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PERSISTENCE AND EXTINCTION FOR A STOCHASTIC
LOGISTIC MODEL WITH INFINITE DELAY

CHUN LU, XIAOHUA DING

Abstract. This article, studies a stochastic logistic model with infinite de-

lay. Using a phase space, we establish sufficient conditions for the extinction,
nonpersistence in the mean, weak persistence, and stochastic permanence. A

threshold between weak persistence and extinction is obtained. Our results

state that different types of environmental noises have different effects on the
persistence and extinction, and that the delay has no impact on the persistence

and extinction for the stochastic model in the autonomous case. Numerical

simulations illustrate the theoretical results.

1. Introduction

For the previous decades, the logistic equation with delays have received great
attention due to their extensive application as models in a variety of scientific areas,
such as population dynamics, biology and epidemiology. A classical logistic model
with infinite delay can be expressed as follows

dx(t)/dt = x(t)
[
r(t)− a(t)x(t) + b(t)x(t− τ) + c(t)

∫ 0

−∞
x(t+ θ)dµ(θ)

]
dt, (1.1)

where τ ≥ 0 represents time delay and µ(θ) is a probability measure on (−∞, 0].
There is an extensive literature concerned with systems similar to (1.1). Regarding
persistence, extinction, global attractivity and other dynamics, mention among
others: Golpalsamy [1, 2], Kuang and Smith [3], Freedman and wu [4], Kuang [5]
and Lisena [6]. Particularly, the book by Gopalsamy [2] is a good reference in this
area.

However, population models are always affected by environmental noises. There-
fore stochastic population models have been recently investigated by many authors
(see e.g.,[7]-[15]). In particular, May [10] has revealed that due to environmental
noises, the growth rate, interaction coefficient and so on should be stochastic. Sup-
pose that the growth rate r(t) and the competition coefficient a(t) are affected by
environmental noises, with

r(t)→ r(t) + σ1(t)ω̇1(t), −a(t)→ −a(t) + σ2(t)ω̇2(t),
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where σi(t) are continuous positive bounded function on R+ and σ2
i (t) represents

the intensity of the white noise at time t; ω̇i(t) are the white noise, namely wi(t)
is a Brownian motion defined on a complete probability space (Ω,F,P) with a
filtration {Ft}t∈R+

satisfying the usual conditions (i.e., it is right continuous and
increasing while F0 contains all P-null sets), where R+ = [0,+∞), i = 1, 2. Then
the corresponding stochastic system takes the form

dx(t)/dt = x(t)
[
r(t)− a(t)x(t) + b(t)x(t− τ) + c(t)

∫ 0

−∞
x(t+ θ)dµ(θ)

]
dt

+ σ1(t)x(t)dω1(t) + σ2(t)x2(t)dω2(t).
(1.2)

Here, we let the initial data ξ be positive and belong to the phase space Cg (see
[3, 16, 17]) which is defined as

Cg = {ϕ ∈ C((−∞, 0];R) : ‖ϕ‖cg = sup
−∞<s≤0

ers|ϕ(s)| < +∞},

where g(s) = e−rs, r > 0. Furthermore, Cg is an admissible Banach space (see
[3, 17]).

Model (1.2) describes population dynamics; so it is very important to investigate
the survival of the logistic population which involve extinction, nonpersistence in
the mean, weak persistence, stochastic permanence and threshold between nonper-
sistence in the mean and weak persistence. Liu and Wang [18] also pointed out
that it is a interesting problem to consider the persistence and extinction of logistic
model with infinite delay. As far as we know, there are few results of this aspect
for model (1.2). The aims of this paper are to investigate the problems above. In
addition, we investigate them at the phase space Cg, which is one of the most impor-
tant phase space in discussing functional differential equations with infinite delay
and can avoid the usual well-posedness questions related to functional equations of
unbounded delay (see e.g.,[3, 16, 19]).

To study model (1.2) we assume the following:
(A1) the functions r(t), a(t), b(t) and c(t) are bounded and continuous on R+,

and inft∈R+
a(t) > 0.

(A2) µ satisfies

µr =
∫ 0

−∞
e−2rθdµ(θ) < +∞.

Assumption A2 is satisfied when µ(θ) = ekrθ(k > 2) for θ ≤ 0, so there exists a
large number of these probability measures.

For simplicity, we define the following symbols:

fu = sup
t∈R+

f(t), f l = inf
t∈R+

f(t), 〈x(t)〉 =
1
t

∫ t

0

x(s)ds,

x∗ = lim inf
t→+∞

x(t), x∗ = lim sup
t→+∞

x(t), R+ = (0,+∞),

d̄ = lim sup
t→+∞

t−1

∫ t

0

(
r(s)− σ2

1(s)
2

)
ds.

The following definitions are commonly used and we list them here.
(1) The population x(t) is said to have extinction if limt→+∞ x(t) = 0.
(2) The population x(t) is said to have nonpersistence in the mean [20] if

lim supt→+∞〈x(t)〉 = 0.
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(3) The population x(t) is said to have weak persistence if lim supt→+∞ x(t) >
0, see [21, 22].

(4) Population x(t) is said to have stochastic permanence [23] if for arbitrary
ε > 0, there are constants β > 0, M > 0 such that

lim inf
t→+∞

P{x(t) ≥ β} ≥ 1− ε and lim inf
t→+∞

P{x(t) ≤M} ≥ 1− ε.

