processes from differential equations
theory.

Recently, also equations including both - left and right fractional derivatives,
are discussed. Let us point out that according to integration by parts formulas
in fractional calculus, we obtain equations mixing left and right operators. Apart
from their possible applications, equations with left and right derivatives are an
interesting and new field in fractional differential equations theory. Some works in
this topic can be founded in papers [3, 4, 13] and their references.

Recently Jiao and Zhou [14], for the first time, showed that the critical point
theory is an effective approach for studying the existence for the following fractional
boundary-value problem

tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

and obtained the existence of at least one nontrivial solution.
Motivated by this work, in this paper we consider a fractional differential equa-

tion with left and right fractional derivatives on R, that is,

tD
α
∞(−∞Dα

t u(t)) + L(t)u(t) = ∇W (t, u(t)) (1.2)
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where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn×n) is a symmetric matrix-valued
function and W : R× Rn → R; satisfies the following conditions:

(L1) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an
l ∈ C(R, (0,∞)) such that l(t)→ +∞ as t→∞ and

(L(t)x, x) ≥ l(t)|x|2, for all t ∈ R x ∈ Rn. (1.3)

(W1) W ∈ C1(R× Rn,R) and there exists a constant µ > 2 such that

0 < µW (t, x) ≤ (x,∇W (t, x)), for all t ∈ R x ∈ Rn \ {0}.

(W2) |∇W (t, x)| = o(|x|) as x→ 0 uniformly with respect to t ∈ R.
(W3) There exists W ∈ C(Rn,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)| for every x ∈ Rn t ∈ R.

In particular, if α = 1, Equation (1.2) reduces to the standard second-order
differential equation

u′′ − L(t)u+∇W (t, u) = 0, (1.4)

where W : R × Rn → R is a given function and ∇W (t, u) is the gradient of W
at u. The existence of homoclinic solution is one of the most important prob-
lems in the history of that kind of equations, and has been studied intensively by
many mathematicians. Assuming that L(t) and W (t, u) are independent of t, or
T -periodic in t, many authors have studied the existence of homoclinic solutions for
(1.4) via critical point theory and variational methods. In this case, the existence
of homoclinic solution can be obtained by going to the limit of periodic solutions
of approximating problems.

If L(t) and W (t, u) are neither autonomous nor periodic in t, this problem is
quite different from the ones just described, because the lack of compacteness of
the Sobolev embedding. In [20] the authors considered (1.4) without periodicity
assumptions on L andW and showed that (1.4) possesses one homoclinic solution by
using a variant of the mountain pass theorem without the Palais-Smale contidion. In
[18], under the same assumptions of [20], the authors, by employing a new compact
embedding theorem, obtained the existence of homoclinic solution of (1.4).

Physical models containing left and right fractional differential operators have
recently renewed attention from scientists which is mainly due to applications as
models for physical phenomena exhibiting anomalous diffusion. A strong motiva-
tion for investigating the fractional differential equation (1.2) comes from symmetry
fractional advection-dispersion equation (SADE for short). A fractional advection-
dispersion equation (ADE for short) is a generalization of the classical ADE in
which the second-order derivative is replaced with a fractional-order derivative. In
contrast to the classical ADE, the fractional ADE has solutions that resemble the
highly skewed and heavy-tailed breakthrough curves observed in field and labora-
tory studies [5], [7], in particular in contaminant transport of ground-water flow [6].
In [6], the authors state that solutes moving through a highly heterogeneous aquifer
violations violates the basic assumptions of local second order theories because of
large deviations from the stochastic process of Brownian motion.

According to [5], the one-dimensional form of the fractional ADE can be written
as

∂C
∂t

= −v ∂C
∂x

+Dj ∂
γC
∂γx

+D(1− j) ∂γC
∂(−x)γ

, (1.5)
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where C is the expected concentration, t is time, v is a constant mean velocity, x is
the distance in the direction of mean velocity, D is a constant dispersion coefficient,
0 ≤ j ≤ 1 describes the skewness of the transport process, and γ is the order of left
and right fractional differential operators. For discussions of this equation, see [6]

A special case of the fractional ADE (1.5) describes symmetric transitions, where
j = 1/2. Defining the symmetric operator equivalent to the Riesz potential [23]

2∇γ = Dγ
+ +Dγ

− (1.6)

gives the mass balance equation for advection and symmetric fractional dispersion

∂C
∂t

= −v∇C +D∇γC. (1.7)

The fractional ADE has been studied in one dimension ([6]), over infinite domains
by using the Fourier transform of fractional differential operators to determine a
classical solution. Variational methods, especially the Galerkin approximation has
been investigated to find the solutions of fractional BVP [9] and fractional ADE [8]
on a finite domain by establishing some suitable fractional derivative spaces.

