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SYMMETRIC POSITIVE SOLUTIONS FOR φ-LAPLACIAN
BOUNDARY-VALUE PROBLEMS WITH INTEGRAL

BOUNDARY CONDITIONS

WENGUI YANG

Abstract. In this article, we study the existence, multiplicity, and nonexis-
tence of symmetric positive solutions for a class of four-order integral boundary

value problems with φ-Laplacian operator. The arguments mainly rely on the
Guo-Krasnosel’skii fixed point theorem of cone expansion and compression of

norm type and Leggett-Williams fixed point theorem. Finally, some examples

are presented to illustrate the main results.

1. Introduction

In this article, we consider the following φ-Laplacian boundary-value problems
(BVP) with integral boundary conditions[

q(t)[φ((p(t)u′(t))′)]′
]′ = w(t)f(t, u(t)), t ∈ [a, b],

αu(a)− βp(a)u′(a) =
∫ b

a

g(s)u(s)ds,

αu(b) + βp(b)u′(b) =
∫ b

a

g(s)u(s)ds,

γφ((p(a)u′(a))′)− δq(a)[φ((p(a)u′(a))′)]′ =
∫ b

a

h(s)φ((p(s)u′(s))′)ds,

γφ((p(b)u′(b))′) + δq(b)[φ((p(b)u′(b))′)]′ =
∫ b

a

h(s)φ((p(s)u′(s))′)ds.

(1.1)

We use the following assumptions throughout this article:
(H0) φ is an odd, increasing homeomorphism from R onto R and there exist

two increasing homeomorphisms ψ1 and ψ2 of (0,∞) onto (0,∞) such that
ψ1(u)φ(v) ≤ φ(uv) ≤ ψ2(u)φ(v) for all u, v > 0. Moreover, φ, φ−1 ∈ C1(R),
where φ−1 denotes the inverse of φ.

(H1) α > 0, γ > 0, and β ≥ 0, δ ≥ 0.
(H2) p(t), q(t) : [a, b] → (0,∞) are continuous functions, and p(t), q(t) are sym-

metric on [a, b].
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(H3) w ∈ L1[a, b] is nonnegative, symmetric on [a, b] and w(t) 6≡ 0 on any subin-
terval of [a, b].

(H4) f : [a, b] × [0,∞) → [0,∞) is continuous and f(·, u) is symmetric on [a, b]
for all u ∈ [0,∞).

(H5) g, h ∈ C([a, b], [0,∞)) are symmetric functions on [a, b], and µ ∈ [0, α),
ν ∈ [0, γ), where

µ =
∫ b

a

g(s)ds, ν =
∫ b

a

h(s)ds.

Boundary-value problems with integral boundary conditions have gained con-
siderable popularity and importance due to their application in different areas of
applied mathematics and physics and so on. They include two, three, multi-point
and nonlocal boundary-value problems as special cases. There have been some pa-
pers dealing with the existence and multiplicity of solutions or positive solutions
for such problems by the use of some well-known fixed point theorems and upper
and lower solutions method. For some recent developments on the subject, see
[2, 3, 4, 12, 13, 22, 23, 25, 27] and the references therein.

Recently, many researchers have extensively studied the existence, multiplicity
and nonexistence of symmetric positive solutions of boundary-value problems by
using fixed point theorem; i.e., fixed point theorem of cone expansion and compres-
sion of norm type, fixed point theory in cones and Leggett-Williams fixed point
theorem. To identify a few, we refer the reader to [1, 6, 8, 9, 11, 17, 21, 20] and the
references therein. In particular, we would like to mention some results of Feng [5],
Ma [16], Xu [19], Luo and Luo [15], and Zhang et al. [24], Zhang and Ge [26]. Feng
[5] considered the following second-order nonlinear ordinary differential equation
with integral boundary conditions

(g(t)u′(t))′ + w(t)f(t, u(t)) = 0, 0 < t < 1,

au(0)− b lim
t→0+

g(t)u′(t) =
∫ 1

0

h(s)u(s)ds,

au(1) + b lim
t→1−

g(t)u′(t) =
∫ 1

0

h(s)u(s)ds,

where a, b > 0, g ∈ C1([0, 1], (0,∞)) is symmetric on [0, 1], w ∈ Lp[0, 1] for some
1 ≤ p ≤ +∞, and is symmetric on [0, 1], f : [0, 1] × [0,+∞) is continuous, f(1 −
t, u) = f(t, u) for all (t, u) ∈ [0, 1] × [0,+∞), and h ∈ Lp[0, 1] is nonnegative and
symmetric on [0, 1]. The author investigated the existence of at least one symmetric
positive solution by applying the theory of fixed point index in cones.

