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BLOWUP AND EXISTENCE OF GLOBAL SOLUTIONS TO
NONLINEAR PARABOLIC EQUATIONS WITH

DEGENERATE DIFFUSION

ZHENGCE ZHANG, YAN LI

Abstract. In this article, we consider the degenerate parabolic equation

ut − div(|∇u|p−2∇u) = λum + µ|∇u|q

on a smoothly bounded domain Ω ⊆ RN (N ≥ 2), with homogeneous Dirichlet
boundary conditions. The values of p > 2, q,m, λ and µ will vary in different

circumstances, and the solutions will have different behaviors. Our main goal
is to present the sufficient conditions for L∞ blowup, for gradient blowup, and

for the existence of global solutions. A general comparison principle is also

established.

1. Introduction

In this article, we study the initial-boundary value problem of p-Laplacian equa-
tion

ut −∆pu = λum + µ|∇u|q, x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(1.1)

where Ω ⊆ RN is a smoothly bounded domain, ∆pu = div(|∇u|p−2∇u), p > 2, and
m, q ≥ 1 will be decided later. λ and µ satisfy: λ = 0, µ > 0 or µ = 0, λ > 0 or
λµ < 0. We also assume that the initial data satisfies

u0 ∈W 1,∞
0 (Ω), u0 ≥ 0.

When p = 2 and µ = 0, the equation in (1.1) is called the semilinear reaction-
diffusion one and is studied by many mathematicians. For various blowup properties
of its solutions under different initial-boundary conditions, we refer the readers to
[27] and the references therein.

When p = q = 2 and λ = 0, the equation becomes the well-known Kardar-Parisi-
Zhang (KPZ) equation describing the the profile of a growing interface in certain
physical models (see [15]). The case of q ≥ 1 was a general one which was developed
by Krug and Spohn aiming at studying the effect of the nonlinear gradient term
to the properties of solutions (see [17]). The general case of Kardar-Parisi-Zhang
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equations are also the viscosity approximation of Hamilton-Jacobi type equations
from stochastic control theory (see [24]). If q ≥ 1, it’s well known that under certain
conditions the gradient of the solution will become infinity when t approaches to
a finite time T while the solution itself keeps uniformly bounded by the maximum
principle, i.e.

T <∞, sup
Ω×[0,T )

|u| <∞, lim
t→T−

‖∇u‖L∞ = +∞,

this phenomenon is called gradient blowup. See [14, 27, 29] for examples. Other
properties about the solution such as blowup profile, blowup set, blowup rate and
so on had also been studied in [13, 21] and the references therein. Zhang and
Hu [35] studied the equation ut = uxx + xm|ux|p in [0, 1] × [0,∞). They proved
that gradient blowup will occur under suitable initial and boundary conditions.
They also obtained the gradient blowup rate upper and lower bounds. It was
shown in [39] that the solution of equation ut − ∆u = a(x)|∇u|p + h(x) will also
exhibit gradient blowup phenomenon under certain conditions. Zhang and Li [39]
also studied the gradient blowup rate estimates. Besides, solutions of equation of
the form ut − ∆u = e|∇u| with homogeneous Dirichlet boundary condition and
suitably large initial data will also exhibit gradient blowup phenomenon. The
blowup criterion, blowup rate and other properties of solutions of this equation can
be found in [36, 37, 38, 42].

When p = 2, λµ < 0, the properties of solutions become more complicated. If
λ > 0, µ < 0, then the solutions will blow up with the L∞ norm in a finite time,
i.e.

T <∞, lim
t→T−

‖u‖L∞ = +∞,

provided that m > q. While if m ≤ q, the global existence can be obtained. See
[7, 9, 16, 25, 26, 27, 28, 29, 30, 31, 32] for examples. We also need to state that
gradient blowup phenomenon cannot occur in this case. If λ < 0, µ > 0, then
gradient blowup will occur given q > m or q = m and µ � |λ|, see [14, 27, 29]
for examples. However, the properties of solutions in the case of q < m have not
been resolved. For the related results, we refer the readers to [27, 29] for details.
Besides, some general growth conditions of the nonlinear terms were also obtained,
see [6, 10, 16, 27, 29, 32] for examples.

When p > 2, the equation (1.1) is degenerate on points where |∇u| = 0. In
this case, the classical maximum principle will be invalid to p-Laplacian equations
and the existence of classical solutions cannot be obtained generally. However, we
can obtain the weak solutions by means of approximation with regular solutions,
see [2, 40] for examples. For the solutions of degenerate equations, the L∞ blowup
and gradient blowup had been studied when µ = 0, λ > 0 and λ = 0, µ > 0,
respectively. More precisely, when λ > 0 and µ = 0, the L∞ blowup will occur
under given conditions such as the initial data is large enough if m > p− 1, or the
coefficient of the nonlinear term is large enough if m = p − 1, see [22] for details.
Some other related results can be seen in [20, 40]. Besides, the blowup rate had also
been studied in [41]. If λ = 0 and µ > 0, the solutions will exhibit gradient blowup
phenomenon under certain conditions, see [2, 3, 19] for examples. Other properties
of solutions can be found in [3, 4, 19]. However, there has no other results on the
specific gradient blowup rate so far except for [34]. When λµ < 0, the properties of
solutions has not been studied except for [1] in which the L∞ blowup and some other
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asymptotic behaviors of the equation ut−div(um−1|Du|λ−1Du) = −ε|Duν |q + δup

were studied in RN . The main goals of this paper are to study the properties of
solutions of (1.1) and give some sufficient conditions about L∞ blowup, gradient
blowup and global existence when Ω is a smoothly bounded domain.