From the above definitions it follows that: stochastic permanence implies stochastic
weak persistence, extinction implies stochastic non-persistence in the mean. But
generally, their reverses are not true.

The rest of this article is arranged as follows. In Section 2, we show that model
(1.2) has a unique positive global solution. Afterward, sufficient criteria for ex-
tinction, nonpersistence in the mean, weak persistence and stochastic permanence
are established in Section 3. Section 4 presents some figures to illustrate the main
results. We close this article with some conclusions and remarks.

2. Positive and global solutions

As the state x(t) of model (1.2) is the size of the population in the system, it
should be nonnegative. In this section we shall show that the solution of model
(1.2) has a unique global positive solution.

Wei [24, 25, 26] and Xu [27, 28] proved that, in order for a stochastic functional
differential equations with infinite delay to have a unique global solution for any
given initial data ξ ∈ Cg, the coefficients of the equation are generally required
to satisfy the linear growth condition and the local Lipschitz condition. The local
Lipschitz condition guarantees that the unique solution exists in (−∞, τe), where
τe is the explosion time (see [11]). Clearly, the coefficients of (1.2) satisfy the local
Lipschitz condition, but do not satisfy the linear growth condition.

Theorem 2.1. Let (A1) and (A2) hold. Then, for any given positive initial value
ξ ∈ Cg, there is a unique global solution x(t) to model (1.2) for t ∈ R and the
solution will remain in R+ with probability 1, namely x(t) ∈ R+ for all t ∈ R
almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for
any given positive initial value ξ ∈ Cg, there is a unique local solution x(t) on
t ∈ (−∞, τe), where τe is the explosion time. To show this solution is global, we
need to show that τe = +∞ a.s. Let k0 > 0 be sufficiently large such that

1
k0

< min
−∞<θ≤0

ξ(θ) ≤ max
−∞<θ≤0

ξ(θ) < k0.

For each integer k ≥ k0, define the stopping time

τk = inf
{
t ∈ (−∞, τe) : x(t) ≤ 1

k
or x(t) ≥ k

}
.

Clearly, τk is increasing as k → +∞. Set τ+∞ = limk→+∞ τk, whence τ+∞ ≤ τe
a.s. for all t ≥ 0. If we can show that τ+∞ = +∞ a.s., then τe = +∞ a.s. and
x(t) ∈ R+ a.s. In other words, to complete the proof all we need to show is that
τ+∞ = +∞ a.s. To show this statement, let us define a C2-function V : R+ → R+

by V (x) =
√
x−1−0.5 lnx. Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk∧T ,
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we can apply the Itô’s formula to
∫ t
t−τ x

2(s)ds+ V (x(t)) to obtain

d
[ ∫ t

t−τ
x2(s)ds+ V (x(t))

]
=
[
x2(t)− x2(t− τ)

]
dt+ 0.5

[
x−0.5(t)− x−1(t)

]
x(t)

×
[(
r(t)− a(t)x(t) + b(t)x(t− τ) + c(t)

∫ 0

−∞
x(t+ θ)dµ(θ)

)
dt

+ σ1(t)dw1(t) + σ2(t)x(t)dw2(t)
]

+ 0.5
[
− 0.25x−1.5(t) + 0.5x−2(t)

]
σ2

1(t)x2(t)dt

+ 0.5
[
− 0.25x−1.5(t) + 0.5x−2(t)

]
σ2

2(t)x4(t)dt

=
[
x2(t)− x2(t− τ)

]
dt+ 0.5r(t)[x0.5(t)− 1]dt− 0.5a(t)[x0.5(t)− 1]x(t)dt

+ 0.5b(t)x(t− τ)[x0.5(t)− 1]dt+ 0.5c(t)[x0.5(t)− 1]
∫ 0

−∞
x(t+ θ)dµ(θ)dt

+ 0.5
[
− 0.25x−1.5(t) + 0.5x−2(t)

]
σ2

1(t)x2(t)dt+ 0.5
[
− 0.25x−1.5(t)

+ 0.5x−2(t)
]
σ2

2(t)x4(t)dt+ 0.5[x0.5(t)− 1]σ1(t)dw1(t) + 0.5
[
x1.5(t)

− x(t)
]
σ2(t)dw2(t)

=
[
x2(t)− x2(t− τ)

]
dt+ 0.5r(t)[x0.5(t)− 1]dt− 0.5a(t)[x0.5(t)− 1]x(t)dt

+ 0.0625b2(t)[x0.5(t)− 1]2dt+ 0.0625c2(t)[x0.5(t)− 1]2dt

+
∫ 0

−∞
x2(t+ θ)dµ(θ)dt+ x2(t− τ)dt

+ 0.5
[
− 0.25x−1.5(t) + 0.5x−2(t)

]
σ2

1(t)x2(t)dt

+ 0.5
[
− 0.25x−1.5(t) + 0.5x−2(t)

]
σ2

2(t)x4(t)dt

+ 0.5[x0.5(t)− 1]σ1(t)dw1(t) + 0.5
[
x1.5(t)− x(t)

]
σ2(t)dw2(t)

=
[
x2(t) + 0.25σ2

1(t) + 0.25σ2
2(t)x2(t) + 0.5r(t)

