Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 26, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A FIXED POINT METHOD FOR NONLINEAR EQUATIONS INVOLVING A DUALITY MAPPING DEFINED ON PRODUCT SPACES

JENICĂ CRÎNGANU, DANIEL PAŞCA

Abstract. The aim of this paper is to obtain solutions for the equation

$$
J_{q, p}\left(u_{1}, u_{2}\right)=N_{f, g}\left(u_{1}, u_{2}\right)
$$

where $J_{q, p}$ is the duality mapping on a product of two real, reflexive and smooth Banach spaces X_{1}, X_{2}, corresponding to the gauge functions $\varphi_{1}(t)=$ $t^{q-1}, \varphi_{2}(t)=t^{p-1}, 1<q, p<\infty, N_{f, g}$ being the Nemytskii operator generated by the Carathéodory functions f, g which satisfies some appropriate conditions. To prove the existence solutions we use a topological method via Leray-Schauder degree. As applications, we obtained in a unitary manner some existence results for Dirichlet and Neumann problems for systems with (q, p)-Laplacian, with (q, p)-pseudo-Laplacian or with $\left(A_{q}, A_{p}\right)$-Laplacian.

1. Introduction

In this article we study the existence of solutions for the equation

$$
\begin{equation*}
J_{q, p}\left(u_{1}, u_{2}\right)=N_{f, g}\left(u_{1}, u_{2}\right) \tag{1.1}
\end{equation*}
$$

in the following functional framework:
(H1) $1<q, p<\infty ; \Omega \subset \mathbb{R}^{N}, N \geq 2$, is a bounded domain with smooth boundary
(H2) X_{1}, X_{2} are real reflexive and smooth Banach spaces, X_{1} compactly embedded in $L^{q_{1}}(\Omega)$ and X_{2} compactly embedded in $L^{p_{1}}(\Omega)$, where

$$
1<q_{1}<q^{*}= \begin{cases}\frac{N q}{N-q} & \text { if } N>q \\ +\infty & \text { if } N \leq q\end{cases}
$$

and

$$
1<p_{1}<p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } N>p \\ +\infty & \text { if } N \leq p\end{cases}
$$

and q^{*}, p^{*} are the critical Sobolev exponents of q, p respectively;
(H3) Let $i=1,2$. For any gauge functions $\varphi_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, the corresponding duality mapping $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ (see the precise definition in Section 2.1 below) is continuous and satisfies the (S_{+}) condition: if $x_{i n} \rightharpoonup x_{i}$ (weakly)

[^0]in X_{i} and $\lim \sup _{n \rightarrow \infty}\left\langle J_{\varphi_{i}} x_{i n}, x_{i n}-x_{i}\right\rangle \leq 0$ then $x_{i n} \rightarrow x_{i}$ (strongly) in X_{i}
(H4) $J_{q, p}: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}, J_{q, p}=\left(J_{q}, J_{p}\right)$, where J_{q}, J_{p} are the duality mappings corresponding to the gauge functions $\varphi_{1}(t)=t^{q-1}, t \geq 0, \varphi_{2}(t)=$ $t^{p-1}, t \geq 0$ respectively;
(H5) $N_{f, g}: L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega) \rightarrow L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)$, where $\frac{1}{q_{1}}+\frac{1}{q_{1}^{\prime}}=1, \frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1$ defined by $N_{f, g}\left(u_{1}, u_{2}\right)(x)=\left(f\left(x, u_{1}(x), u_{2}(x)\right), g\left(x, u_{1}(x), u_{2}(x)\right)\right)$, is the Nemytskii operator generated by the Carathéodory functions $f, g: \Omega \times \mathbb{R} \times$ $\mathbb{R} \rightarrow \mathbb{R}$, which satisfies the growth conditions
\[

$$
\begin{align*}
& |f(x, s, t)| \leq c_{1}|s|^{q_{1}-1}+c_{2}|t|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+b_{1}(x), \quad \text { for } x \in \Omega,(s, t) \in \mathbb{R} \times \mathbb{R} \tag{1.2}\\
& |g(x, s, t)| \leq c_{3}|s|^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}+c_{4}|t|^{p_{1}-1}+b_{2}(x), \quad \text { for } x \in \Omega,(s, t) \in \mathbb{R} \times \mathbb{R} \tag{1.3}
\end{align*}
$$
\]

where $c_{1}, c_{2}, c_{3}, c_{4}>0$ are constants, $b_{1} \in L^{q_{1}^{\prime}}(\Omega), b_{2} \in L^{p_{1}^{\prime}}(\Omega), \frac{1}{q_{1}}+\frac{1}{q_{1}^{\prime}}=$ $1, \frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1$.
We make the convention that in the case of a Carathéodory function, the assertion " $x \in \Omega$ " is understood in the sense "a.e. $x \in \Omega$ ".

To prove the existence of the solutions of the problem (1.1) we use topological methods via Leray-Schauder degree.