First, we give the following definition of weak solutions for (1.1).

Definition 1.1. Set QT = Ω× (0, T ), ST = ∂Ω× (0, T ), ∂QT = ST ∪ {Ω× {0}},
s = max{p, q,m}. A nonnegative function u(x, t) is called a weak super- (sub-)
solution of (1.1) on QT if it satisfies

u ∈ C
(
Ω× [0, T )

)
∩ Ls

(
(0, T );W 1,s(Ω)

)
, ∂tu ∈ L2

(
(0, T );L2(Ω)

)
,

u(x, 0) ≥ u(≤)u0, u|∂Ω ≥ (≤)0,∫∫
QT

∂tuφ+ |∇u|p−2∇u · ∇φdxdt ≥ (≤)
∫∫

QT

(λum + µ|∇u|q)φdxdt.

(1.2)

Here, φ ∈ C(QT ) ∩ Lp
(
(0, T );W 1,p(Ω)

)
, and φ ≥ 0, φ|ST = 0. u is a weak solution

if it’s a super-solution and a sub-solution. Here and after, we denote by Tmax the
maximal existence time.

Remark 1.2. The existence of local solutions for (1.1) can been found in [2, 40]
and in [11, Section 2] when λ = 0 or µ = 0. For the general case, we can consider
the approximate problem

∂uε
∂t
−∆ε

puε = λumε + µ
(
|∇uε|2 + ε

)q/2 − µεq/2, x ∈ Ω, t > 0,

uε(x, t) = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω,

(1.3)

where ∆ε
puε is defined as follows

∆ε
puε := div

((
|∇uε|2 + ε

) p−2
2 ∇uε

)
.

The existence of local solutions which belong to C1+α,(1+α)/2(QT ) for (1.3) can be
obtained as in [2] in the case λ < 0, µ > 0, and in [40] in the case λ > 0, µ < 0.
Then we can obtain the existence of local solutions u ∈ L∞loc([0, T );W 1,∞

0 (Ω)) for
(1.1) by letting ε→ 0. However, if λ > 0, µ > 0, there has no C1+α,(1+α)/2 estimate
so far, which is used to obtain the local existence of the weak solution of (1.1).

Before giving our main results, we use the following two figures to state intu-
itionally how the relation between q (≥ 1) and m (≥ 1) affects the properties of the
solution of (1.1).

In figures 1 and 2, we did not point out which domain the boundary lines and
the coordinate axis belong to as the properties of the solution of (1.1) there is
somewhat complicated. For more details, we will introduce in our main theorems
below (For convenience, the statement of some known results may be different from
the original ones).

Theorem 1.3. For λ > 0, µ < 0, assume that u0 = ηψ, ψ ≥ 0, ψ 6≡ 0, then
there exists η0(p, q,m, λ, µ,Ω) > 0, such that when η > η0, Tmax < ∞, if m >
max{q, p− 1} and q ≥ p

2 . Moreover, if q ≤ p− 1, then L∞ blowup occurs.

Theorem 1.4. Assume that p, q,m, λ and µ satisfy one of the following conditions:
(i) λ < 0, µ > 0, q > max{p,m};
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(ii) q = m > p, λ < 0, µ > 0, and µ� |λ|.
Set r = q/(q − p), if there exists k > 0, such that

∫
Ω
ur+1

0 dx > k, then gradient
blowup occurs.

Remark 1.5. (a) It can be seen from Theorem 1.4 that the relation q = m is critical
for gradient blowup to occur, and the solutions will exhibit different asymptotic
behavior in the critical case.

(b) If m > q > p and λ < 0, µ > 0, we do not know whether gradient blowup
occurs or not even when p = 2. Noticing that the source term is an absorption
term, and its influence is stronger than the gradient term to the properties of the
solutions, we may conjecture that gradient blowup may not occur in this case. We
leave this question to the interested readers.

When µ = 0 and λ > 0, or λ = 0 and µ > 0, there are known results about L∞

blowup or gradient blowup for the solution of (1.1), see Theorems 1.6 and 1.8 below.
For the details, we refer the readers to [22, Theorem 4.1] and [19, Proposition 5.3]
respectively.

Theorem 1.6. Set µ = 0, λ > 0
(i) Assume that m > p − 1 > 1. Given a nonnegative, nontrivial initial datum

u0 ∈ C0(Ω), there exists η0 > 0 (depending only on u0) such that for all η > η0,
the unique weak solution u(·, t) of Problem (1.1) with initial data ηu0 blows up in
a finite time T ∗. Moreover, there is some C(u0) > 0 such that

T ∗(ηu0) ≥ C(u0)
ηp−1

, η � 1.

(ii) For m = p − 1 > 1, the unique weak solution of (1.1) with nontrivial,
nonnegative u0 ∈ C0(Ω) blows up in finite time provided that λ > λ1.

Remark 1.7. (a) In Theorem 1.6(ii), λ1 denotes the first eigenvalue of the Dirichlet
problem

−div(|∇u|p−2∇u) = λ|ψ|p−2ψ, x ∈ Ω,
ψ = 0, x ∈ ∂Ω.