(
x0.5(t)− 1

)
− 0.5a(t)

(
x0.5(t)dt− 1

)
x(t) + 0.0625b2(t)

(
x0.5(t)− 1

)2 − 0.125σ2
2(t)x2.5(t)

+ 0.0625c2(t)
(
x0.5(t)− 1

)2 +
∫ 0

−∞
x2(t+ θ)dµ(θ)− 0.125σ2

1(t)x1.5(t)
]
dt

+ 0.5[x0.5(t)− 1]σ1(t)dw1(t) + 0.5[x1.5(t)− x(t)]σ2(t)dw2(t),

= F (x)dt+
∫ 0

−∞
x2(t+ θ)dµ(θ)dt− x2(t)dt+ 0.5[x0.5(t)− 1]σ1(t)x(t)dw1(t)

+ 0.5[x0.5(t)− 1]σ2(t)x2(t)dw2(t)

where

F (x) = 0.25σ2
1(t) + 0.25σ2

2(t)x2(t) + 0.5r(t)[x0.5(t)− 1]− 0.5a(t)[x0.5(t)− 1]x(t)

+ 0.0625b2(t)[x0.5(t)− 1]2 + 0.0625c2(t)[x0.5(t)− 1]2

+ 2x2(t)− 0.125σ2
1(t)x1.5(t)− 0.125σ2

2(t)x2.5(t).
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Under assumptions (A1)–(A2), it is easy to see that F (x) is bounded, say by K, in
R+. We therefore obtain that

d
[ ∫ t

t−τ
x2(s)ds+ V (x(t))

]
≤ Kdt+

∫ 0

−∞
x2(t+ θ)dµ(θ)dt− x2(t)dt+ 0.5[x0.5(t)− 1]σ1(t)dw1(t)

+ 0.5[x1.5(t)− x(t)]σ2(t)dw2(t).

Integrating both sides from 0 to t, and then taking expectations, yields

E
[ ∫ t

t−τ
x2(s)ds+ V (x(t))

]
≤
∫ 0

−τ
x2(s)ds+ V (x(0)) +Kt+ E

∫ t

0

∫ 0

−∞
x2(s+ θ)dµ(θ)ds− E

∫ t

0

x2(s)ds.

Moreover, we obtain that∫ t

0

∫ 0

−∞
x2(s+ θ)dµ(θ)ds

=
∫ t

0

[ ∫ −s
−∞

x2(s+ θ)dµ(θ)ds+
∫ 0

−s
x2(s+ θ)dµ(θ)

]
ds

=
∫ t

0

ds
[ ∫ −s
−∞

e2r(s+θ)x2(s+ θ)e−2r(s+θ)dµ(θ) +
∫ 0

−t
dµ(θ)

∫ t

−θ
x2(s+ θ)ds

≤ ‖ξ‖2Cg

∫ t

0

e−2rsds

∫ 0

−∞
e−2rθdµ(θ) +

∫ 0

−∞
dµ(θ)

∫ t

0

x2(s)ds

≤ ‖ξ‖2Cgµrt+
∫ t

0

x2(s)ds.

Consequently,

E
[ ∫ t

t−τ
x2(s)ds+ V (x(t))

]
≤
∫ 0

−τ
x2(s)ds+ V (x(0)) +Kt+ ‖ξ‖2Cgµrt.

Letting t = τk ∧ T , we obtain

E
[ ∫ τk∧T

τk∧T−τ
x2(s)ds+ V (x(τk ∧ T ))

]
≤
∫ 0

−τ
x2(s)ds+ V (x(0)) +KE(τk ∧ T ) + ‖ξ‖2Cgµr(τk ∧ T ).

Therefore,

EV (x(τk ∧ T )) ≤
∫ 0

−τ
x2(s)ds+ V (x(0)) +KT + ‖ξ‖2CgµrT. (2.1)

Note that for every ω ∈ {τk ≤ T}, x(τk, ω) equals either k or 1
k , and hence

V (x(τk, ω)) is no less than either
√
k − 1− 0.5 log(k)
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or √
1
k
− 1− 0.5 log(

1
k

) =

√
1
k
− 1 + 0.5 log(k).

Consequently,

V (x(τk, ω)) ≥ [
√
k − 1− 0.5 log(k)] ∧ [

√
1
k
− 1 + 0.5 log(k)].

From (2.1) it follows that∫ 0

−τ
x2(s)ds+ V (x(0)) +KT + ‖ξ‖2CgµrT

≥ E[1{τk≤T}(ω)V (x(τk, ω))]

≥ P{τk ≤ T}([
√
k − 1− 0.5 log(k)] ∧ [

√
1
k
− 1 + 0.5 log(k)]),

where 1{τk≤T} is the indicator function of {τk ≤ T}. Letting k →∞ gives

lim
k→+∞

P{τk ≤ T} = 0

and hence P{τ+∞ ≤ T} = 0. Since T > 0 is arbitrary, we must have

P{τ+∞ < +∞} = 0,

so P{τ+∞ = +∞} = 1 as required. �

3. Persistence and extinction for model (1.2)

From Theorem 2.1 we know that solutions of (1.2) will remain in the positive
cone R+. This nice property provides us with a great opportunity to construct
different types of Lyapunov functions to discuss how the solutions vary in R+ in
more details. In this section, we shall study the persistence and extinction of model
(1.2).