We note that equality (1.1) is understood in the sense of $X_{1}^{*} \times X_{2}^{*}$, where the norm on this product space is $\left\|\left(x_{1}^{*}, x_{2}^{*}\right)\right\|_{X_{1}^{*} \times X_{2}^{*}}=\left\|x_{1}^{*}\right\|_{X_{1}^{*}}+\left\|x_{2}^{*}\right\|_{X_{2}^{*}}$. More precisely, let $i_{1}: X_{1} \rightarrow L^{q_{1}}(\Omega)$ and $i_{2}: X_{2} \rightarrow L^{p_{1}}(\Omega)$ be the identity mappings on X_{1}, X_{2} respectively and $i_{1}^{*}: L^{q_{1}^{\prime}}(\Omega) \rightarrow X_{1}^{*}$ and $i_{2}^{*}: L^{p_{1}^{\prime}}(\Omega) \rightarrow X_{2}^{*}$ be the corresponding dual:

$$
i_{1}^{*} u_{1}^{*}=u_{1}^{*} \circ i_{1} \text { for } u_{1}^{*} \in L^{q_{1}^{\prime}}(\Omega) \quad i_{2}^{*} u_{2}^{*}=u_{2}^{*} \circ i_{2} \text { for } u_{2}^{*} \in L^{p_{1}^{\prime}}(\Omega)
$$

We define $i: X_{1} \times X_{2} \rightarrow L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$ given by $i\left(u_{1}, u_{2}\right)=\left(i_{1}\left(u_{1}\right), i_{2}\left(u_{2}\right)\right)$ and its dual $i^{*}: L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega) \rightarrow X_{1}^{*} \times X_{2}^{*}$ given by

$$
i^{*}\left(u_{1}^{*}, u_{2}^{*}\right)=\left(i_{1}^{*} u_{1}^{*}, i_{2}^{*} u_{2}^{*}\right)=\left(u_{1}^{*} \circ i_{1}, u_{2}^{*} \circ i_{2}\right)
$$

We say that $\left(u_{1}, u_{2}\right) \in X_{1} \times X_{2}$ is a solution of 1.1 if and only if

$$
\begin{equation*}
J_{q, p}\left(u_{1}, u_{2}\right)=i^{*} N_{f, g}\left(i\left(u_{1}, u_{2}\right)\right) \tag{1.4}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
& \left\langle J_{q, p}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X_{1}^{*} \times X_{2}^{*}, X_{1} \times X_{2}} \\
& =\left\langle i^{*} N_{f, g}\left(i\left(u_{1}, u_{2}\right)\right), i\left(v_{1}, v_{2}\right)\right\rangle_{L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega), L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)} \tag{1.5}\\
& =\int_{\Omega}\left[f\left(x, u_{1}(x), u_{2}(x)\right) v_{1}(x)+g\left(x, u_{1}(x), u_{2}(x)\right) v_{2}(x)\right] d x
\end{align*}
$$

for all $\left(v_{1}, v_{2}\right) \in X_{1} \times X_{2}$.
The rest of this article is organized as follows. The preliminary and abstract results are presented in Section 2. In Section 3 we prove the existence results for problem (1.1) using the method mentioned above. Section 4 provides some examples.

2. Preliminary Results

2.1. Duality mappings. Let $i=1,2,\left(X_{i},\|\cdot\|_{X_{i}}\right)$ be real Banach spaces, X_{i}^{*} the corresponding dual spaces and $\langle\cdot, \cdot\rangle$ the duality between X_{i}^{*} and X_{i}. Let φ_{i} : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be gauge functions, such that φ_{i} are continuous, strictly increasing, $\varphi_{i}(0)=0$ and $\varphi_{i}(t) \rightarrow \infty$ as $t \rightarrow \infty$. The duality mapping corresponding to the gauge function φ_{i} is the set valued mapping $J_{\varphi_{i}}: X_{i} \rightarrow 2^{X_{i}^{*}}$, defined by

$$
J_{\varphi_{i}} x=\left\{x_{i}^{*} \in X_{i}^{*}:\left\langle x_{i}^{*}, x_{i}\right\rangle=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\left\|x_{i}\right\|_{X_{i}},\left\|x_{i}^{*}\right\|_{X_{i}^{*}}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\right\} .
$$

If X_{i} are smooth, then $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ is defined by

$$
J_{\varphi_{i}} 0=0, \quad J_{\varphi_{i}} x_{i}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\| \|_{X_{i}}^{\prime}\left(x_{i}\right), \quad x_{i} \neq 0
$$

and the following metric properties being consequent:

$$
\begin{equation*}
\left\|J_{\varphi_{i}} x_{i}\right\|_{X_{i}^{*}}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right), \quad\left\langle J_{\varphi_{i}} x_{i}, x_{i}\right\rangle=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\left\|x_{i}\right\|_{X_{i}} \tag{2.1}
\end{equation*}
$$

Now we define $J_{\varphi_{1}, \varphi_{2}}: X_{1} \times X_{2} \rightarrow 2^{X_{1}^{*}} \times 2^{X_{2}^{*}}$ by $J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right)=\left(J_{\varphi_{1}} x_{1}, J_{\varphi_{2}} x_{2}\right)$. From (2.1) we obtain

$$
\begin{align*}
\left\|J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right)\right\|_{X_{1}^{*} \times X_{2}^{*}} & =\left\|J_{\varphi_{1}} x_{1}\right\|_{X_{1}^{*}}+\left\|J_{\varphi_{2}} x_{2}\right\|_{X_{2}^{*}} \tag{2.2}\\
& =\varphi_{1}\left(\left\|x_{1}\right\|_{X_{1}}\right)+\varphi_{2}\left(\left\|x_{2}\right\|_{X_{2}}\right) \\
\left\langle J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle & =\left\langle J_{\varphi_{1}} x_{1}, x_{1}\right\rangle+\left\langle J_{\varphi_{2}} x_{2}, x_{2}\right\rangle \tag{2.3}\\
& =\varphi_{1}\left(\left\|x_{1}\right\|_{X_{1}}\right)\left\|x_{1}\right\|_{X_{1}}+\varphi_{2}\left(\left\|x_{2}\right\|_{X_{2}}\right)\left\|x_{2}\right\|_{X_{2}}
\end{align*}
$$

In what follows we consider the particular case when $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ are the duality mappings, assumed to be single-valued, corresponding to the gauge functions $\varphi_{1}(t)=t^{q-1}, \varphi_{2}(t)=t^{p-1}, 1<q, p<\infty$. In this case we denote $J_{q, p}: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ given by $J_{q, p}=\left(J_{q}, J_{p}\right)$.