(1.4)

(b) It was also proved in [40] that L∞ blowup occurs when Ω is a large ball and
global solution exists if the measure of Ω is small enough. The results obtained
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by Zhao was proved in the case that the nonlinear terms are replaced by f(u)
satisfying: f(s) is odd, f ≥ 0 on R+, and

lim
u→∞

∫ u
0
f(s) ds
|u|p

= +∞.

Theorem 1.8. Assume that λ = 0, µ > 0 and q > p > 2. Define r = q/(q − p) as
in Theorem 1.4. There exists a positive real number κ depending on µ,Ω, p, q such
that, if ‖u0‖r+1 > κ, then (1.1) has no global solution, i.e. gradient blowup occurs.

Remark 1.9. The gradient blowup of solution for (1.1) when λ = 0 was also proved
in [2] under an inhomogeneous Dirichlet boundary condition. The proof there
depends on the first eigenfunction of −∆ with homogeneous Dirichlet boundary
condition.

Theorem 1.10. Let λ > 0, µ < 0, assume that u is nondecreasing in time, then u
exists globally in time if q ≥ m and q > p− 1.

Theorem 1.11. (i) If λµ 6= 0, p − 1 > max{q,m}, then the solution of (1.1) is
global in time.

(ii) If λµ 6= 0, q = p − 1, m ≤ p − 1, or q ≤ p − 1, m = p − 1 and the measure
of Ω is small enough, then the solution of (1.1) is global in time. In particular, the
smallness for Ω is unnecessary if µ > 0, λ < 0.

(iii) If µ = 0, λ > 0, m > p−1 > 1, then there exists η > 0 such that the solution
of (1.1) exists globally provided that ‖u0‖∞ < η.

(iv) If µ = 0, λ > 0, 1 < m < p − 1. Then the solution of (1.1) exists globally
for any initial data.

(v) Assume that λ = 0, µ > 0, if p ≥ q > p − 1 > 1, then the solution of (1.1)
exists globally for any initial data; if q > p, then the solution exists globally if u0 is
small enough; if q ≤ p− 1, then the solution of (1.1) is global in time.

Remark 1.12. Statements (i) and (ii) in the above theorem are direct consequences
of [40, Theorem 3.1] in which the author considered a more general situation; i.e.
the nonlinear terms are replaced by f(∇u, u, x, t) which satisfies suitable growth
conditions. We also point out that the assumption for the size of Ω is unnecessary
if λ < 0, µ > 0 as the uniform boundedness for un in [40] can be directly obtained
by the maximum principle. Statements (iii) and (iv) can be found in [22, Theorems
4.2 and 4.3]. The first two results of (v) are simplified forms of [19, Theorem 1.4]
in which Laurençot and Stinner gave a specific condition on initial data u0 and
studied the asymptotic behavior of u as t→∞. The third one is a special case of
[40, Theorem 3.1] without the condition that Ω is small enough as we can obtain
the uniform boundedness of the approximate solution by the maximum principle.

Theorem 1.13. Let λ < 0, µ > 0 and q ≤ p, m ≥ 1. Then the solution u exists
globally.

The rest of this article is organized as follows. In Section 2, we establish a general
comparison principle and some gradient estimates. The proofs of our main results
are included in Section 3. In Section 4, we discuss the cases when λ ≤ 0, µ ≤ 0 and
λ > 0, µ > 0. We also assume that λ, µ are constants without specific statement in
this paper. Thus, we can assume that |λ| = |µ| = 1 in some cases.
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2. Preliminaries

Due to the degeneracy of the p-Laplacian operator, the classical maximum prin-
ciple for the nondegenerate operators may not apply. However, we can prove the
following more general comparison principle for (1.1). We also need to point out
that the comparison principle below can be extended to a more general case under
the condition that λum +µ|∇u|q is replaced by B(u,∇u) which is locally Lipschitz
continuous with respect to u.

Proposition 2.1. Assume that u, v ∈ L∞loc((0, T );W 1,∞(Ω)) are sub- and super-
solution of (1.1) respectively. If q ≥ p

2 and m ≥ 1, then u ≤ v on QT .

The proof of the comparison principle relies on the following algebraic lemma
(see [2, 23]).

Lemma 2.2. Let σ > 1. For all ~a,~b ∈ RN , then〈
|~a|σ−2~a− |~b|σ−2~b,~a−~b

〉
≥ 4
σ2

∣∣|~a|σ−2
2 ~a− |~b|

σ−2
2 ~b
∣∣2.

Proof of Proposition 2.1. Without loss of generality, we assume that λ, µ > 0.
Choose φ = (u − v)+ as the test function. Obviously, φ|ST = 0, φ(x, 0) = 0.
Then for any τ ∈ (0, T ), we have∫ τ

0

∫
Ω

∂tφφdxdt ≤ −
∫ τ

0

∫
{φ(·,t)>0}

[|∇u|p−2∇u− |∇v|p−2∇v] · ∇φdxdt︸ ︷︷ ︸
M

+ µ

∫ τ

0

∫
{φ(·,t)>0}

[|∇u|q − |∇v|q]φdx dt︸ ︷︷ ︸
G

+ λ

∫ τ

0

∫
{φ(·,t)>0}

(um − vm)φ dxdt︸ ︷︷ ︸
S

.