Theorem 3.1. Let assumption (A1) and (A2) hold. If d̄ < 0 and inft∈R+
{a(t) −

b(t+ τ)− cu} ≥ 0, then the population x(t) modeled by (1.2) approaches extinction
a.s.

Proof. Applying Itô’s formula to (1.2) leads to

d

∫ t

t−τ
b(s+ τ)x(s)ds+ d lnx(t)

= (b(t+ τ)x(t)− b(t)x(t− τ))dt+
[
r(t)− σ2

1(t)
2
− a(t)x(t) + b(t)x(t− τ)

+ c(t)
∫ 0

−∞
x(t+ θ)dµ(θ)− σ2

2(t)(t)x2(t)
2

]
dt+ σ1(t)dω1(t) + σ2(t)x(t)dω2(t).

Then we have∫ t

t−τ
b(s+ τ)x(s)ds−

∫ 0

−τ
b(s+ τ)x(s)ds+ lnx(t)− lnx(0)

=
∫ t

0

[
r(s)− σ2

1(t)
2
− (a(s)− b(s+ τ))x(s) + c(s)

∫ 0

−∞
x(s+ θ)dµ(θ)

− σ2
2(t)x2(s)

2

]
ds+

∫ t

0

σ1(s)dω1(s) +
∫ t

0

σ2(s)x(s)dω2(s).

(3.1)
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By hypothesis (A3), we obtain∫ t

0

c(s)
∫ 0

−∞
x(s+ θ)dµ(θ)ds

=
∫ t

0

c(s)
[ ∫ −s
−∞

x(s+ θ)dµ(θ)ds+
∫ 0

−s
x(s+ θ)dµ(θ)

]
ds

=
∫ t

0

c(s)ds
∫ −s
−∞

er(s+θ)x(s+ θ)e−r(s+θ)dµ(θ) +
∫ 0

−t
dµ(θ)

∫ t

−θ
c(s)x(s+ θ)ds

≤ cu‖ξ‖cg
∫ t

0

e−rsds

∫ 0

−∞
e−rθdµ(θ) + cu

∫ 0

−∞
dµ(θ)

∫ t

0

x(s)ds

≤ cu‖ξ‖cg
∫ t

0

e−rsds

∫ 0

−∞
e−2rθdµ(θ) + cu

∫ 0

−∞
dµ(θ)

∫ t

0

x(s)ds

≤ 1
r
cu‖ξ‖Cgµr(1− e−rt) + cu

∫ t

0

x(s)ds.

Consequently,∫ t

t−τ
b(s+ τ)x(s)ds−

∫ 0

−τ
b(s+ τ)x(s)ds+ lnx(t)− lnx(0)

≤
∫ t

0

[
r(s)− σ2

1(s)
2
−
(
a(s)− b(s+ τ)− cu

)
x(s)− σ2

2(s)x2(s)
2

]
ds

+
1
r
cu‖ξ‖Cgµr(1− e−rt) +M1(t) +M2(t),

(3.2)

where

M1(t) =
∫ t

0

σ1(s)dω1(s), M2(t) =
∫ t

0

σ2(s)x(s)dω2(s).

The quadratic variation of M1(t) is

〈M1(t),M1(t)〉 =
∫ t

0

σ2
1(t)(s)ds ≤ (σu1 )2t.

Using the strong law of large numbers for martingales (see e.g. [29, page 16]) leads
to

lim
t→+∞

M1(t)
t

= 0, a.s. (3.3)

The quadratic variation of M2(t) is 〈M2(t),M2(t)〉 =
∫ t

0
σ2

2(s)x2(s)ds. By the
exponential martingale inequality, for any positive constants T0, α and β, we have

P
{

sup
0≤t≤T0

[
M2(t)− α

2
〈M2(t),M2(t)〉

]
> β

}
≤ e−αβ . (3.4)

Choose T0 = k, α = 1, β = 2 ln k. Then it follows that

P
{

sup
0≤t≤k

[
M2(t)− 1

2
〈M2(t),M2(t)〉

]
> 2 ln k

}
≤ 1
k2
.

Using Borel-Cantelli’s lemma yields that for almost all ω ∈ Ω, there is a random
integer k0 = k0(ω) such that for k ≥ k0,

sup
0≤t≤k

[
M2(t)− 1

2
〈M2(t),M2(t)〉

]
≤ 2 ln k.
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This is to say

M2(t) ≤ 2 ln k +
1
2
〈M2(t),M2(t)〉 = 2 ln k +

1
2

∫ t

0

σ2
2(s)x2(s)ds

for all 0 ≤ t ≤ k, k ≥ k0 a.s. Substituting this inequality into (3.1), we obtain

lnx(t)− lnx(0) ≤
∫ 0

−τ
b(s)x(s)ds+

∫ t

0

[
r(s)− σ2

1(s)
2
− (a(s)− b(s)− cu)x(s)

]
ds

+ 2 ln k +
1
r
cu‖ξ‖Cgµr(1− e−rt) +M1(t)

(3.5)
for all 0 ≤ t ≤ k, k ≥ k0 a.s. In other words, we have shown that for 0 < k − 1 ≤
t ≤ k, k ≥ k0,

t−1{lnx(t)− lnx(0)}

≤ t−1

∫ 0

−τ
b(s)x(s)ds+ t−1

∫ t

0

[
r − σ2

1(s)
2
− ((a(s)− b(s)− cu)x(s)

]
ds

+ 2(k − 1)−1 ln k + t−1 1
r
cu‖ξ‖Cgµr(1− e−rt) +M1(t)/t.