Other properties of the duality mapping are contained in the following propositions:

Proposition 2.1. $J_{\varphi_{i}}: X_{i} \rightarrow 2^{X_{i}^{*}}$ is single valued if and only if X_{i} is smooth, if and only if the norm of X_{i} is Gâteaux differentiable on $X_{i} \backslash\{0\}$.

Proposition 2.2. If X_{i} is reflexive and $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$, then $J_{\varphi_{i}}$ is demicontinuous (i.e. if $x_{n} \rightarrow x$ (strongly) in X_{i}, then $J_{\varphi_{i}} x_{n} \rightharpoonup J_{\varphi_{i}} x$ (weakly) in X_{i}^{*}.

Let us recall that X_{i} has the Kadeč-Klee property ((K-K) for short) if it is strictly convex and for any sequence $\left(x_{i n}\right) \subset X_{i}$ such that $x_{i n} \rightharpoonup x_{i}$ (weakly) in X_{i} and $\left\|x_{i n}\right\| \rightarrow\left\|x_{i}\right\|$ it follows that $x_{i n} \rightarrow x_{i}$ (strongly) in X_{i}.
Proposition 2.3. If X_{i} has the ($k-k$) property and $J_{\varphi_{i}}$ is single valued then $J_{\varphi_{i}}$ satisfies the $\left(S_{+}\right)$condition.

Let us remark that if X_{i} is locally uniformly convex then X_{i} has the (k-k) property and then, if in addition, $J_{\varphi_{i}}$ is single valued it results that $J_{\varphi_{i}}$ satisfies the $\left(S_{+}\right)$condition. Also, if X_{i} is reflexive and X_{i}^{*} has the (k-k) property then $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ is continuous.

Proposition 2.4. $J_{\varphi_{i}}$ is single valued and continuous if and only if the norm of X_{i} is Fréchet differentiable.

Proposition 2.5. If X_{i} is reflexive and $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ then $J_{\varphi_{i}}$ is surjective. If, in addition X_{i} is locally uniformly convex then $J_{\varphi_{i}}$ is bijective, with its inverse $J_{\varphi_{i}}^{-1}$ bounded, continuous and monotone.

For the details and the proofs of he above propositions, see [1, 2, 4]. Clearly, Propositions 2.3 and 2.4, offer sufficient conditions ensuring that hypothesis (H3) be satisfied.

Let i_{1} and i_{2} the compactly embedded injections of X_{1}, X_{2} in $L^{q_{1}}(\Omega)$ and $L^{p_{1}}(\Omega)$ respectively:

$$
\begin{array}{ll}
\left\|i_{1}\left(u_{1}\right)\right\|_{L^{q_{1}}(\Omega)} \leq C_{1}\left\|u_{1}\right\|_{X_{1}} \quad \text { for all } u_{1} \in X_{1} \\
\left\|i_{2}\left(u_{2}\right)\right\|_{L^{p_{1}}(\Omega)} \leq C_{2}\left\|u_{2}\right\|_{X_{2}} \quad \text { for all } u_{2} \in X_{2} \tag{2.4}
\end{array}
$$

We introduce

$$
\begin{aligned}
& \lambda_{1}=\inf \left\{\frac{\left\|u_{1}\right\|_{X_{1}}^{q_{1}}}{\left\|i_{1}\left(u_{1}\right)\right\|_{L_{1}^{q_{1}(\Omega)}}^{q_{1}}}: u_{1} \in X_{1} \backslash\{0\}\right\}>0 \\
& \lambda_{2}=\inf \left\{\frac{\left\|u_{2}\right\|_{X_{2}}^{p_{1}}}{\left\|i_{2}\left(u_{2}\right)\right\|_{L^{p_{1}}(\Omega)}^{p_{1}}}: u_{2} \in X_{2} \backslash\{0\}\right\}>0 .
\end{aligned}
$$

Proposition 2.6. λ_{1}, λ_{2} are attained and $\lambda_{1}^{-1 / q_{1}}$ and $\lambda_{2}^{-1 / p_{1}}$ are the best constants C_{1} and C_{2}, respectively in the writing of the embeddings of X_{1} into $L^{q_{1}}(\Omega)$ and X_{2} into $L^{p_{1}}(\Omega)$, respectively.

For a proof of the above proposition, see [6, Proposition 4].
2.2. Nemytskii operators. Let Ω be an open subset in $\mathbb{R}^{N}, N \geq 1$ and f, g : $\Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be Carathéodory functions, i.e.:
(i) for each $(s, t) \in \mathbb{R} \times \mathbb{R}$, the functions $x \mapsto f(x, s, t), x \mapsto g(x, s, t)$ are Lebesgue measurable in Ω;
(ii) for a.e. $x \in \Omega$, the functions $(s, t) \mapsto f(x, s, t),(s, t) \mapsto g(x, s, t)$ are continuous in $\mathbb{R} \times \mathbb{R}$.
Let \mathcal{M} be the set of all measurable functions $u: \Omega \rightarrow \mathbb{R}$. If $f, g: \Omega \times \mathbb{R} \times$ $\mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions and $\left(v_{1}, v_{2}\right) \in \mathcal{M} \times \mathcal{M}$ then the function $x \mapsto\left(f\left(x, v_{1}(x), v_{2}(x)\right), g\left(x, v_{1}(x), v_{2}(x)\right)\right)$ is measurable in Ω. So, we can define the operator $N_{f, g}: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}$ by

$$
N_{f, g}\left(v_{1}, v_{2}\right)(x)=\left(f\left(x, v_{1}(x), v_{2}(x)\right), g\left(x, v_{1}(x), v_{2}(x)\right)\right)
$$

which we will be the Nemytskii operator.
We need the following result:
Lemma 2.7. Let $r_{1}, r_{2}, k_{1}, k_{2}>0$. Then there are the constants $k_{3}, k_{4}>0$ such that