(2.1)

Then by Lemma 2.2, we have

M≥ 4
p2

∫ τ

0

∫
{φ(·,t)>0}

∣∣∣|∇u| p−2
2 ∇u− |∇v|

p−2
2 ∇v

∣∣∣2 dxdt. (2.2)

For the term G, as in [2, Proposition 2.1], we have

G ≤ Cε
∫ τ

0

∫
{φ(·,t)>0}

∣∣∣|∇u| p−2
2 ∇u− |∇v|

p−2
2 ∇v

∣∣∣2 dxdt

+ C(ε)
∫ τ

0

∫
{φ(·,t)>0}

φ2 dx dt.
(2.3)

Here, C is a constant which depends on p, q and max{|∇u|p/2, |∇v|p/2}.
By the mean value theorem, we derive

S ≤ m‖u‖m−1
L∞

∫ τ

0

∫
{φ(·,t)>0}

φ2 dx dt. (2.4)
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Choosing 0 < ε < 4/(µCp2), combining the estimates (2.2)-(2.4) and integrating
by parts, we obtain∫

Ω

φ2(τ) dx ≤ C
(
λ, µ, ε,m, p, q, ‖u‖L∞ ,max{|∇u|p/2, |∇v|p/2}

) ∫ τ

0

∫
Ω

φ2 dx dt.

(2.5)
Then the conclusion follows from the Gronwall lemma. �

Remark 2.3. (i) If λ = 0 or µ = 0, the corresponding comparison principle had
been studied by many researchers. See [2, Proposition 2.1], [22, Theorem 2.5], and
[33, Lemma 2.1] for examples.

(ii) We can see from the proof above that the boundedness for the sub-solution
can be removed if m = 1 or λ ≤ 0.

Next, we give some results concerning the gradient estimates under the following
condition:

(H1) There exists a constant M , such that ‖u‖L∞(Ω̄×[0,Tmax]) ≤ M and u is
nondecreasing in t.

For any fixed x0 ∈ Ω, we choose R such that B(x0, R) ⊂ Ω. Let α ∈ (0, 1), R′ =
3R/4, we select a cut-off function which will be used later satisfying:

(i) η ∈ C2(B̄(x0, R
′)), 0 < η < 1, η(x0) = 1 and η = 0 for |x− x0| = R′.

(ii) |∇η| ≤ CR−1ηα and |D2η| + η−1|∇η|2 ≤ CR−2ηα for |x − x0| < R′ and
C = C(α) > 0.

Proposition 2.4. Assume that λ > 0, µ < 0, q > p − 1, m ≥ 1 and that (H1) is
satisfied, then the unique weak solution of (1.1) satisfies the gradient estimate

|∇u| ≤ C1δ(x)−
1

q−p+1 + C2 in Ω× (0, Tmax), (2.6)

where C1 = C1(p, q,m,N) > 0, C2 = C2(p, q,m,Ω,M, u0) > 0.

Proof. Since the proof is similar to that in [2, Theorem 1.4], we just give an outline,
and refer the readers to [2, Section 3]. For convenience, we assume that λ = −µ = 1.
Let w = |∇u|2, then w satisfies

Lw = −2w
p−2
2
∣∣D2u

∣∣2 + 2mum−1w, (2.7)

where

Lw = wt −Aw − ~J · ∇w,
Aw = |∇u|p−2∆w + (p− 2)|∇u|p−4(∇u)TD2w∇u,

~J :=
[
(p− 2)w(p−4)/2∆u+

(p− 2)(p− 4)
2

w
p−6
2 ∇u · ∇w − qw(q−2)/2

]
∇u

+
p− 2

2
w(p−4)/2∇w.

(2.8)

Letting z = ηw, we have

Lz = ηLw + wLη − 2w
p−2
2 ∇η · ∇w − 2(p− 2)w(p−4)/2(∇η · ∇u)(∇w · ∇u). (2.9)

Using Young’s inequality and the properties of η, we derive

Lz + ηw
p−2
2
∣∣D2u

∣∣2 ≤ C(p, q,N)R−2ηαw
p
2 + C ′(p, q,N)R−1ηαw

q+1
2 + 2mum−1z.

(2.10)
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Using the fact that u is nondecreasing in t and that u is uniformly bounded, we
have

|∇u(x1, t1)|q = −ut + ∆pu+ um

≤ (p− 2 +
√
N)|∇u|p−2

∣∣D2u(x1, t1)
∣∣+ C(m,M),

(2.11)

where (x1, t1) ∈ B(x0, R
′)× (t0, T ) satisfies |∇u(x1, t1)| > 0. Thus, we can derive

1
C(N, p)

|∇u(x1, t1)|2q−p+2 ≤ C(p, q,m,M,N) + w
p−2
2 |D2u(x1, t1)|2.

Hence

Lz +
1

C(p,N)
ηw

2q−p+2
2

≤ C(p, q,m,M,N) + CR−2ηαw
p
2 + C ′R−1ηαw

q+1
2 + C(m,M)ηw.

Similar as in [2], we set α = (q + 1)/(2q − p+ 2). By Young’s inequality, we have

2mum−1z ≤ C(p, q,m,M)η
2q−p

2q−p+2 +
1

4C(N, p)
ηw

2q−p+2
2 .