Taking the limit superior on both sides and using (3.3) yields lim supt→+∞
ln x(t)
t ≤

d̄. That is to say, if d̄ < 0, one sees that limt→+∞ x(t) = 0 a.s. �

Theorem 3.2. Let (A1) and (A2) hold, if d̄ = 0 and inft∈R+
{a(t)−b(t+τ)−cu} ≥

0, then the population x(t) represented by (1.2) is nonpersistent in the mean a.s.

Proof. From d̄ = 0 and (3.3), then for all ε > 0, there exists T , such that

t−1

∫ t

0

(r(s)− σ1(s)
2

)ds+ t−1

∫ 0

−τ
b(s)x(s)ds

+ t−1 1
r
cu‖ξ‖Cgµr(1− e−rt) +

2 ln k
t

+
M1(t)
t

< ε ∀t > T.

In view of (3.5), we have

lnx(t)− lnx(0)

≤
∫ 0

−τ
b(s)x(s)ds+

∫ t

0

[
r(s)− σ2

1(s)
2
− (a(s)− b(s+ τ)− cu)x(s)

]
ds

+ t−1 1
r
cu‖ξ‖Cgµr(1− e−rt) + 2 ln k +M1(t)

< εt−
∫ t

0

(a(s)− b(s+ τ)− cu)x(s)ds

for all T ≤ k−1 ≤ t ≤ k, k ≥ k0 a.s. Define h(t) =
∫ t

0
x(s)ds and N = infs∈R[a(s)−

b(s+ τ)− cu], then we have

ln(dh/dt) < εt−Nh(t) + lnx(0), t > T.

The rest of proof is similar to [14, Theorem 3] and is hence omitted. �

Theorem 3.3. Let (A1) and (A2) hold. If d̄ > 0, then the population x(t) modeled
by (1.2) is weakly persistent a.s.
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Proof. Now suppose that d̄ > 0, we will prove lim supt→+∞ x(t) > 0 a.s. If this
assertion is not true, let F = {lim supt→+∞ x(t) = 0} and suppose P (F ) > 0. In
view of (3.1),

t−1

∫ t

t−τ
bx(s)ds− t−1

∫ 0

−τ
bx(s)ds+ t−1 lnx(t)

= t−1 lnx(0) + t−1

∫ t

0

[
r(s)− σ2

1(s)
2
− (a(s)− b(s))x(s)

+ c(s)
∫ 0

−∞
x(s+ θ)dµ(θ)− σ2

2(s)x2(s)
2

]
ds+M1(t)/t+M2(t)/t.

(3.6)

On the other hand, for all ω ∈ F , we have limt→+∞ x(t, ω) = 0, then the law of large
numbers for local martingales indicates that limt→+∞M2(t)/t = 0. Substituting
this equality and (3.3) into (3.6) results in the contradiction

0 ≥ lim sup
t→+∞

[t−1 lnx(t, ω)] = d̄ > 0.

�

It is well known that in the study of population system, stochastic permanence,
which means that the population will survive forever, is one of the most important
and interesting topics due to its theoretical and practical significance. So we show
that x(t) modeled by (1.2) is stochastic permanent in some cases.

Theorem 3.4. Let (A1) and (A2) hold. If
(
r(t) − σ2

1(t)
2

)
∗ > 0, b(t) ≥ 0, and

c(t) ≥ 0, then the population x(t) modeled by (1.2) will be stochastic permanent.

Proof. First, we prove that for arbitrary ε > 0, there are constants M > 0 such
that lim inft→+∞ P{x(t) ≤M} ≥ 1− ε.

Let 0 < p < 1 and ε1 ∈ (0, 2r), we compute

dxp(t)

= pxp−1(t)dx(t) +
1
2
p(p− 1)xp−2(t)(dx(t))2

= pxp−1(t)
[(
x(t)

(
r(t)− a(t)x(t) + b(t)x(t− τ) + c(t)

∫ 0

−∞
x(t+ θ)dµ(θ)

))
dt

+ σ1(t)x(t)dω1(t) + σ2(t)x2dω2(t)
]

+
1
2
p(p− 1)σ2

1(t)xp(t)dt

+
1
2
p(p− 1)σ2

2(t)xp+2(t)dt

≤
[
r(t)pxp(t) +

p2b2(t)x2p(t)
4

+ x2(t− τ) +
p2c2(t)x2p(t)

4

+
∫ 0

−∞
x2(t+ θ)dµ(θ)

]
dt+ pσ1(t)xp(t)dω1(t) + pσ2(t)xp+1(t)dω2(t)

− 1
2
p(1− p)σ2

1(t)xp(t)dt− 1
2
p(1− p)σ2

2(t)xp+2(t)dt

= F (x)dt−
[
ε1x

p(t) + eε1τx2(t)− x2(t− τ)−
∫ 0

−∞
x2(t+ θ)dµ(θ) + µrx

2(t)
]
dt

+ pσ1(t)xp(t)dω1(t) + pσ2(t)xp+1(t)dω2(t)
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where

F (x) = eε1τx2(t) + µrx
2(t) + (ε1 + r(t)p)xp(t) +

p2b2(t)x2p(t)
4

+
p2c2(t)x2p(t)

4
− 1

2
p(1− p)σ2

1(t)(t)xp(t)− 1
2
p(1− p)σ2

2(t)x2+p(t).