Ma [16] obtained the existence of at least one symmetric positive solution for
fourth-order boundary-value problem with integral boundary conditions by using
the fixed point index in cones.

u′′′′(t) = w(t)f(u(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0

p(s)u(s)ds, u′′(0) = u′′(1) =
∫ 1

0

q(s)u′′(s)ds,
(1.2)

where p, q ∈ L1[0, 1], w : (0, 1) → [0,+∞) is continuous, symmetric on [0, 1] and
may be singular at t = 0 and t = 1, f : [0, 1] × [0,+∞) is continuous, f(1 −
t, u) = f(t, u) for all (t, u) ∈ [0, 1] × [0,+∞). Xu [19] studied the existence of
three positive solutions for fourth-order singular nonlocal boundary-value problems
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u′′′′(t) = w(t)f(t, u(t)), 0 < t < 1, with integral boundary conditions (1.2) by using
Leggett-Williams fixed point theorem.

Luo and Luo [15] investigated the existence, multiplicity and nonexistence of
symmetric positive solutions of the following fourth order boundary value problem
with integral boundary conditions

φ(u′′(t))′′ = w(t)f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0

p(s)u(s)ds, φ(u′′(0)) = φ(u′′(1)) =
∫ 1

0

q(s)φ(u′′(s))ds,
(1.3)

where φ is defined as in (H0), p, q : [0, 1] → (0,∞) are continuous functions, and
p, q are symmetric on [0, 1], f : [0, 1]× [0,+∞) is continuous, f(1−t, u) = f(t, u) for
all (t, u) ∈ [0, 1]× [0,+∞). Zhang et al. [24] studied the existence and nonexistence
of symmetric positive solutions for a special case of fourth order boundary value
problem (1.3) when φ(t) = φp(t) = |t|p−2t, p > 1, and f(t, u(t), u′(t)) = f(t, u(t)).

Zhang and Ge [26] considered the following second-order nonlinear ordinary dif-
ferential equation with integral boundary conditions

(q(t)u′′′(t))′ = w(t)f(t, u(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0

g(s)u(s)ds

au′′(0)− b lim
t→0+

g(t)u′′′(t) =
∫ 1

0

h(s)u′′(s)ds,

au′′(1) + b lim
t→1−

g(t)u′′′(t) =
∫ 1

0

h(s)u′′(s)ds,

where a, b > 0, q ∈ C1([0, 1], (0,∞)) is symmetric on [0, 1], w ∈ Lp[0, 1] for some
1 ≤ p ≤ +∞, and is symmetric on [0, 1], f : [0, 1] × [0,+∞) is continuous, f(1 −
t, u) = f(t, u) for all (t, u) ∈ [0, 1]× [0,+∞), and g, h ∈ Lp[0, 1] is nonnegative and
symmetric on [0, 1]. The authors obtained the existence of at least one symmetric
positive solution based upon a specially constructed cone and the fixed point theory
in a cone.

Motivated greatly by the above mentioned works, we establish sufficient condi-
tions for the existence, multiplicity and nonexistence of symmetric positive solutions
of BVP (1.1) by applying the Guo-Krasnosel’skii fixed point theorem of cone expan-
sion and compression of norm type and Leggett-Williams fixed point theorem. Our
paper improves and generalizes the results of mentioned results to some degree. At
the end of this paper, some examples are presented to illustrate the main results.

2. Preliminaries

We recall that the function u is said to be concave on [a, b], if u(λt2 +(1−λ)t1) ≥
λu(t1) + (1 − λ)u(t1), t1, t2 ∈ [a, b], λ ∈ [0, 1] and the function u is said to be
symmetric on [a, b], if u(b − t + a) = u(t), t ∈ [a, b]. A function u is called a
symmetric positive solution of (1.1) provided u is symmetric and positive on [a, b],
and satisfies the differential equation and the boundary value conditions in (1.1).