The estimates for R−2ηαw
p
2 and R−1ηαw

q+1
2 are the same as in [2]. Thus, we have

Lz +
1

2C(N, p)
z

2q−p+2
2 ≤ C ′(p, q,m,M,N) + CR−

2q−p+2
q−p+1 . (2.12)

Then following the same argument as in [2], we obtain the desired estimate. �

Remark 2.5. Following the same procedure, we can assert that the estimate (2.6)
is still valid without the condition (H1) if λ < 0, µ > 0. In fact, in this case, we
can easily obtain the uniform boundedness for u by the comparison principle as
M = ‖u0‖L∞ is a super-solution. Then following the same manner as in [2], we can
still have

ut ≤
1

p− 2
‖u0‖L∞

t
in D′(Ω), a.e. t > 0, (2.13)

which can be used to prove the gradient estimate (2.6) without the assumption that
u is nondecreasing in t.

Note that the gradient estimate above implies that there is no interior gradient
blowup.

Remark 2.6. The assumption that u is nondecreasing in time is reasonable, as we
can assume that u0 satisfies:

div
((
|∇u0|2 + ε

) p−2
2 ∇u0

)
+ λum0 + µ|∇u0|q ≥ 0

and that uε is uniformly bounded. Then differentiating the approximate equation
in (1.3) with respect to t, we have

wt −
N∑

i,j=1

aijwij = mλum−1
ε w + ~d · ∇w, (2.14)
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where, w = ∂uε
∂t , wij = ∂2w

∂xi∂xj
and

aij = (|∇uε|2 + ε)
p−2
2

(
δij +

p− 2
|∇uε|2 + ε

∂uε
∂xi

∂uε
∂xj

)
,

δij =

{
1, i = j,

0, i 6= j,

~d = (p− 2)(|∇uε|2 + ε)(p−4)/2
(

∆uε∇uε +∇(|∇uε|2)

+ (p− 4)
(
|∇uε|2 + ε

)−1(∇uε)TD2uε∇uε∇uε
)

+ qµ
(
|∇uε|2 + ε

)(q−2)/2∇uε.

(2.15)

It is easy to know that the equation (2.14) is uniformly parabolic as we can prove
that the matrix (aij)N1 is positive definite for any fixed ε > 0. Combining this with
the assumption for u0 and uε, using the maximum principle, we can assert that
w ≥ 0 which implies that u is nondecreasing in time.

Next, we will give an example for u0 to show that the assumption above is
reasonable. For convenience, we assume that 0 ∈ Ω, B1(0) ⊂ Ω.

If q > m, we assume that λ = −µ = 1, define u0(x) as

u0(x) =


β−β

(
β−1

β+N−2

)β
, 0 ≤ |x| ≤ N−1

β+N−2 ,

β−β(1− |x|)β , N−1
β+N−2 < |x| ≤ 1,

0, x ∈ Ω\B1(0),

(2.16)

where β = q/(q −m). A direct computation shows that

∇u0(x) =

{
−β−(β−1)(1− |x|)β−1 x

|x| ,
N−1

β+N−2 < |x| ≤ 1,

0, otherwise.
(2.17)

If N−1
β+N−2 < |x| ≤ 1, then um0 = β−mβ(1− |x|)mβ = |∇u0|q. A further computation

shows that

∆u0 = β−(β−1)(1− |x|)β−2
(
β − 1− N − 1

|x|
(1− |x|)

)
≥ 0 (2.18)

and that

(∇u0)TD2u0∇u0 = β−3(β−1)(β − 1)(1− |x|)3(β−1)−1 ≥ 0 (2.19)

in the case that N−1
β+N−2 < |x| ≤ 1. While if 0 ≤ |x| < N−1

β+N−2 or x ∈ Ω\B1(0),

div
(
(|∇u0|2 +ε)

p−2
2 ∇u0

)
+um0 −|∇u0|q = um0 ≥ 0. Thus, u0(x) satisfies the desired

assumption in D′(Ω) if q > m.
If q = m > p− 1, we assume that µ = −1 and β > 1. Similarly, we can define

u0(x) =


(

β−1
β+N−2

)β
, 0 ≤ |x| ≤ N−1

β+N−2 ,

(1− |x|)β , N−1
β+N−2 < |x| ≤ 1,

0, x ∈ Ω\B1(0).

(2.20)

We can see from definition (2.20) that

∇u0(x) =

{
−β(1− |x|)β−1 x

|x| ,
N−1

β+N−2 < |x| ≤ 1,

0, otherwise.
(2.21)
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Let us now consider the case N−1
β+N−2 < |x| ≤ 1. A further computation shows that

∆u0 = β(1− |x|)β−2
(
β − 1− N − 1

|x|
(1− |x|)

)
≥ 0, (2.22)

and that, if (p− 3)(β − 1) ≥ 1,

(p− 2)
(
|∇u0|2 + ε

)(p−4)/2
(∇u0)TD2u0∇u0

= (p− 2)β3(β − 1)
(
|∇u0|2 + ε

)(p−4)/2
(1− |x|)3(β−1)−1

= (p− 2)β3(β − 1)|∇u0|p−4(1− |x|)3(β−1)−1 +O(ε)

= (p− 2)βp−1(β − 1)(1− |x|)(p−1)(β−1)−1 +O(ε).

(2.23)

Then, for any fixed β > 1, we have

(p−2)βp−1(β−1)(1−|x|)(p−1)(β−1)−1 > βm(1−|x|)m(β−1), if r1 ≤ |x| ≤ 1, (2.24)

where r1 is a constant close to 1. For the fixed β and r1, let λ ≥ βm(1 − r1)−m.
Then we have

λum0 − |∇u0|m = (1− |x|)mβ(λ− βm(1− |x|)−m)

≥ (1− r1)mβ(λ− βm(1− r1)−m) ≥ 0,
(2.25)

if N−1
β+N−2 < |x| ≤ r1. If 0 ≤ |x| < N−1

β+N−2 or x ∈ Ω\B1(0),

div
(

(|∇u0|2 + ε)
p−2
2 ∇u0

)
+ um0 − |∇u0|q = um0 ≥ 0.