From (A1)–(A2) and 0 < p < 1, we have that F (x) is bounded in R+, namely

sup
x∈R+

F (x) = M3 < +∞.

Therefore,

dxp(t) = [M3 − ε1x
p(t)− eε1τx2(t) + x2(t− τ)]dt

+
∫ 0

−∞
x2(t+ θ)dµ(θ)dt− µrx2(t)dt

+ pσ1(t)xp(t)dω1(t) + pσ2(t)xp+1(t)dω2(t).

Once again by Itǒ’s formula we have

d[eε1txp(t)] = eε1t[ε1x
p(t)dt+ dxp(t)]

≤ eε1t
[
M3 − eε1τx2(t) + x2(t− τ) +

∫ 0

−∞
x2(t+ θ)dµ(θ)− µrx2(t)

]
dt

+ eε1t
(
pσ1(t)xp(t)dω1(t) + pσ2(t)xp+1(t)dω2(t)

)
.

Hence, we have

eε1tExp(t)

≤ ξp(0) +
eε1tM3

ε1
− M3

ε1
− E

∫ t

0

eε1s+ε1τx2(s)ds+ E

∫ t

0

eε1sx2(s− τ)ds

+ E

∫ t

0

eε1s
∫ 0

−∞
x2(s+ θ)dµ(θ)ds− E

∫ t

0

µre
ε1sx2(s)ds

≤ ξp(0) +
eε1tM3

ε1
− M3

ε1
− E

∫ t

0

eε1s+ε1τx2(s)ds+ E

∫ t−τ

−τ
eε1s+ε1τx2(s)ds

+ E

∫ t

0

eε1s
∫ 0

−∞
x2(s+ θ)dµ(θ)ds− E

∫ t

0

µre
ε1sx2(s)ds

≤ ξp(0) +
eε1tM3

ε1
− M3

ε1
+
∫ 0

−τ
eε1s+ε1τx2(s)ds

+ E

∫ t

0

eε1s
∫ 0

−∞
x2(s+ θ)dµ(θ)ds− Eµr

∫ t

0

eε1sx2(s)ds

From (A2), we have∫ t

0

eε1s
∫ 0

−∞
x2(s+ θ)dµ(θ)ds

=
∫ t

0

eε1s
[ ∫ −s
−∞

x2(s+ θ)dµ(θ) +
∫ 0

−s
x2(s+ θ)dµ(θ)

]
ds

=
∫ t

0

eε1sds

∫ −s
−∞

e2r(s+θ)x2(s+ θ)e−2r(s+θ)dµ(θ) +
∫ 0

−t
dµ(θ)

∫ t

−θ
eε1(s)x2(s+ θ)ds
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=
∫ t

0

eε1sds

∫ −s
−∞

e2r(s+θ)x2(s+ θ)e−2r(s+θ)dµ(θ) +
∫ 0

−t
dµ(θ)

∫ t+θ

0

eε1(s−θ)x2(s)ds

≤ ‖ξ‖2Cg

∫ t

0

e(ε1−2r)sds

∫ 0

−∞
e−2rθdµ(θ) +

∫ 0

−∞
e−ε1θdµ(θ)

∫ t

0

eε1sx2(s)ds

≤ ‖ξ‖2Cgµrt+ µr

∫ t

0

eε1sx(s)ds.

This implies

lim sup
t→+∞

E[xp(t)] ≤ M3

ε1
.

Now, for any ε > 0 and M =
(
M3
ε1

)1/p
/ε1/p, by Chebyshev’s inequality,

P{x(t) > M} = P{xp(t) > Mp} ≤ E[xp(t)]/Mp.

Hence
lim sup
t→+∞

P{x(t) > M} ≤ ε.

This implies
lim inf
t→+∞

P{x(t) ≤M} ≥ 1− ε.

Next, we claim that for arbitrary ε > 0, there is a constant β > 0 such that
lim inft→+∞ P{x(t) ≥ β} ≥ 1− ε. Define V1(x) = 1/x2 for x ∈ R+. Applying Itô’s
formula to(1.2) we obtain

dV1(x(t)) = −2x−3dx+ 3x−4(dx)2

= 2V1(x)[1.5σ2
2(t)x2 + a(t)x− r(t) + 1.5σ2

1(t)− b(t)x(t− τ)

− c(t)
∫ 0

−∞
x(t+ θ)dµ(θ)]dt− 2σ1(t)x−2dω1(t)− 2σ2(t)x−1dω2(t).

Since (r(t)− σ2
1(t)
2 )∗ > 0, we can choose a sufficient small constant 0 < κ < 1 such

that
(
r(t)− σ2

1(t)
2

)
∗ − κ(σu1 )2 > 0.