Our goal in this paper is to show how variational methods based on Mountain
pass theorem can be used to get existence results for (1.2). However, the direct
application of the mountain pass theorem is not enough since the Palais-Smale
sequences might lose compactness in the whole space R. To overcome this difficulty
we proof a version of compact embedding for fractional space following the ideas
of [18]. Before stating our results let us introduce the main ingredients involved in
our approach. We define

‖u‖2Iα−∞ =
∫ ∞
−∞
|u(t)|2dt+

∫ ∞
−∞
|−∞Dα

t u(t)|2dt

and the space

Iα−∞(R) = C∞0 (R,Rn)
‖·‖α

.

Now we say that u ∈ Iα−∞(R) is a weak solution of (1.2) if∫ ∞
−∞

[(−∞Dα
t u(t),−∞Dα

t v(t)) + (L(t)u(t), v(t))]dt =
∫ ∞
−∞

(∇W (t, u(t)), v(t))dt,

for all v ∈ Iα−∞(R). For u ∈ Iα−∞(R) we may define the functional

I(u) =
1
2

∫ ∞
−∞

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))]dt−

∫ ∞
−∞

W (t, u(t))dt. (1.8)

which is of class C1. We say that u ∈ Eα is a weak solution of (1.2) if u is a critical
point of I.

Now we are in a position to state our main existence theorem.

Theorem 1.1. Suppose that (L1), (W1)–(W3) hold. Then (1.2) possesses at least
one nontrivial solution.

The rest of the paper is organized as follows: in section 2, subsection 2.1, we
describe the Liouville-Weyl fractional calculus; in subsection 2.2 we introduce the
fractional space that we use in our work and some proposition are proven which
will aid in our analysis. In section 3, we will prove Theorem 1.1.
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2. Preliminary results

2.1. Liouville-Weyl Fractional Calculus. The Liouville-Weyl fractional inte-
grals of order 0 < α < 1 are defined as

−∞I
α
x u(x) =

1
Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ, (2.1)

xI
α
∞u(x) =

1
Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ)dξ . (2.2)

The Liouville-Weyl fractional derivative of order 0 < α < 1 are defined as the
left-inverse operators of the corresponding Liouville-Weyl fractional integrals

−∞D
α
xu(x) =

d

dx
−∞I

1−α
x u(x), (2.3)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x) . (2.4)

The definitions (2.3) and (2.4) may be written in an alternative form:

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ, (2.5)

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)
ξα+1

dξ . (2.6)

We establish the Fourier transform properties of the fractional integral and frac-
tional differential operators. Recall that the Fourier transform û(w) of u(x) is
defined by

û(w) =
∫ ∞
−∞

e−ix.wu(x)dx.

Let u(x) be defined on (−∞,∞). Then the Fourier transform of the Liouville-Weyl
integral and differential operator satisfies

̂−∞Iαx u(x)(w) = (iw)−αû(w), (2.7)

̂
xIα∞u(x)(w) = (−iw)−αû(w), (2.8)

̂−∞Dα
xu(x)(w) = (iw)αû(w), (2.9)

̂
xDα
∞u(x)(w) = (−iw)αû(w) (2.10)

2.2. Fractional derivative spaces. In this section we introduce some fractional
spaces for more detail see [8]. Let α > 0. Define the semi-norm

|u|Iα−∞ = ‖−∞Dα
xu‖L2

and the norm

‖u‖Iα−∞ =
(
‖u‖2L2 + |u|2Iα−∞

)1/2

. (2.11)

Let
Iα−∞(R) = C∞0 (R)

‖·‖Iα−∞ .

Now we define the fractional Sobolev space Hα(R) in terms of the fourier transform.
Let 0 < α < 1, let the semi-norm

|u|α = ‖|w|αû‖L2 (2.12)
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and norm
‖u‖α =

(
‖u‖2L2 + |u|2α

)1/2
,

and let
Hα(R) = C∞0 (R)

‖·‖α
.