Thus, u0(x) satisfies the desired assumption in D′(Ω) if q = m.

3. Proof of main results

In this section, we give the proofs of Theorems 1.3, 1.4, 1.10 and 1.13.

3.1. Proof of L∞ blowup. The proof of Theorem 1.3 is based on the construction
of a self-similar sub-solution which was used in [32], the similar results can also be
found in [22, 27].

Proof of Theorem 1.3. In this case, we may assume that λ = −µ = 1. Set

v(x, t) =
1

(1− δt)k
V
( |x|

(1− δt)r
)
, t0 ≤ t <

1
δ
, (3.1)

where

V (y) = 1 +
A

σ
− yσ

σAσ−1
, y ≥ 0, σ =

p

p− 1
. (3.2)

The parameters k, r, A, δ satisfy

k =
1

m− 1
, 0 < r < min

{m− p+ 1
p(m− 1)

,
m− q
q(m− 1)

}
, A >

k

r
, δ <

1
k(1 + A

σ )
.
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A direct calculation shows that km = k+1 > (p−2)(k+r)+k+2r, k+1 > (k+r)q,
and the auxiliary function V (y) satisfies

1 ≤ V (y) ≤ 1 +
A

σ
, −1 ≤ V ′(y) ≤ 0, if 0 ≤ y ≤ A,

0 ≤ V (y) ≤ 1, −
(R
A

)σ−1 ≤ V ′(y) ≤ −1, if A ≤ y ≤ R,

(p− 1)|V ′(y)|p−2V ′′(y) +
N − 1
y
|V ′(y)|p−2V ′(y) = −N

A
, if 0 < y < R.

(3.3)

Here R = (Aσ−1(A+ σ))1/σ is the zero of V (y). If we denote

D :=
{

(x, t) : t0 ≤ t <
1
δ
, |x| < R(1− δt)r

}
, (3.4)

then v(x, t) > 0 if and only if (x, t) ∈ D, and v(x, t) is smooth in D. Next, we will
show that v(x, t) is a sub-solution of (1.1). Let y = |x|

(1−δt)r , then we have

Lpv = vt −∆pv − vm + |∇v|q

=
δ(kV (y) + ryV ′(y))

(1− δt)k+1
−

(p− 1)|V ′(y)|p−2V ′′(y) + N−1
y |V

′(y)|p−2V ′(y)

(1− δt)(p−2)(k+r)+(k+2r)

− V m(y)
(1− δt)mk

+
|V ′(y)|q

(1− δt)q(k+r)
.

If 0 ≤ y ≤ A, then we can choose t0(p, q,m, δ,N,A) close to 1
δ such that

Lpv ≤
1

(1− δt)k+1

(
δk(1 +

A

σ
)− 1 +

N

A
(1− δt0)1−2r−(p−2)(k+r)

+ (1− δt0)k+1−q(k+r)
)
≤ 0.

(3.5)

Similarly, we can obtain the estimate

Lpv ≤
1

(1− δt)k+1

(
δ(k − rA) +

N

A
(1− δt0)1−2r−(p−2)(k+r)

+
(R
A

)q(σ−1)

(1− δt0)k+1−q(k+r)
)
≤ 0

(3.6)

when A ≤ y < R. Combining (3.5) with (3.6), we conclude that Lpv ≤ 0 in D.
To show that v is a sub-solution, we also need to estimate the initial boundary
value. By translation, we can assume without loss of generality that 0 ∈ Ω and
ψ ≥ γ > 0 in B(0, ρ) for some δ, ρ > 0. We can also choose suitable t0 such
that B(0, R(1 − δt)r) ⊂ Ω. Besides, we need η > η0 be large enough such that
u0 ≥ v(·, t0) for x ∈ B(0, R(1 − δt0)r). Since v > 0 if and only if (x, t) ∈ D, we
have u0 ≥ v(·, t0) in Ω. It is obviously that v ≤ 0 when (x, t) ∈ ∂Ω × (t0, 1

δ ). By
the comparison principle, we can deduce that

u(x, t) ≥ v(x, t+ t0), (x, t) ∈ D. (3.7)

Since limt→1/δ v(0, t)→∞, we conclude that Tmax ≤ 1
δ − t0 <∞.

If q ≤ p−1, then as in [40], we can conclude that if u is uniformly bounded, then
∇u is Hölder continuous in its existence time which implies that gradient blowup
cannot occur in this case. So, L∞ blowup occurs. �
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3.2. Proof of gradient blowup. The uniform boundedness of the solution can
be easily obtained by the fact that M = ‖u0‖L∞ is a super-solution and 0 is a
sub-solution. So it’s enough to prove that the maximal existence time of (1.1) is
finite if we want to show that the gradient blowup occurs.