Define V2(x) = (1 + V1(x))κ. Using Itô’s formula again leads to

dV2 = κ(1 + V1(x(t)))κ−1dV1 + 0.5κ(κ− 1)(1 + V1(x(t)))κ−2(dV1)2

= κ(1 + V1(x))κ−2{(1 + V1(x))2V1(x)[1.5σ2
2(t)x2 + a(t)x− r(t) + 1.5σ2

1(t)

− b(t)x(t− τ)− c(t)
∫ 0

−∞
x(t+ θ)dµ(θ)] + 2σ2

1(t)(κ− 1)V 2
1 (x)

+ 2σ2
2(t)(κ− 1)V1(x)}dt− 2κ(1 + V1(x))κ−1x−2σ1(t)dω1(t)

− 2κ(1 + V1(x))κ−1x−1σ2(t)dω2(t)

≤ κ(1 + V1(x))κ−2{(−2r(t) + 3σ2
1(t) + 2σ2

1(t)(κ− 1))V 2
1 (x) + 2a(t)V 1.5

1 (x)

+ [3σ2
1(t)− 2r(t) + (2κ+ 1)σ2

2(t)]V1(x) + 2a(t)V 0.5
1 (x) + 3σ2

2(t)}dt
− 2κ(1 + V1(x))κ−1x−2σ1(t)dω1(t)− 2κ(1 + V1(x))κ−1x−1σ2(t)dω2(t)

= κ(1 + V1(x))κ−2{(−2r(t) + σ2
1(t) + 2κσ2

1(t))V 2
1 (x) + 2a(t)V 1.5

1 (x) + [3σ2
1(t)

− 2r + (2κ+ 1)σ2
2(t)]V1(x) + 2a(t)V 0.5

1 (x) + 3σ2
2(t)}dt

− 2κ(1 + V1(x))κ−1x−2σ1(t)dω1(t)− 2κ(1 + V1(x))κ−1x−1σ2(t)dω2(t)
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≤ κ(1 + V1(x))κ−2
{
− 2
((
r(t)− σ2

1(t)
2

)
∗
− κ(σu1 )2

)
V 2

1 (x) + 2auV 1.5
1 (x)

+ [3(σu1 )2 − 2rl + (2κ+ 1)(σu2 )2]V1(x) + 2auV 0.5
1 (x) + 3(σu2 )2

}
dt

− 2κ(1 + V1(x))κ−1x−2σ1(t)dω1(t)− 2κ(1 + V1(x))κ−1x−1σ2(t)dω2(t)

for sufficiently large t ≥ T . Now, let η > 0 be sufficiently small satisfying

0 <
η

2κ
< (r(t)− σ2

1(t)
2

)∗ − κ(σu1 )2.

Define V3(x) = eηtV2(x). By Itǒ’s formula

dV3(x(t))

= ηeηtV2(x) + eηtdV2(x)

≤ κeηt(1 + V1(x(t)))κ−2
{
η(1 + V1(x))2/κ− 2

(
(r(t)− σ2

1(t)
2

)∗ − κ(σu1 )2
)
V 2

1 (x)

+ 2auV 1.5
1 (x) + (3(σu1 )2 − 2r∗ + (2κ+ 1)(σu1 )2)V1(x) + 2auV 0.5

1 (x) + 3(σu2 )2
}
dt

− 2κeηt(1 + V1(x))θ−1x−2σ1(t)dω1(t)− 2κeηt(1 + V1(x))κ−1x−1σ2(t)dω2(t)

≤ κeηt(1 + V1(x(t))κ−2
{
− 2
((
r(t)− σ2

1(t)
2

)
∗
− κ(σu1 )2 − η

2κ

)
V 2

1 (x) + 2auV 1.5
1 (x)

+ [3(σu1 )2 − 2rl + (2κ+ 1)(σu2 )2 + 2η/κ]V1(x) + 2auV 0.5
1 (x) + 3(σu2 )2 + η/κ

}
dt

− 2θeηt(1 + V1(x))κ−1x−2σ1(t)dω1(t)− 2κeηt(1 + V1(x))κ−1x−1σ2(t)dω2(t)

= eηtH(x)dt− 2κeηt(1 + V1(x))κ−1x−2σ1(t)dω1(t)

− 2κeηt(1 + V1(x))κ−1x−1σ2(t)dω2(t)

for t ≥ T . Note that H(x) is bounded from above in R+, namely supx∈R+
H(x) =

H < +∞. Consequently,

dV3(x(t)) = Heηtdt− 2κeηt(1 + V1(x(t)))κ−1x−2(t)σ1(t)dω1(t)

− 2κeηt(1 + V1(x))κ−1x−1σ2(t)dω2(t)

for sufficiently large t. Integrating both sides of the above inequality and then
taking expectations gives

E[V3(x(t))] = E[eηt(1 + V1(x(t)))κ] ≤ eηT (1 + V1(x(T )))κ +
H

η

(
eηt − eηT

)
.

That is to say

lim sup
t→+∞

E[V κ1 (x(t))] ≤ lim sup
t→+∞

E[(1 + V1(x(t)))κ] <
H

η
.

In other words, we have shown that

lim sup
t→+∞

E
[ 1
x2κ(t)

]
≤ H

η
= M4.

So for any ε > 0, set β = ε1/2κ/M
1/2κ
4 , by Chebyshev’s inequality, one can derive

that

P{x(t) < β} = P
{ 1
x2κ(t)

>
1
β2κ

}
≤
E[ 1

x2κ(t) ]
1
β2κ

.
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This is to say
lim sup
t→+∞

P{x(t) < β} ≤ β2κM4 = ε.