We note a function u ∈ L2(R) belongs to Iα−∞(R) if and only if

|w|αû ∈ L2(R). (2.13)

Especially,
|u|Iα−∞ = ‖|w|αû‖L2 . (2.14)

Therefore Iα−∞(R) and Hα(R) are equivalent with equivalent semi-norm and norm.
Analogous to Iα−∞(R) we introduce Iα∞(R). Let the semi-norm

|u|Iα∞ = ‖xDα
∞u‖L2

and the norm

‖u‖Iα∞ =
(
‖u‖2L2 + |u|2Iα∞

)1/2

. (2.15)

Let
Iα∞(R) = C∞0 (R)

‖·‖Iα∞ .

Moreover Iα−∞(R) and Iα∞(R) are equivalent, with equivalent semi-norm and norm
[8].

Now we give the prove of the Sobolev lemma.

Theorem 2.1. If α > 1/2, then Hα(R) ⊂ C(R) and there is a constant C = Cα
such that

sup
x∈R
|u(x)| ≤ C‖u‖α (2.16)

Proof. By the Fourier inversion theorem, if û ∈ L1(R), then u is continuous and

sup
x∈R
|u(x)| ≤ ‖û‖L1 .

Hence, to prove the theorem it is sufficient to prove that

‖û‖L1 ≤ ‖u‖α,

so by Schwarz inequality, we have∫
R
|û(w)|dw =

∫
R

(1 + |w|2)α/2|û(w)| 1
(1 + |w|2)α/2

dw

≤
(∫

R
(1 + |w|2α)|û(w)|2dw

)1/2(∫
R
(1 + |w|2)−αdw

)1/2

.

The first integral on the right is ‖u‖2α, so the theorem depends on the fact that∫
R

(1 + |w|2)−αdw <∞

precisely when α > 1/2. �

Remark 2.2. If u ∈ Hα(R), then u ∈ Lq(R) for all q ∈ [2,∞], since∫
R
|u(x)|qdx ≤ ‖u‖q−2

∞ ‖u‖2L2 .
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Now we introduce a new fractional space. Let

Xα =
{
u ∈ Hα(R,Rn) :

∫
R
|−∞Dα

t u(t)|2 + L(t)u(t).u(t)dt <∞
}
.

The space Xα is a Hilbert space with the inner product

〈u, v〉Xα =
∫

R
(−∞Dα

t u(t), −∞Dα
t v(t)) + L(t)u(t).v(t)dt

and the corresponding norm

‖u‖2Xα = 〈u, u〉Xα

Lemma 2.3. Suppose L satisfies (L1). Then Xα is continuously embedded in
Hα(R,Rn).

Proof. Since l ∈ C(R, (0,∞)) and l is coercive, then lmin = mint∈R l(t) exists, so
we have

(L(t)u(t), u(t)) ≥ l(t)|u(t)|2 ≥ lmin|u(t)|2, ∀t ∈ R.
Then

lmin‖u‖2α = lmin

(∫
R
|−∞Dα

t u(t)|2 + |u(t)|2dt
)

≤ lmin

∫
R
|−∞Dα

t u(t)|2dt+
∫

R
(L(t)u(t), u(t))dt

So
‖u‖2α ≤ K‖u‖2Xα (2.17)

where K = max{lmin, 1}/lmin. �

Lemma 2.4. Suppose L satisfies (L1). Then the imbedding of Xα in L2(R) is
compact.

Proof. We note first that by Lemma 2.3 and Remark 2.2 we have

Xα ↪→ L2(R) is continuous.

Now, let (uk) ∈ Xα be a sequence such that uk ⇀ u in Xα. We will show that
uk → u in L2(R). Suppose, without loss of generality, that uk → 0 in Xα. The
Banach-Steinhaus theorem implies that

A = sup
k
‖uk‖Xα < +∞

Let ε > 0; there is T0 < 0 such that 1
l(t) ≤ ε for all t such that t ≤ T0. Similarly,

there is T1 > 0, such that 1
l(t) ≤ ε for all t ≥ T1. Sobolev’s theorem (see e.g. [24])

implies that uk → 0 uniformly on Ω = [T0, T1], so there is a k0 such that∫
Ω

|uk(t)|2dt ≤ ε, for all k ≥ k0. (2.18)

Since 1/l(t) ≤ ε on (−∞, T0] we have∫ T0

−∞
|uk(t)|2dt ≤ ε

∫ T0

−∞
l(t)|uk(t)|2dt ≤ εA2. (2.19)

Similarly, since 1/l(t) ≤ ε on [T1,+∞), we have∫ +∞

T1

|uk(t)|2dt ≤ εA2. (2.20)
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Combining (2.18), (2.19) and (2.20) we obtain uk → 0 in L2(R,Rn). �

Lemma 2.5. There are constants c1 > 0 and c2 > 0 such that

W (t, u) ≥ c1|u|µ, |u| ≥ 1 , (2.21)

W (t, u) ≤ c2|u|µ, |u| ≤ 1 . (2.22)

Proof. By (W1) we note that

µW (t, σu) ≤ (σu,∇W (t, σu)).