Proof of Theorem 1.4. Assume that Tmax =∞, let y(t) = 1
r+1

∫
Ω
ur+1dx. We also

point out that C1, C2 denote constants which may vary from line to line. If q > m,
we have

y′(t) = µ

∫
Ω

ur|∇u|q dx− r
∫

Ω

ur−1|∇u|p dx− |λ|
∫

Ω

um+r dx

= µ

∫
Ω

ur|∇u|q dx− r
∫

Ω

(ur|∇u|q)p/q dx− |λ|
∫

Ω

um+r dx.
(3.8)

Here we used the fact that r−1 = p
q−p = pr

q . By Hölder’s and Young’s inequalities,
we derive ∫

Ω

(ur|∇u|q)p/qdx ≤
(∫

Ω

ur|∇u|qdx
)p/q
|Ω|(q−p)/q

≤ εp
q

∫
Ω

ur|∇u|qdx+ C(ε)
q − p
q
|Ω|

(3.9)

and ∫
Ω

um+r dx =
∫

Ω

(uq+r)
m+r
q+r dx ≤

(∫
Ω

uq+r dx
)m+r
q+r |Ω|

q−m
q+r

≤ εm+ r

q + r

∫
Ω

uq+r dx+ C(ε)
q −m
q + r

|Ω|.
(3.10)

Then

y′(t) ≥ µq − εp
q

∫
Ω

ur|∇u|q dx− |λ|εm+ r

q + r

∫
Ω

uq+r dx− C

=
µq − εp

q

( q

q + r

)q ∫
Ω

|∇u
q+r
q |q dx− |λ|εm+ r

q + r

∫
Ω

uq+r dx− C

≥
(µq − εp

q

( q

q + r

)q
C ′ − |λ|εm+ r

q + r

)∫
Ω

uq+r dx− C

= C1

∫
Ω

uq+r dx− C,

(3.11)

here we used Poincaré’s inequality. Also, applying the reverse Hölder’s inequality,
we have

y′(t) ≥ C1

(∫
Ω

ur+1 dx
) q+r
r+1 |Ω|

1−q
r+1 − C2 ≥ C1

(∫
Ω

ur+1 dx
) q+r
r+1 − C2. (3.12)

Then we have
y′(t) ≥ C1y

q+r
r+1 (t)− C2, (3.13)

where C1(p, q,m, λ, µ, ε, ε,Ω), C2(p, q,m, λ, µ, ε, ε,Ω) > 0 with suitable ε and ε. Set

k >
(2C2

C1

) r+1
q+r , (3.14)

then if y(0) > k, we have

y′(t) ≥ C1y
q+r
r+1 (t)
2

. (3.15)
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A contradiction then follows by integrating (3.15). Therefore, Tmax < ∞, i.e.
gradient blowup occurs.

If q = m, the proof above is still valid for µ� |λ|. �

Remark 3.1. We can also assume that
∫

Ω
u0ϕ

α
1 dx is large enough if we set y(t) =∫

Ω
uϕα1 dx. Here, p−1

q−p+1 < α < q − 1, ϕ1 is the first eigenfunction of −∆ with
homogeneous Dirichlet boundary condition. Then combining the fact that l < 1
implies

∫
Ω
ϕ−l1 dx < ∞ (see [29, Lemma 5.1]) with Hölder’s, Young and Poincaré’s

inequalities, we can obtain the blowup inequality y′(t) ≥ C1y
q(t).

3.3. Proof of global existence. In this part, we will give a proof of Theorem
1.10 based on constructing a super-solution.

Proof of Theorem 1.10. For convenience, we assume that λ = −µ = 1. Denote by
ρ(Ω) the diameter of Ω. Then the boundedness of Ω implies that ρ(Ω) <∞. Let ε ∈
(0, 1) such that there exists a ball with radius ε which belongs to B(·, ρ(Ω)+1)∩Ωc.
For any a ∈ Ω, let xa satisfy

B(xa, ε) ⊆ B(xa, ρ(Ω) + 1) ∩ Ωc, |xa − a| < ρ(Ω) + 1. (3.16)

If q > m, we define

V (x, t) =
K

σ
rσ, σ =

p

p− 1
, r = |x− xa|, x ∈ Ω. (3.17)

Obviously, ε ≤ r < ρ(Ω) + 1. Let us now look for a suitable K such that V (x, t) is
a super-solution of (1.1). A direct calculation shows that

LpV = Vt −∆pV − V m + |∇V |q = −NKp−1 +Kqr
q
p−1 −

(K
σ

)m
r
mp
p−1 . (3.18)

Then

LpV ≥ 0 ⇐⇒ Kqr
q
p−1 ≥ NKp−1 +

(
K

σ

)m
r
mp
p−1 . (3.19)

Thus, we just need to choose K such that

Kqr
q
p−1 ≥ 2NKp−1, (3.20)

Kqr
q
p−1 ≥ 2

(K
σ

)m
r
mp
p−1 . (3.21)

Inequality (3.20) is satisfied if we choose

K ≥
( 2N

ε
q
p−1

) 1
q−p+1

, (3.22)

provided that q > p− 1. Dividing inequality (3.21) by Kmr
q
p−1 , we derive

Kq−m ≥ 2
σm

r
mp−q
p−1 . (3.23)

If mp ≥ q, then we can set

K ≥
( 2
σm

) 1
q−m

(ρ(Ω) + 1)
mp−q

(p−1)(q−m) , (3.24)

while when mp < q, we can set

K ≥
( 2
σm

) 1
q−m

ε
mp−q

(p−1)(q−m) . (3.25)
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To ensure that V (x, 0) ≥ u0, we also need that K ≥ σ‖u0‖L∞
εσ . Thus, letting

K ≥ max
{σ‖u0‖L∞

εσ
,
( 2N

ε
q
p−1

) 1
q−p+1

,
( 2
σm

) 1
q−m

(ρ(Ω) + 1)
mp−q

(p−1)(q−m) ,( 2λ
σm

) 1
q−m

ε
mp−q

(p−1)(q−m)

}
.