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{3}(a+b)^{\max \left(r_{1}, r_{2}\right)}+k_{4}, \quad \text { for all } a, b>0
$$

Proof. If $a, b \geq 1$ we have

$$
\begin{aligned}
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} & \leq k_{1} a^{\max \left(r_{1}, r_{2}\right)}+k_{2} b^{\max \left(r_{1}, r_{2}\right)} \\
& \leq \max \left(k_{1}, k_{2}\right)\left(a^{\max \left(r_{1}, r_{2}\right)}+b^{\max \left(r_{1}, r_{2}\right)}\right) \\
& \leq \max \left(k_{1}, k_{2}\right)(a+b)^{\max \left(r_{1}, r_{2}\right)}
\end{aligned}
$$

and the proof is ready with $k_{3}=\max \left(k_{1}, k_{2}\right)$ and $k_{4}>0$ arbitrary.
If $a, b<1$ then

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{1}+k_{2}
$$

and we may take $k_{4}=k_{1}+k_{2}, k_{3}>0$, arbitrary.

If $a \geq 1, b<1$,

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{1} a^{r_{1}}+k_{2} \leq k_{1}(a+b)^{r_{1}}+k_{2} \leq k_{1}(a+b)^{\max \left(r_{1}, r_{2}\right)}+k_{2},
$$

and similarly if $a<1, b \geq 1$.
Some properties of the Nemytskii operator that will be used in the sequel are contained in the following proposition.
Proposition 2.8. Let $p_{1}, q_{1}>1, f, g: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory functions which satisfy the growth conditions:

$$
\begin{align*}
& |f(x, s, t)| \leq c_{1}|s|^{q_{1}-1}+c_{2}|t|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+b_{1}(x), \quad \text { for } x \in \Omega,(s, t) \in \mathbb{R} \times \mathbb{R} \tag{2.5}\\
& |g(x, s, t)| \leq c_{3}|s|^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}+c_{4}|t|^{p_{1}-1}+b_{2}(x), \quad \text { for } x \in \Omega,(s, t) \in \mathbb{R} \times \mathbb{R} \tag{2.6}
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}>0$ are constants, $b_{1} \in L^{q_{1}^{\prime}}(\Omega), b_{2} \in L^{p_{1}^{\prime}}(\Omega), \frac{1}{q_{1}}+\frac{1}{q_{1}^{\prime}}=1$, $\frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1$.

Then $N_{f, g}$ is continuous from $L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$ into $L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)$ and maps bounded sets into bounded sets. Moreover, it holds

$$
\begin{equation*}
\left\|N_{f, g}\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)} \leq c_{8}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)}^{R_{1}-1}+c_{9} \tag{2.7}
\end{equation*}
$$

for all $\left(v_{1}, v_{2}\right) \in L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$, where $c_{8}, c_{9}>0$ are constants and $R_{1}=$ $\max \left(q_{1}, p_{1}\right)$.
Proof. From 2.5) and 2.6), for $\left(v_{1}, v_{2}\right) \in L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$ we have

$$
\begin{aligned}
& \left\|N_{f, g}\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)} \\
& =\left\|N_{f}\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}^{\prime}}(\Omega)}+\left\|N_{g}\left(v_{1}, v_{2}\right)\right\|_{L^{p_{1}^{\prime}}(\Omega)} \\
& \leq c_{1}\left\|\left|v_{1}\right|^{q_{1}-1}\right\|_{L^{q_{1}^{\prime}}(\Omega)}+c_{2}\left\|\left|v_{2}\right|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\right\|_{L^{q_{1}^{\prime}}(\Omega)}+\left\|b_{1}\right\|_{L^{q_{1}^{\prime}}(\Omega)} \\
& \quad+c_{3}\left\|\left|v_{1}\right|^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}\right\|_{L^{p_{1}^{\prime}(\Omega)}}+c_{4}\left\|\left|v_{2}\right|^{p_{1}-1}\right\|_{L^{p_{1}^{\prime}}(\Omega)}+\left\|b_{2}\right\|_{L^{p_{1}^{\prime}}(\Omega)} \\
& = \\
& =c_{1}\left\|v_{1}\right\|_{L^{q_{1}}(\Omega)}^{q_{1}-1}+c_{2}\left\|v_{2}\right\|_{L^{p_{1}}(\Omega) \frac{p_{1}}{q_{1}}}^{\left(q_{1}-1\right.}+K_{1}+c_{3}\left\|v_{1}\right\|_{L^{q_{1}}(\Omega) \frac{p_{1}}{p_{1}}}^{\left(p_{1}\right.}+c_{4}\left\|v_{2}\right\|_{L^{p_{1}}(\Omega)}^{p_{1}-1}+K_{2} .
\end{aligned}
$$