Let f(σ) = W (t, σu), then
d

dσ

(
f(σ)σ−µ

)
≥ 0 . (2.23)

Now we consider two cases
Case 1. |u| ≤ 1. In this case we integrate (2.23), from 1 to 1/|u| and we obtain

W (t, u) ≤W (t,
u

|u|
)|u|µ. (2.24)

Case 2. |u| ≥ 1. In this case we integrate (2.23), from 1/|u| to 1 and we obtain

W (t, u) ≥ |u|µW (t,
u

|u|
). (2.25)

Now, since u ∈ Rn, u
|u| ∈ B(0, 1). So, since W is continuous and B(0, 1) is compact,

there are c1 > 0 and c2 > 0 such that

c1 ≤W (t, u) ≤ c2, for every u ∈ B(0, 1).

Therefore, we get the statement of the lemma. �

Remark 2.6. By lemma 2.5, we have

W (t, u) = o(|u|2) as u→ 0 uniformly in t ∈ R (2.26)

In addition, by (W2), for any u ∈ Rn such that |u| ≤M1, there exists some constant
d > 0 (dependent on M1) such that

|∇W (t, u(t))| ≤ d|u(t)| . (2.27)

As in [18, lemma 2], we obtain the following result.

Lemma 2.7. Suppose that (L1), (W1)-(W2) are satisfied. If uk ⇀ u in Xα, then
∇W (t, uk)→ ∇W (t, u) in L2(R,Rn).

Proof. Assume that uk ⇀ u in Xα. Then there exists a constant d1 > 0 such that,
by Banach-Steinhaus theorem and (2.16),

sup
k∈N
‖uk‖∞ ≤ d1, ‖u‖∞ ≤ d1.

By (W2), for any ε > 0 there is δ > 0 such that

|uk| < δ implies |∇W (t, uk)| ≤ ε|uk| .

By (W3) there is M > 0 such that

|∇W (t, uk)| ≤M, forall δ < uk ≤ d1 .

Therefore, there exists a constant d2 > 0 (dependening on d1) such that

|∇W (t, uk(t))| ≤ d2|uk(t)|, |∇W (t, u(t))| ≤ d2|u(t)|
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for all k ∈ N and t ∈ R. Hence,

|∇W (t, uk(t))−∇W (t, u(t))| ≤ d2(|uk(t)|+ |u(t)|) ≤ d2(|uk(t)− u(t)|+ 2|u(t)|) .

Since, by lemma 2.4, uk → u in L2(R,Rn), passing to a subsequence if necessary,
it can be assumed that

∞∑
k=1

‖uk − u‖L2 <∞ .

But this implies uk(t)→ u(t) almost everywhere t ∈ R and
∞∑
k=1

|uk(t)− u(t)| = v(t) ∈ L2(R,Rn) .

Therefore,
|∇W (t, uk(t))−∇W (t, u(t))| ≤ d2(v(t) + 2|u(t)|) .

Then, using the Lebesgue’s convergence theorem, the lemma is proved. �

Now we introduce more symbols and some definitions. Let B be a real Banach
space, I ∈ C1(B,R), which means that I is a continuously Fréchet-differentiable
functional defined on B. Recall that I ∈ C1(B,R) is said to satisfy the (PS)
condition if any sequence {uk}k∈N ∈ B, for which {I(uk)}k∈N is bounded and
I ′(uk)→ 0 as k → +∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. We obtain the existence of solutions to (1.2) by use of
the following well-known Mountain Pass Theorems, see [21].

Theorem 2.8. Let B be a real Banach space and I ∈ C1(B,R) satisfying the (PS)
condition. Suppose that I(0) = 0 and

(i) There are constants ρ, β > 0 such that I|∂Bρ ≥ β, and
(ii) There is and e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where
Γ = {γ ∈ C([0, 1],B) : γ(0) = 0, γ(1) = e}

3. Proof of Theorem 1.1

Now we establish the corresponding variational framework to obtain the existence
of solutions for (1.2). Define the functional I : Xα → R by

I(u) =
∫

R

[1
2
|−∞Dα

t u(t)|2 +
1
2

(L(t)u(t), u(t))−W (t, u(t))
]
dt

=
1
2
‖u‖2Xα −

∫
R
W (t, u(t))dt

(3.1)

Lemma 3.1. Under the conditions of Theorem 1.1, we have

I ′(u)v =
∫

R
[(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))]dt

(3.2)
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for all u, v ∈ Xα, which yields

I ′(u)u = ‖u‖2Xα −
∫

R
(∇W (t, u(t)), u(t))dt. (3.3)

Moreover, I is a continuously Fréchet-differentiable functional defined on Xα; i.e.,
I ∈ C1(Xα,R).