(3.26)

we obtain

LpV = Vt −∆pV − V m + |∇V |q ≥ 0, V (x, 0) ≥ u0. (3.27)

It is obvious that V (x, t) ≥ 0 = u(x, t) on ∂Ω. Therefore, we conclude that V (x, t)
is a super-solution of (1.1). The comparison principle implies that

0 ≤ u(x, t) ≤ K(ρ(Ω) + 1)
p
p−1

σ
<∞; (3.28)

i.e. u is uniformly bounded in its time existence. If q = m, we need to modify the
super-solution a little. Let

α ≥ max{1, 21/q(ρ(Ω) + 1)}, (3.29)

and

K ≥ max
{
ε−α‖u0‖L∞ ,

(2((p− 1)(α− 1) +N − 1)
ε(q−p+1)(α−1)+1

) 1
q−p+1

}
, (3.30)

then the function V (x, t) = Krα is a super-solution of (1.1). We can also obtain
the uniform boundedness of u(x, t) by the same procedure.

To obtain the global existence, we need also to exclude the possibility of gradient
blowup. By Proposition 2.4, we just need to show that ∂u

∂n is bounded on the
boundary of Ω. Define: φ(x) = min{V (x),Mdist(x, ∂Ω)} for some sufficiently
large M . Then we obtain a super-solution for u. Moreover, we can derive the
boundedness of ∂u

∂n . Thus, we complete the proof of Theorem 1.10. �

Remark 3.2. We can also choose the super-solution as in [27, Theorem 36.4(i)]
(where Quittner and Souplet proved the similar result when p = 2) of the form
V (x, t) = Keαr, where

α =
( 2λ
|µ|
)1/q

, K ≥ max
{
‖u0‖L∞ , 1,

( (p− 1)αp + N−1
ε αp−1

λ

) 1
q−p+1

}
. (3.31)

Proof of Theorem 1.13. By Theorem 1.11 parts (i) and (ii), we just need to consider
the case m > p− 1.

If q ≤ p− 1, by the maximum principle, we know that the approximate solution
uε is uniformly bounded as M := ‖u0‖L∞ is a super-solution for any ε. Then the
same manner as in [40, Theorem 3.1] shows that u is global in time.

If p − 1 ≤ q ≤ p, by Proposition 2.1, we know that 0 ≤ u ≤ v, where v is the
solution of (1.1) with λ = 0. Moreover, Theorem 1.11 (v) implies that v exists
globally in time. Combining this with the fact that u = v = 0 on ∂Ω and that there
is no interior gradient blowup by Remark 2.5, we can obtain the global existence
for u. �
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4. Extensions

As was shown in the previous sections that when λµ < 0, the following two cases
occur.

(i) If λ > 0 and µ < 0, then either L∞ blowup or global existence occurs.
(ii) If λ < 0 and µ > 0, then either gradient blowup or global existence occurs.

We also need to notice that the cases that λ > 0, µ > 0 and λ ≤ 0, µ ≤ 0 are
necessary to investigate.

In the latter case, the properties of the solution of (1.1) are simple. As both
terms in the right-hand side of (1.1) are non-positive, then neither gradient blowup
nor L∞ blowup can occur. Moreover, the solutions may become zero in finite time
or infinite time under some suitable assumptions for the initial data, boundary
condition and p, q,m.

If λ = 0, µ < 0, there has no result concerning this case when Ω is a bounded
domain. To our knowledge, the main results are about the Cauchy problem, i.e.
Ω = RN . For this problem, the solution itself and its gradient will become zero in
infinite time under suitable conditions. For more details, we refer the readers to a
latest paper [5] and the references therein.

If λ < 0, µ = 0, then the term λum is an absorption term. In this case, there
have some relative results concerning the extinction phenomenon, see [12] for an
example. We also point out that the solution will become zero in Ω′ $ Ω and
be positive in the other part of Ω. This phenomenon is called dead-core which
had been studied for the p-Laplacian operator by Diaz (see [8] and the references
therein).

If λ < 0, µ < 0, then the solution may also become zero in finite or infinite time.
However, there has no paper concerning this case at present.

In the case when λ > 0, µ > 0, the properties of the solution will be more
complicated than the ones when λµ < 0 and λ ≤ 0, µ ≤ 0. For this case, both
gradient blowup and L∞ blowup may occur under suitable conditions. However, as
the local existence of the solution is unknown so far, when gradient blowup occurs
and when L∞ blowup occurs are also open.

Besides the gradient blowup and L∞ blowup, the global existence is also an
important property one would have interest. For the global existence, one can see
from part (i) and part (ii) in Theorem 1.11 and Theorem 1.13 that the solution of
(1.1) can exist globally under the assumptions that m ≤ p− 1, q ≤ p− 1 or m ≥ 1,
p− 1 < q ≤ p and that Ω is small enough if q = p− 1 or m = p− 1. Also, for the
case of λ > 0 and µ > 0, the existence of global solutions has been proved in [40]
when q ≤ p − 1 and m ≤ p − 1. While for q > p − 1 orm > p − 1, there has no
related results. We leave it to the interested readers as an open question.
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