By Lemma 2.7 there are the constants $c_{5}, c_{6}, c_{7}>0$, such that

$$
\begin{aligned}
& \left\|N_{f, g}\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)} \\
& \leq c_{5}\left(\left\|v_{1}\right\|_{L^{q_{1}}(\Omega)}+\left\|v_{2}\right\|_{L^{p_{1}}(\Omega)}\right)^{\max \left(p_{1}-1, q_{1}-1\right)} \\
& \quad+c_{6}\left(\left\|v_{1}\right\|_{L^{q_{1}}(\Omega)}+\left\|v_{2}\right\|_{L^{p_{1}}(\Omega)}\right)^{\max \left(\left(q_{1}-1\right) \frac{p_{1}}{q_{1}},\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}\right)}+c_{7} \\
& =c_{5}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)}^{\max \left(p_{1}-1, q_{1}-1\right)}+c_{6}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)}^{\max \left(\left(q_{1}-1\right) \frac{p_{1}}{q_{1}},\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}\right)}+c_{7} .
\end{aligned}
$$

Since

$$
\max \left(\left(q_{1}-1\right) \frac{p_{1}}{q_{1}},\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}\right) \leq \max \left(p_{1}-1, q_{1}-1\right)
$$

we obtain

$$
\left\|N_{f, g}\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)} \leq c_{8}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)}^{R_{1}-1}+c_{9},
$$

for all $\left(v_{1}, v_{2}\right) \in L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$, where $c_{8}, c_{9}>0$ are constants and $R_{1}=$ $\max \left(q_{1}, p_{1}\right)$.

Now assume that $\left(v_{1 n}, v_{2 n}\right) \rightarrow\left(v_{1}, v_{2}\right)$ in $L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega)$ and claim that $N_{f, g}\left(v_{1 n}, v_{2 n}\right) \rightarrow N_{f, g}\left(v_{1}, v_{2}\right)$ in $L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega)$. Given any sequence of $\left(v_{1 n}, v_{2 n}\right)$ there is a further subsequence (call it again $\left(v_{1 n}, v_{2 n}\right)$) such that

$$
\left|v_{1 n}(x)\right| \leqslant h_{1}(x),\left|v_{2 n}(x)\right| \leqslant h_{2}(x)
$$

for some $h_{1} \in L^{q_{1}^{\prime}}(\Omega), h_{2} \in L^{p_{1}^{\prime}}(\Omega)$. It follows from 2.5) and 2.6) that

$$
\begin{aligned}
& \left|f\left(x, v_{1 n}(x), v_{2 n}(x)\right)\right| \leqslant c_{1}\left|h_{1}(x)\right|^{q_{1}-1}+c_{2}\left|h_{2}(x)\right|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+b_{1}(x) \\
& \left|g\left(x, v_{1 n}(x), v_{2 n}(x)\right)\right| \leqslant c_{3}\left|h_{1}(x)\right|^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}+c_{4}\left|h_{2}(x)\right|^{p_{1}-1}+b_{2}(x)
\end{aligned}
$$

Since $f\left(x, v_{1 n}(x), v_{2 n}(x)\right)$ converges a.e. to $f\left(x, v_{1}(x), v_{2}(x)\right), g\left(x, v_{1 n}(x), v_{2 n}(x)\right)$ converges a.e. to $g\left(x, v_{1}(x), v_{2}(x)\right)$, the result follows from the Lebesgue Dominated Convergence Theorem and a standard result on metric spaces.
3. Existence of solutions for (1.1) using a Leray-Schauder technique

We start we the statement of the Leray-Schauder fixed point theorem.
Theorem 3.1. Let T be a continuous and compact mapping of a Banach space X into itself, such that the set

$$
\{x \in X: x=\lambda T x \text { for some } 0 \leq \lambda \leq 1\}
$$

is bounded. Then T has a fixed point.
Since $X_{1} \rightarrow L^{q_{1}}(\Omega)$ and $X_{2} \rightarrow L^{p_{1}}(\Omega)$ are compact, the diagram

$$
X_{1} \times X_{2} \xrightarrow{i} L^{q_{1}}(\Omega) \times L^{p_{1}}(\Omega) \xrightarrow{N_{f, g}} L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega) \xrightarrow{i^{*}} X_{1}^{*} \times X_{2}^{*}
$$

show that $N_{f, g}$ (by which we mean $i^{*} N_{f, g} i$) is compact.
By Proposition 2.5, the operator $J_{q, p}: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ is bijective with its inverse $J_{q, p}^{-1}\left(u_{1}^{*}, u_{2}^{*}\right)=\left(J_{q}^{-1} u_{1}^{*}, J_{p}^{-1} u_{2}^{*}\right)$ bounded, continuous and monotone.

Consequently (1.1) can be equivalently written

$$
\left(u_{1}, u_{2}\right)=J_{q, p}^{-1} N_{f, g}\left(u_{1}, u_{2}\right)
$$

with $J_{q, p}^{-1} N_{f, g}: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ a compact operator.
We define the operator $T=J_{q, p}^{-1} N_{f, g}=\left(T_{1}, T_{2}\right)$, where

$$
\begin{equation*}
T_{1}\left(u_{1}, u_{2}\right)=J_{q}^{-1} N_{f}\left(u_{1}, u_{2}\right), \quad T_{2}\left(u_{1}, u_{2}\right)=J_{p}^{-1} N_{g}\left(u_{1}, u_{2}\right) \tag{3.1}
\end{equation*}
$$

and we shall prove that the compact operator T has at least one fixed point using the Leray-Schauder fixed point theorem.