Proof. We firstly show that I : Xα → R. By (2.26), there is a δ > 0 such that
|u| ≤ δ implies

W (t, u) ≤ ε|u|2 for all t ∈ R (3.4)

Let u ∈ Xα, then u ∈ C(R,Rn), the space of continuous function u ∈ R such that
u(t) → 0 as |t| → +∞. Therefore there is a constant R > 0 such that |t| ≥ R
implies |u(t)| ≤ δ. Hence, by (3.4), we have∫

R
W (t, u(t)) ≤

∫ R

−R
W (t, u(t))dt+ ε

∫
|t|≥R

|u(t)|2dt < +∞. (3.5)

Combining (3.1) and (3.5), we show that I : Xα → R.
Now we prove that I ∈ C1(Xα,R). Rewrite I as follows

I = I1 − I2,

where

I1 =
1
2

∫
R

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))]dt, I2 =

∫
R
W (t, u(t))dt

It is easy to check that I1 ∈ C1(Xα,R) and

I ′1(u)v =
∫

R
[(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))] dt. (3.6)

Thus it is sufficient to show this is the case for I2. In the process we will see that

I ′2(u)v =
∫

R
(∇W (t, u(t)), v(t))dt, (3.7)

which is defined for all u, v ∈ Xα. For any given u ∈ Xα, let us define J(u) : Xα →
R as follows

J(u)v =
∫

R
(∇W (t, u(t)), v(t))dt, ∀v ∈ Xα.

It is obvious that J(u) is linear. Now we show that J(u) is bounded. Indeed, for
any given u ∈ Xα, by (2.27), there is a constant d3 > 0 such that

|∇W (t, u(t))| ≤ d3|u(t)|,

which yields that, by Hölder’s inequality and lemma 2.3,

|J(u)v| =
∣∣ ∫

R
(∇W (t, u(t)), v(t))dt

∣∣
≤ d3

∫
R
|u(t)||v(t)|dt ≤ d3

lmin
‖u‖Xα‖v‖Xα .

(3.8)

Moreover, for u and v ∈ Xα, by mean value theorem, we have∫
R
W (t, u(t) + v(t))dt−

∫
R
W (t, u(t))dt =

∫
R

(∇W (t, u(t) + h(t)v(t)))dt,
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where h(t) ∈ (0, 1). Therefore, by lemma 2.4 and Hölder’s inequality, we have∫
R

(∇W (t, u(t) + h(t)v(t)), v(t))dt−
∫

R
(∇W (t, u(t)), v(t))dt

=
∫

R
(∇W (t, u(t)) + h(t)v(t)−∇W (t, u(t)), v(t))dt→ 0

(3.9)

as v → 0 in Xα. Combining (3.8) and (3.9), we see that (3.7) holds. It remains to
prove that I ′2 is continuous. Suppose that u→ u0 in Xα and note that

sup
‖v‖Xα=1

|I ′2(u)v − I ′2(u0)v| = sup
‖v‖Xα=1

∣∣ ∫
R
(∇W (t, u(t))−∇W (t, u0(t)), v(t))dt

∣∣
≤ sup
‖v‖Xα=1

‖∇W (., u(.))−∇W (., u0(.))‖L2‖v‖L2

≤ 1√
lmin

‖∇W (., u(.))−∇W (., u0(.))‖L2

By lemma 2.4, we obtain that I ′2(u)v− I ′2(u0)v → 0 as ‖u‖Xα → ‖u0‖Xα uniformly
with respect to v, which implies the continuity of I ′2 and I ∈ C1(Xα,R). �

Lemma 3.2. Under conditions (L1), (W1), (W2), I satisfies the (PS) condition.