To prove the main results in this article, we will use the following lemmas.
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Lemma 2.1. Assume (H0)–(H2) hold and µ 6= α. Then for any v ∈ C[a, b], the
BVP

(p(t)u′(t))′ = φ−1(v(t)), t ∈ [a, b],

αu(a)− βp(a)u′(a) =
∫ b

a

g(s)u(s)ds,

αu(b) + βp(b)u′(b) =
∫ b

a

g(s)u(s)ds,

(2.1)

has a unique solution u and u can be expressed in the form

u(t) = −
∫ b

a

H1(t, s)φ−1(v(s))ds, (2.2)

where

H1(t, s) = G1(t, s) +
1

α− µ

∫ b

a

G1(s, τ)g(τ)dτ, (2.3)

G1(t, s) =
1

∆1


(
β + α

∫ s
a

dτ
p(τ)

)(
β + α

∫ b
t

dτ
p(τ)

)
, a ≤ s ≤ t ≤ b,(

β + α
∫ t
a

dτ
p(τ)

)(
β + α

∫ b
s

dτ
p(τ)

)
, a ≤ t ≤ s ≤ b.

(2.4)

Here

∆1 = α
(

2β + α

∫ b

a

ds

p(s)

)
, µ =

∫ b

a

g(s)ds.

Proof. First suppose that u is a solution of problem (2.1). It is easy to see by
integration of both sides of (2.1) on [a, t] that

p(t)u′(t) = p(a)u′(a) +
∫ t

a

φ−1(v(s))ds.

Letting A = p(a)u′(a), then we have

u′(t) =
A

p(t)
+

1
p(t)

∫ t

a

φ−1(v(s))ds.

Integrating again, we can get

u(t) = u(a) +A

∫ t

a

1
p(s)

ds+
∫ t

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds.

By the boundary condition, we obtain

αu(a)− βA =
∫ b

a

g(s)u(s)ds,

αu(a) +
(
α

∫ b

a

ds

p(s)
+ β

)
A =

∫ b

a

g(s)u(s)ds− β
∫ b

a

g(s)φ−1(v(s))ds

− α
∫ b

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds.

Then

A = − 1

2β + α
∫ b
a

ds
p(s)

(
α

∫ b

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds+ β

∫ b

a

g(s)φ−1(v(s))ds
)
,
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and

u(a) = − 1
∆1

(
α

∫ b

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds+ β

∫ b

a

g(s)φ−1(v(s))ds
)

+
1
α

∫ b

a

g(s)u(s)ds.

Thus

u(t) =
1
α

∫ b

a

g(s)u(s)ds+
∫ t

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds

− 1
∆1

(
α

∫ b

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds+ β

∫ b

a

g(s)φ−1(v(s))ds
)

−

∫ t
a

1
p(s)ds

2β + α
∫ b
a

ds
p(s)

(
α

∫ b

a

1
p(s)

∫ s

a

φ−1(v(τ)) dτ ds+ β

∫ b

a

g(s)φ−1(v(s))ds
)

=
1
α

∫ b

a

g(s)u(s)ds−
∫ b

a

G1(t, s)φ−1(v(s))ds,

where G1(t, s) is defined by (2.4). Multiplying the above equation with g(t) and
integrating it again, we obtain∫ b

a

g(s)u(s)ds = − α

α−
∫ b
a
g(s)ds

∫ b

a

G1(t, s)φ−1(v(s))ds.

It follows that

u(t) = −
∫ b

a

G1(t, s)φ−1(v(s))ds− 1
α− µ

∫ b

a

G1(t, s)φ−1(v(s))ds

= −
∫ b

a

H1(t, s)φ−1(v(s))ds,

where H1(t, s) is defined in (2.3). The proof is complete. �

Lemma 2.2. Assume (H1)-(H4) hold and ν 6= γ. Then for any u ∈ C[a, b], the
BVP

(q(t)v′(t))′ = w(t)f(t, u(t)), t ∈ [a, b],

γv(a)− δq(a)v′(a) =
∫ b

a

h(s)v(s)ds, γv(b) + δq(b)v′(b) =
∫ b

a

h(s)v(s)ds,

has a unique solution v and v can be expressed in the form

v(t) = −
∫ b

a

H2(t, s)w(s)f(s, u(s))ds,

where

H2(t, s) = G2(t, s) +
1

γ − ν

∫ b

a

G2(s, τ)h(τ)dτ, (2.5)

G2(t, s) =
1

∆2


(
δ + γ

∫ s
a

dτ
q(τ)

)(
δ + γ

∫ b
t

dτ
q(τ)

)
, a ≤ s ≤ t ≤ b,(

δ + γ
∫ t
a

dτ
q(τ)

)(
δ + γ

∫ b
s

dτ
q(τ)

)
, a ≤ t ≤ s ≤ b.