Consequently
lim inf
t→+∞

P{x(t) ≥ β} ≥ 1− ε.

This completes the whole proof. �

Remark 3.5. Theorems 3.1–3.3 have an obvious and interesting biological inter-
pretation. Under assumption (A1) and (A2), if d̄ > 0, the population x(t) will be
weakly persistent. Under assumption (A1) and (A2), if d̄ < 0 and inft∈R+

{a(t) −
b(t+ τ)− cu} ≥ 0, the population x(t) will go extinct. That is to say, if assumption
(A1) and (A2) hold and inft∈R+

{a(t)− b(t+ τ)− cu} ≥ 0, then d̄ is the threshold
between weak persistence and extinction for the population x(t).

Remark 3.6. With d̄ = lim supt→+∞ t−1
∫ t

0

(
r(s)−σ

2
1(s)
2

)
ds in Theorem 3.1–3.3, we

note that the stochastic noise on r(t) is detrimental to the survival of the population
but the stochastic noise on a(t) has little effect on the persistence or extinction of
the population. Thus, in true ecological modeling, the stochastic noise on r(t)
should be considered, but the stochastic noise on a(t) could be overlooked in some
cases.

Remark 3.7. From Theorem 3.1–3.3, we found that the delay has no effect on the
persistence and extinction of the stochastic model in autonomous case.

Remark 3.8. If b(t) ≤ 0 and c(t) ≤ 0 hold, then the condition inft∈R+
{a(t)−b(t+

τ)− cu} ≥ 0 in Theorem 3.1–3.2 can be omitted.

Remark 3.9. Liu and Wang [14] studied the persistence and extinction of two
stochastic logistic model. Our work extends their results to stochastic population
with infinite delay.

4. Examples and numerical simulations

In this section, we explore the behavior of the model (1.2) using numerical solu-
tions . For convenience, we let the probability measure µ(θ) be eθ on (−∞, 0]. So
the model (1.2) will be written as

dx(t) = x(t)
[
r(t)− a(t)x(t) + b(t)x(t− τ) + c(t)e−t

∫ 0

−∞
esξ(s)ds

+ c(t)e−t
∫ t

0

esx(s)ds
]
dt+ σ1(t)x(t)dw1(t) + σ2(t)x2(t)dw2(t).

(4.1)

By employing the Euler scheme to discretize this equation, where the integral term
is approximated by using the composite K -rule as a quadrature [30] and taking
the initial values as ξ(s) = e−0.5s, τ = 0.8. We obtain the discrete approximate
solution

xk+1 = xk + xk

[
r(k∆t)− a(k∆t)xk + b(k∆t)xk−800 + c(k∆t)e−k∆t

∫ 0

−∞
e0.5θdθ

+ c(k∆t)e−k∆t
k∑
j=0

ω
(k)
j ej∆txj

]
∆t+ xk(∆B1)k + x2

k(∆B2)k,
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where (∆Bi)k = Bi((k + 1)∆t) − Bi(k∆t), k = 0, 1, 2, . . . , i = 1, 2. The general
composite K -rule has weights

{ω(k)
0 , ω

(k)
1 , . . . , ω

(k)
k } = {K , 1, . . . , 1−K }, K ∈ [0, 1]

and
∑k
j=0 ω

(k)
j = k, k ≥ 0.

Here, we choose r(t) = 0.2 + 0.02 sin t, a(t) = 0.09, b(t) = 0.01, c(t) = 0.005,
σ2(t) = 0.08, K = 0 and step size ∆t = 0.001. The only difference between
conditions of Figure .1(a), Figure 1(b), Figure 1(c) and Figure 1(d) is that the
representations of σ1(t) are different. In Figure 1(a), we choose σ2

1(t) ≡ 0.5, then
d̄ = −0.05. In view of Theorem 3.1, population x(t) will go to extinction. In
Figure 1(b), we consider σ2

1(t) = 0.4 + 0.01 sin t, then d̄ = 0. By Theorem 3.2,
population x(t) will be nonpersistent in the mean. In Figure 1(c), we choose σ2

1(t) ≡
0.38, then d̄ = 0.01 > 0. From Theorem 3.3, the population x(t) will be weakly
persistent. In Figure 1(d), we consider σ2

1(t) ≡ 0.32, then (r(t)− σ2
1(t)
2 )∗ = 0.02 > 0.

Using Theorem 3.4, the population x(t) will be stochastic permanence. By using
numerical simulations, we find that the stochastic noise on r(t) can change the
properties of the population models significantly.
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Figure 1. The horizontal axis is time and the vertical axis is the
population size x(t) (step size ∆t = 0.001)

Conclusions and future directions. In the real world, the natural growth of
population is inevitably affected by stochastic disturbances. In this paper, a sto-
chastic logistic model with infinite delay is proposed and analyzed. With space Cg
as phase space, sufficient conditions for extinction are established and nonpersistent
in the mean, weak persistence and stochastic permanence. Furthermore, we obtain
the threshold between weak persistence and extinction.

Some interesting topics merit further consideration. It is interesting to study
what happens if c(t) is stochastic. Another significant problem is devoted to mul-
tidimensional stochastic model with infinite delay, and these investigations are in
progress.
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