For this it is sufficient to prove that the set

$$
S=\left\{\left(u_{1}, u_{2}\right) \in X_{1} \times X_{2}:\left(u_{1}, u_{2}\right)=\alpha T\left(u_{1}, u_{2}\right) \text { for some } \alpha \in[0,1]\right\}
$$

is bounded in $X_{1} \times X_{2}$.
By (3.1), (1.2) and (1.3) for $\left(u_{1}, u_{2}\right) \in X_{1} \times X_{2}$ we have

$$
\begin{aligned}
& \left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{q} \\
& =\left\langle J_{q}\left(T_{1}\left(u_{1}, u_{2}\right)\right), T_{1}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\left\langle N_{f}\left(u_{1}, u_{2}\right), T_{1}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\int_{\Omega} f\left(x, u_{1}(x), u_{2}(x)\right) T_{1}\left(u_{1}(x), u_{2}(x)\right) d x
\end{aligned}
$$

$$
\leq \int_{\Omega}\left(c_{1}\left|u_{1}(x)\right|^{q_{1}-1}+c_{2}\left|u_{2}(x)\right|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+\left|b_{1}(x)\right|\right)\left|T_{1}\left(u_{1}(x), u_{2}(x)\right)\right| d x
$$

and similarly

$$
\begin{aligned}
& \left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{p} \\
& =\left\langle J_{p}\left(T_{2}\left(u_{1}, u_{2}\right)\right), T_{2}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\left\langle N_{g}\left(u_{1}, u_{2}\right), T_{2}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\int_{\Omega} g\left(x, u_{1}(x), u_{2}(x)\right) T_{2}\left(u_{1}(x), u_{2}(x)\right) d x \\
& \leq \int_{\Omega}\left(c_{3}\left|u_{1}(x)\right|^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}+c_{4}\left|u_{2}(x)\right|^{p_{1}-1}+\left|b_{2}(x)\right|\right)\left|T_{2}\left(u_{1}(x), u_{2}(x)\right)\right| d x
\end{aligned}
$$

If $\left(u_{1}, u_{2}\right) \in S$, that is $\left(u_{1}, u_{2}\right)=\alpha T\left(u_{1}, u_{2}\right)=\left(T_{1}\left(u_{1}, u_{2}\right), T_{2}\left(u_{1}, u_{2}\right)\right)$ with $\alpha \in[0,1]$, we have

$$
\begin{aligned}
& \| T_{1}\left(u_{1}, u_{2}\right) \|_{X_{1}}^{q} \\
& \leq \int_{\Omega}\left(c_{1} \alpha^{q_{1}-1}\left|T_{1}\left(u_{1}(x), u_{2}(x)\right)\right|^{q_{1}-1}\right. \\
&\left.+c_{2} \alpha^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left|T_{2}\left(u_{1}(x), u_{2}(x)\right)\right|^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+\left|b_{1}(x)\right|\right)\left|T_{1}\left(u_{1}(x), u_{2}(x)\right)\right| d x \\
& \leq c_{1} \alpha^{q_{1}-1}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{L^{q_{1}}(\Omega)}^{q_{1}}+c_{2} \alpha^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{L^{p_{1}}(\Omega)}^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{L^{q_{1}}(\Omega)} \\
& \quad+\left\|b_{1}\right\|_{L^{q_{1}^{\prime}(\Omega)}}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{L^{q_{1}}(\Omega)} \\
& \leq c_{1} k_{1}^{q_{1}}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{q_{1}}+c_{2} k_{1} k_{2}^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}} \\
& \quad+k_{1}\left\|b_{1}\right\|_{L^{q_{1}^{\prime}}(\Omega)}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}
\end{aligned}
$$

where $k_{1}, k_{2}>0$ are coming from the compact embeddings $X_{1} \rightarrow L^{q_{1}}(\Omega)$ and $X_{2} \rightarrow L^{p_{1}}(\Omega)$, respectively.

In the same way we obtain

$$
\begin{aligned}
\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{p} \leq & c_{3} k_{1}^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}} k_{2}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}} \\
& +c_{4} k_{2}^{p_{1}}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{p_{1}}+k_{2}\left\|b_{2}\right\|_{L^{p_{1}^{\prime}}(\Omega)}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}
\end{aligned}
$$

Consequently, for each $\left(u_{1}, u_{2}\right) \in S$ it hold

$$
\begin{aligned}
& \left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{q}-c_{5}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{q_{1}} \\
& -c_{6}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}-c_{7}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}} \leq 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{p}-c_{8}\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}} \\
& -c_{9}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}}^{p_{1}}-c_{10}\left\|T_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}} \leq 0
\end{aligned}
$$

with c_{5}, \ldots, c_{10} positive constants.
Lemma 3.2. Let $q>p>1,1<p_{1}<p, 1<q_{1}<q$ and $a, b>0$ such that

$$
\begin{aligned}
& a^{q} \leq c_{5} a^{q_{1}}+c_{6} a b^{\left(q_{1}-1\right) \frac{p_{1}}{q_{1}}}+c_{7} a \\
& b^{p} \leq c_{8} a^{\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}} b+c_{9} b^{p_{1}}+c_{10} b
\end{aligned}
$$

where $c_{5}, \ldots, c_{10}>0$ positve constants. Then there is the constant $K>0$ be such that $a+b \leq K$.