Proof. Assume that (uk)k∈N ∈ Xα is a sequence such that {I(uk)}k∈N is bounded
and I ′(uk)→ 0 as k → +∞. Then there exists a constant C1 > 0 such that

|I(uk)| ≤ C1, ‖I ′(uk)‖(Xα)∗ ≤ C1 (3.10)

for every k ∈ N. We firstly prove that {uk}k∈N is bounded in Xα. By (3.1), (3.3)
and (W1), we have

C1 + ‖uk‖Xα ≥ I(uk)− 1
µ
I ′(uk)uk

=
(µ

2
− 1
)
‖uk‖2Xα −

∫
R

[W (t, uk(t))− 1
µ

(∇W (t, uk(t)), uk(t))]dt

≥
(µ

2
− 1
)
‖uk‖2Xα .

(3.11)
Since µ > 2, the inequality (3.11) shows that {uk}k∈N is bounded in Xα. So passing
to a subsequence if necessary, it can be assumed that uk ⇀ u in Xα and hence, by
lemma 2.4, uk → u in L2(R,Rn). It follows from the definition of I that

(I ′(uk)− I ′(u))(uk − u)

= ‖uk − u‖2Xα −
∫

R
[∇W (t, uk)−∇W (t, u)](uk − u)dt.

(3.12)

Since uk → u in L2(R,Rn), we have (see lemma 2.7) ∇W (t, uk(t)) → ∇W (t, u(t))
in L2(R,Rn). Hence∫

R
(∇W (t, uk(t))−∇W (t, u(t)), uk(t)− u(t))dt→ 0

as k → +∞. So (3.12) implies ‖uk − u‖Xα → 0 as k → +∞. �

Now we are in the position to give the proof of Theorem 1.1. We divide the
proof into several steps.
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Proof of theorem 1.1. Step 1. It is clear that I(0) = 0 and I ∈ C1(Xα,R) satisfies
the (PS) condition by lemma 3.1 and 3.2.
Step 2. Now We show that there exist constant ρ > 0 and β > 0 such that I
satisfies the condition (i) of theorem 2.8. By lemma 2.4, there is a C0 > 0 such that

‖u‖L2 ≤ C0‖u‖Xα .

On the other hand by theorem 2.1, there is Cα > 0 such that

‖u‖∞ ≤ Cα‖u‖Xα .

By (2.26), for all ε > 0, there exists δ > 0 such that

W (t, u(t)) ≤ ε|u(t)|2 wherever |u(t)| < δ.

Let ρ = δ
Cα

and ‖u‖Xα ≤ ρ; we have ‖u‖∞ ≤ δ
Cα
.Cα = δ. Hence

|W (t, u(t))| ≤ ε|u(t)|2 for all t ∈ R.

Integrating on R, we obtain∫
R
W (t, u(t))dt ≤ ε‖u‖2L2 ≤ εC2

0‖u‖2Xα .

So, if ‖u‖Xα = ρ, then

I(u) =
1
2
‖u‖2Xα −

∫
R
W (t, u(t))dt ≥ (

1
2
− εC2

0 )‖u‖2Xα = (
1
2
− εC2

0 )ρ2.

And it suffices to choose ε = 1
4C2

0
to obtain

I(u) ≥ ρ2

4C2
0

= β > 0 . (3.13)

Step 3. It remains to prove that there exists an e ∈ Xα such that ‖e‖Xα > ρ and
I(e) ≤ 0, where ρ is defined in Step 2. Consider

I(σu) =
σ2

2
‖u‖2Xα −

∫
R
W (t, σu(t))dt

for all σ ∈ R. By (2.21), there is c1 > 0 such that

W (t, u(t)) ≥ c1|u(t)|µ for all |u(t)| ≥ 1. (3.14)

Take some u ∈ Xα such that ‖u‖Xα = 1. Then there exists a subset Ω of positive
measure of R such that u(t) 6= 0 for t ∈ Ω. Take σ > 0 such that σ|u(t)| ≥ 1 for
t ∈ Ω. Then by (3.14), we obtain

I(σu) ≤ σ2

2
− c1σµ

∫
Ω

|u(t)|µdt. (3.15)

Since c1 > 0 and µ > 2, (3.15) implies that I(σu) < 0 for some σ > 0 with
σ|u(t)| ≥ 1 for t ∈ Ω and ‖σu‖Xα > ρ, where ρ is defined in Step 2. By theorem
2.8, I possesses a critical value c ≥ β > 0 given by

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where
Γ = {γ ∈ C([0, 1], Xα) : γ(0) = 0, γ(1) = e}.

Hence there is u ∈ Xα such that I(u) = c, I ′(u) = 0. �
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[25] B. West, M. Bologna, P. Grigolini; Physics of fractal operators, Springer-Verlag, Berlin, 2003.

César Torres
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