(2.6)
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Here

∆2 = γ
(

2δ + γ

∫ b

a

ds

q(s)

)
, ν =

∫ b

a

h(s)ds.

The above lemma can be proved in a way similar to Lemma 2.1.

Lemma 2.3. Assume (H5) holds. Then for any t, s ∈ [a, b], the following results
are true.

(i) G1(t, s) ≥ 0, H1(t, s) ≥ 0, G2(t, s) ≥ 0, H2(t, s) ≥ 0;
(ii) β2

∆1
≤ G1(t, s) ≤ G1(s, s) ≤ Λ1

∆1
, β2σ1

∆1
≤ H1(t, s) ≤ H1(s, s) ≤ σ1Λ1

∆1
,

δ2

∆2
≤ G2(t, s) ≤ G2(s, s) ≤ Λ2

∆2
, δ2σ2

∆2
≤ H2(t, s) ≤ H2(s, s) ≤ σ2Λ2

∆2
with

Λ1 =
(
β + α

∫ b

a

dτ

p(τ)

)2

, σ1 =
α

α− µ
,

Λ2 =
(
δ + γ

∫ b

a

dτ

q(τ)

)2

, σ2 =
γ

γ − ν
;

(iii) G1(b − t + a, b − s + a) = G1(t, s), H1(b − t + a, b − s + a) = H1(t, s),
G2(b− t+ a, b− s+ a) = G2(t, s), H2(b− t+ a, b− s+ a) = H2(t, s);

(iv) ρ1G1(s, s) ≤ H1(t, s) ≤ σ1G1(s, s), ρ2G2(s, s) ≤ H2(t, s) ≤ σ2G2(s, s) with

ρ1 =
∆1

(α− µ)Λ1

∫ b

a

G1(s, s)g(s)ds, ρ2 =
∆2

(γ − ν)Λ2

∫ b

a

G1(s, s)h(s)ds;

where H1(t, s), G1(t, s), H2(t, s) and G2(t, s) are defined by (2.3)–(2.6), respec-
tively.

Proof. By simple computations, we have (i) and (ii). Firstly, we prove that (iii)
holds. If a ≤ t ≤ s ≤ b, then b − t + a ≥ b − s + a. In view of (2.4) and the
assumption (H2), we get

G1(b− t+ a, b− s+ a)

=
1

∆1

(
β + α

∫ b−s+a

a

dτ

p(τ)

)(
β + α

∫ b

b−t+a

dτ

p(τ)

)
=

1
∆1

(
β + α

∫ s

b

d(b− τ + a)
p(b− τ + a)

)(
β + α

∫ a

t

d(b− τ + a)
p(b− τ + a)

)
=

1
∆1

(
β + α

∫ b

s

dτ

p(τ)

)(
β + α

∫ t

a

dτ

p(τ)

)
= G1(t, s), a ≤ t ≤ s ≤ b.

Similarly, we can prove that G1(b− t+ a, b− s+ a) = G1(t, s), a ≤ s ≤ t ≤ b. So,
we have G1(b− t+ a, b− s+ a) = G1(t, s), for any t, s ∈ [a, b]. By (2.3) and (H5),
we have

H1(b− t+ a, b− s+ a)

= G1(b− t+ a, b− s+ a) +
1

α− µ

∫ b

a

G1(b− s+ a, τ)g(τ)dτ

= G1(t, s) +
1

α− µ

∫ a

b

G1(b− s+ a, b− τ + a)g(b− τ + a)d(b− aτ + a)

= G1(t, s) +
1

α− µ

∫ b

a

G1(s, τ)g(τ)dτ = H1(t, s).



EJDE-2013/266 SYMMETRIC POSITIVE SOLUTIONS 7

Similarly, we can prove that G2(b−t+a, b−s+a) = G2(t, s), H2(b−t+a, b−s+a) =
H2(t, s).

Next, we prove that (iv). First, we prove that ∆1
Λ1
G1(t, t)G1(s, s) ≤ G1(t, s) and

∆2
Λ2
G2(t, t)G2(s, s) ≤ G2(t, s). If a ≤ t ≤ s ≤ b, then

G1(t, s)
G1(t, t)G1(s, s)

=
∆1(

β + α
∫ s
a

dτ
p(τ)

)(
β + α

∫ b
t

dτ
p(τ)

) ≥ ∆1

Λ1
.