Proof. We consider the following cases:
(1) If $a \leq 1, b \leq 1$ then $a+b \leq 2$.
(2) If $a \leq 1, b>1$ we have $b^{p} \leq c_{8} b+c_{9} b^{p_{1}}+c_{10} b$ and since $p>p_{1}>1$, there is a constant $K_{1}>0$ such that $b \leq K_{1}$. Consequently $a+b \leq 1+K_{1}$.
(3) If $a>1, b \leq 1$ we have $a^{q} \leq c_{5} a^{q_{1}}+c_{6} a+c_{7} a$ and since $q>q_{1}>1$, there is a constant $K_{2}>0$ such that $a \leq K_{2}$. Consequently $a+b \leq 1+K_{2}$.
(4) We consider $a>1, b>1$. Let us remark that

$$
\max \left(\left(q_{1}-1\right) \frac{p_{1}}{q_{1}},\left(p_{1}-1\right) \frac{q_{1}}{p_{1}}\right) \leq \max \left(p_{1}-1, q_{1}-1\right)
$$

If $a \geq b$ we have $a^{q} \leq c_{5} a^{q_{1}}+c_{6} a b^{\max \left(p_{1}-1, q_{1}-1\right)}+c_{7} a \leq c_{5} a^{q_{1}}+c_{6} a^{\max \left(p_{1}, q_{1}\right)}+c_{7} a$, and since $q>q_{1}, q>\max \left(p_{1}, q_{1}\right)>1$, there is a constant $K_{3}>0$ such that $a \leq K_{3}$ and so $a+b \leq 2 K_{3}$. If $a \leq b$ we reasoning similarly.

Now, by Lemma 3.2 there exists a constant $K>0$ such that $\left\|T\left(u_{1}, u_{2}\right)\right\|_{X_{1} \times X_{2}}=$ $\left\|T_{1}\left(u_{1}, u_{2}\right)\right\|_{X_{1}}+\left\|\bar{T}_{2}\left(u_{1}, u_{2}\right)\right\|_{X_{2}} \leq K$ for $\left(u_{1}, u_{2}\right) \in S$ and then

$$
\left\|\left(u_{1}, u_{2}\right)\right\|_{X_{1} \times X_{2}}=\alpha\left\|T\left(u_{1}, u_{2}\right)\right\| \leq \alpha K \leq K, \quad \text { for }\left(u_{1}, u_{2}\right) \in S
$$

that is S is bounded. We have obtained the following result.
Theorem 3.3. Assume that X_{1}, X_{2} are locally uniformly convex, $J_{q}: X_{1} \rightarrow X_{1}^{*}$, $J_{p}: X_{2} \rightarrow X_{2}^{*}$ and the Carathèodory functions f and g satisfy (1.2) and (1.3), respectively with $q_{1} \in(1, q)$ and $p_{1} \in(1, p)$. Then the operator $T=J_{q, p}^{-1} N_{f, g}$ has one fixed point in $X_{1} \times X_{2}$ or equivalently problem (1.1) has a solution. Moreover, the set of solutions of problem (1.1) is bounded in $X_{1} \times X_{2}$.

4. Examples

4.1. Dirichlet problem for systems with (q, p)-Laplacian. If $X_{1} \times X_{2}=$ $W_{0}^{1, q}(\Omega) \times W_{0}^{1, p}(\Omega)$, then $J_{q, p}=\left(-\Delta_{q},-\Delta_{p}\right)$ and the solutions set of equation $J_{q, p}\left(u_{1}, u_{2}\right)=N_{f, g}\left(u_{1}, u_{2}\right)$ coincides with the solutions set of the Dirichlet problem

$$
\begin{gather*}
-\Delta_{q} u_{1}=f\left(x, u_{1}, u_{2}\right) \quad \text { in } \Omega, \\
-\Delta_{p} u_{2}=g\left(x, u_{1}, u_{2}\right) \quad \text { in } \Omega, \tag{4.1}\\
u_{1}=u_{2}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

4.2. Neumann problem for systems with (q, p)-Laplacian. We consider $X_{1} \times$ $X_{2}=W^{1, q}(\Omega) \times W^{1, p}$, endowed with the norm

$$
\left\|\left(u_{1}, u_{2}\right)\right\|=\left\|u_{1}\right\|_{1, q}+\left\|u_{2}\right\|_{1, p}
$$

where

$$
\begin{array}{ll}
\left\|u_{1}\right\|_{1, q}^{q}=\left\|u_{1}\right\|_{0, q}^{q}+\left\|\mid \nabla u_{1}\right\|_{0, q}^{q} & \text { for all } u_{1} \in W^{1, q}(\Omega), \\
\left\|u_{2}\right\|_{1, p}^{p}=\left\|u_{2}\right\|_{0, p}^{p}+\left\|\mid \nabla u_{2}\right\|_{0, p}^{p} & \text { for all } u_{2} \in W^{1, p}(\Omega),
\end{array}
$$

which are equivalent with the standard norms on the spaces $W^{1, q}(\Omega), W^{1, p}(\Omega)$ respectively (see [3]).

In this case, the duality mappings J_{q}, J_{p} on $\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right),\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right)$, respectively, corresponding to the gauge functions $\varphi_{1}(t)=t^{q-1}$ and $\varphi_{2}(t)=t^{p-1}$ are defined by

$$
\begin{gather*}
J_{q}:\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right) \rightarrow\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right)^{*} \\
J_{q} u_{1}=-\Delta_{q} u_{1}+\left|u_{1}\right|^{q-2} u_{1} \text { for all } u_{1} \in W^{1, q}(\Omega) \tag{4.2}\\
J_{p}:\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right) \rightarrow\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right)^{*} \tag{4.3}\\
J_{p} u_{2}=-\Delta_{p} u_{2}+\left|u_{2}\right|^{p-2} u_{2} \quad \text { for all } u_{2} \in W^{1, p}(\Omega)
\end{gather*}
$$