Similarly, we can prove that
G1(t, s)

G1(t, t)G1(s, s)
≥ ∆1

Λ1
,

for a ≤ s ≤ t ≤ b. So, we have ∆1
Λ1
G1(t, t)G1(s, s) ≤ G1(t, s), for any t, s ∈ [a, b].

From (2.3), then we obtain

H1(t, s) = G1(t, s) +
1

α− µ

∫ b

a

G1(s, τ)g(τ)dτ

≤ G1(s, s) +
1

α− µ

∫ b

a

g(s)dsG1(s, s)

=
α

α− µ
G1(s, s) = σ1G1(s, s).

On the other hand, we have

H1(t, s) = G1(t, s) +
1

α− µ

∫ b

a

G1(s, τ)g(τ)dτ

≥ 1
α− µ

∫ b

a

G1(s, τ)g(τ)dτ

≥ ∆1

(α− µ)Λ1

∫ b

a

G1(τ, τ)g(τ)dτG1(s, s) = ρ1G1(s, s).

Hence we get ρ1G1(s, s) ≤ H1(t, s) ≤ σ1G1(s, s). Similarly, we can prove that
ρ2G2(s, s) ≤ H2(t, s) ≤ σ2G2(s, s). �

From Lemmas 2.1 and 2.2, we have the following result.

Lemma 2.4. Assume (H0)–(H5) hold. If u is a solution of (1.1), then

u(t) =
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds.

Now, we let C = C[a, b], then C is a Banach space with ‖u‖ = maxt∈[a,b] |u(t)|,
and define a cone P by P = {x ∈ C : u(t) ≥ 0, u′′(t) ≤ 0, u(t) is a symmetric and
concave function on [a, b] and u(t) ≥ ω‖u‖}, where ω is defined as in Lemma 2.6.
Also, define, for 0 < r < R two positive numbers, Ωr and Ωr,R by Ωr = {u ∈ C :
‖u‖ < r} and Ωr,R = {u ∈ C : r ≤ u ≤ R}. Note that ∂Ωr = {u ∈ C : ‖u‖ = r}.

Lemma 2.5 ([18]). Assume (H0) holds. Then for any u, v ∈ (0,∞), we have
ψ−1

2 (u)v ≤ φ−1(uφ(v)) ≤ ψ−1
1 (u)v, where ψ−1

1 and ψ−1
2 denote the inverse of ψ1

and ψ2, respectively.

Lemma 2.6. Assume (H0)–(H5) hold. Then the solution u(t) of (1.1) is positive

and symmetric on [a, b] and mint∈[a,b] u(t) ≥ ω‖u‖, where ω = ρ1ψ
−1
2 (ρ2)

σ1ψ
−1
1 (σ2)

.
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Proof. From (H0)–(H5) and Lemma 2.3, it is easy to prove that the solution u(t)
of (1.1) is positive on [a, b]. We need to prove only that u(t) is symmetric on [a, b].
Combining (H3) and (H4) and Lemma 2.3 and 2.4, we obtain

u(b− t+ a)

=
∫ b

a

H1(b− t+ a, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds

=
∫ a

b

H1(b− t+ a, b− s+ a)

× φ−1
(∫ b

a

H2(b− s+ a, τ)w(τ)f(τ, u(τ))dτ
)
d(b− s+ a)

=
∫ a

b

H1(b− t+ a, b− s+ a)φ−1
(∫ a

b

H2(b− s+ a, b− τ + a)

× w(b− τ + a)f(b− τ + a, u(b− τ + a))d(b− τ + a)
)
d(b− s+ a)

=
∫ a

b

H1(b− t+ a, b− s+ a)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
d(b− s+ a)

=
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds = u(t).

Therefore, u(t) is symmetric on [a, b]. From (H0) and Lemma 2.3—2.5, we obtain

u(t) =
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds

≤ σ1

∫ b

a

G1(s, s)φ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)f(τ, u(τ))dτ
)
ds

≤ σ1ψ
−1
1 (σ2)

∫ b

a

G1(s, s)dsφ−1
(∫ b

a

G2(τ, τ)w(τ)f(τ, u(τ))dτ
)
.