(see [5]).
By a weak solution of the Neumann problem

$$
\begin{align*}
&-\Delta_{q} u_{1}+\left|u_{1}\right|^{q-2} u_{1}=f\left(x, u_{1}, u_{2}\right) \text { in } \Omega \\
&-\Delta_{p} u_{2}+\left|u_{2}\right|^{p-2} u_{2}=g\left(x, u_{1}, u_{2}\right) \text { in } \Omega \\
&\left|\nabla u_{1}\right|^{q-2} \frac{\partial u_{1}}{\partial n}=0 \quad \text { on } \partial \Omega \tag{4.4}\\
&\left|\nabla u_{2}\right|^{p-2} \frac{\partial u_{2}}{\partial n}=0 \quad \text { on } \partial \Omega
\end{align*}
$$

we mean an element $\left(u_{1}, u_{2}\right) \in W^{1, q}(\Omega) \times W^{1, p}(\Omega)$ which satisfies

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{1}(x)\right|^{q-2} \nabla u_{1}(x) \nabla v_{1}(x) d x+\int_{\Omega}\left|u_{1}(x)\right|^{q-2} u_{1}(x) v_{1}(x) d x \\
& +\int_{\Omega}\left|\nabla u_{2}(x)\right|^{p-2} \nabla u_{2}(x) \nabla v_{2}(x) d x+\int_{\Omega}\left|u_{2}(x)\right|^{p-2} u_{2}(x) v_{2}(x) d x \tag{4.5}\\
& =\int_{\Omega} f\left(x, u_{1}(x), u_{2}(x)\right) v_{1}(x)+g\left(x, u_{1}(x), u_{2}(x)\right) v_{2}(x) d x
\end{align*}
$$

for all $\left(v_{1}, v_{2}\right) \in W^{1, q}(\Omega) \times W^{1, p}(\Omega)$.
It is easy to see that $\left(u_{1}, u_{2}\right) \in W^{1, q}(\Omega) \times W^{1, p}(\Omega)$ is a solution of the problem (4.4), in the sense of 4.5) if and only if

$$
J_{q, p}\left(u_{1}, u_{2}\right)=\left(i^{*} N_{f, g} i\right)\left(u_{1}, u_{2}\right)
$$

where $J_{q, p}\left(u_{1}, u_{2}\right)=\left(J_{q} u_{1}, J_{p} u_{2}\right)$ and J_{q}, J_{p} are given by 4.2 and 4.3), $i\left(u_{1}, u_{2}\right)=$ $\left(i_{1} u_{1}, i_{2} u_{2}\right)$, and $i_{1}: W^{1, q}(\Omega) \rightarrow L^{q_{1}}(\Omega), i_{2}: W^{1, p}(\Omega) \rightarrow L^{p_{1}}(\Omega)$ are the compact embeddings of $W^{1, q}(\Omega)$ into $L^{q_{1}}(\Omega)$ and of $W^{1, p}(\Omega)$ into $L^{p_{1}}(\Omega)$, respectively. By $i^{*}: L^{q_{1}^{\prime}}(\Omega) \times L^{p_{1}^{\prime}}(\Omega) \rightarrow\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right)^{*} \times\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right)^{*}$ we denoted the dual of i.

So, we are in the functional framework described in introduction. Indeed, the spaces $\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right)$ and $\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right)$ are smooth reflexive Banach spaces, compactly embedded in $L^{q_{1}}(\Omega)$ and $L^{p_{1}}(\Omega)$, respectively. $J_{q}:\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right) \rightarrow$ $\left(W^{1, q}(\Omega),\|\cdot\|_{1, q}\right)^{*}$ and $J_{p}:\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right) \rightarrow\left(W^{1, p}(\Omega),\|\cdot\|_{1, p}\right)^{*}$ are single valued, continuous and satisfies the $\left(S_{+}\right)$condition (see [3]). Consequently, the existence result given in section 3 becomes the existence result for the Neumann problem 4.4.

Remark 4.1. We note that using the same method it is possible to proved the existence of a solution for the Dirichlet and Neumann problems with (q, p)-pseudoLaplacian or with (A_{q}, A_{p})-Laplacian (see [6]).

Remark 4.2. In [5] the authors used the same method to proved the existence of a solution for the Dirichlet problem with p-Laplacian.

References

[1] F. E. Browder; Problèmes Non-Lineaires, Les Presses de l'Université de Montreal, 1964.
[2] I. Ciorănescu; Duality mapping in nonlinear functional analysis, Publishing House of the Romanian Academy, Bucharest, 1974.
[3] J. Crînganu; Variational and topological methods for Neumann problems with p-Laplacian, Communications on Applied Nonlinear Analysis 11 (2004), 1-38.
[4] G. Dincă, P. Jebelean, J. Mawhin; Variational and Topological methods for Dirichlet problems with p-Laplacian, Portugaliae Mathematica vol. 58 no. 3 (2001), 339-378.
[5] G. Dincă, P. Jebelean; Une méthode de point fixe pour le p-Laplacien, C.R. Acad. Sci. Paris t. 324, Serie I (1997), 165-168.
[6] G. Dincă, P. Jebelean; Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis 46 (2001), 347-363.

Jenică Crînganu
Department of Mathematics, University of Galaţi, Str. Domnească 47, Galaţi, Romania
E-mail address: jcringanu@ugal.ro
Daniel Paşca
Department of Mathematics and Informatics, University of Oradea, University Street
1, 410087 Oradea, Romania
E-mail address: dpasca@uoradea.ro

[^0]: 2000 Mathematics Subject Classification. 58C15, 35J20, 35J60, 35J65.
 Key words and phrases. Duality mapping; Leray-Schauder degree; (q, p)-Laplacian.
 (C) 2013 Texas State University - San Marcos.

 Submitted July 31, 2012. Published January 27, 2013.