So we have

‖u(t)‖ ≤ σ1ψ
−1
1 (σ2)

∫ b

a

G1(s, s)dsφ−1
(∫ b

a

G2(τ, τ)w(τ)f(τ, u(τ))dτ
)
. (2.7)

On the other hand, by Lemma 2.3—2.5, we have

u(t) =
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds (2.8)

≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)f(τ, u(τ))dτ
)
ds (2.9)

≥ ρ1ψ
−1
2 (ρ2)

∫ b

a

G1(s, s)dsφ−1
(∫ b

a

G2(τ, τ)w(τ)f(τ, u(τ))dτ
)

(2.10)

≥ ρ1ψ
−1
2 (ρ2)

σ1ψ
−1
1 (σ2)

‖u‖ = ω‖u‖. (2.11)

Combined (2.7) with (2.8), we deduce inequality mint∈[a,b] u(t) ≥ ω‖u‖. �
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We define the integral operator T : C→ C by

(Tu)(t) =
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds. (2.12)

Lemma 2.7. Assume (H0)–(H5) hold. Then u ∈ C is a solution of (1.1) if and
only if u is a fixed point of the operator T .

Lemma 2.8. Assume (H0)-(H5) hold. Then T : P→ P is a completely continuous
operator.

The next lemma is the Fixed point theorem of cone expansion and compression
of norm type, see [7].

Lemma 2.9. Let P be a cone of real Bananch space E, Ω1 and Ω2 be two bounded
open sets in E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let operator T : P ∩ (Ω2 \ Ω1) → P
be completely continuous. Suppose that one of the two conditions is satisfied.

(i) ‖Tu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω2.
(ii) ‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Let Q be a cone in a real Banach space E, a functional ϑ : Q → Q is said to
be increasing on Q provided ϑ(u) ≤ ϑ(v), for all u, v ∈ Q with u ≤ v. Let χ be
a nonnegative continuous functional on Q in a real Banach space E, we define for
each d > 0 the following set Q(χ, d) = {u ∈ Q|χ(u) < d}. Let Q be a cone in a
real Banach space E, κ is said to be nonnegative continuous concave on Q provided
κ(λu+ (1− λ)v) ≥ λκ(u) + (1− λ)κ(v), u, v ∈ [a, b] with λ ∈ [0, 1].

Let a, b, r > 0 be constants with Q and κ as defined above, we note

Qr = {u ∈ Q : ‖u‖ < r}, Q(κ, a, b) = {u ∈ Q : κ(u) ≥ a, ‖u‖ ≤ b}.
Next, we have the Leggett-Williams fixed-point theorem, see [10, 14].

Lemma 2.10. Assume E be a real Banach space and Q ⊂ E be a cone. Let
T : Qc → Qc be completely continuous and κ be a nonnegative continuous concave
functional on Q such that κ(u) ≤ ‖u‖, for u ∈ Qc. Suppose that there exist 0 <
a < b < d ≤ c such that

(i) {u ∈ Q(κ, b, d) | κ(u) > b} 6= ∅ and κ(Tu) > b, for all u ∈ Q(κ, b, d).
(ii) ‖Tu‖ ≤ a, for all ‖u‖ ≤ a.
(iii) κ(Tu) ≥ b, for all u ∈ Q(κ, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2 and u3 satisfying

‖u1‖ < a, b < κ(u2), a < ‖u3‖, κ(u3) < b.

3. Main results

To state the following results, we need to introduce the symbols.

f0 = lim sup
u→0

max
t∈[a,b]

f(t, u)
φ(u)

, f∞ = lim sup
u→∞

max
t∈[a,b]

f(t, u)
φ(u)

,

f0 = lim inf
u→0

min
t∈[a,b]

f(t, u)
φ(u)

, f∞ = lim inf
u→∞

min
t∈[a,b]

f(t, u)
φ(u)

,

k1 = ρ1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)
,
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k2 = σ1

∫ b

a

G1(s, s)dsψ−1
1

(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)
.

Theorem 3.1. Assume (H0)-(H5) hold. Furthermore, suppose one of the following
conditions are satisfied.

(A1) There exist two constants r and R with 0 < r ≤ k1
k2
R such that f(t, u) ≥

φ
(
r
k1

)
for (t, u) ∈ [a, b]×[0, r], and f(t, u) ≤ φ

(
r
k2

)
for (t, u) ∈ [a, b]×[0, R].

(A2) f0 > ψ2

(
(ρ1

∫ b
a
G1(s, s)ds)−1

)(
ρ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

and

f∞ < ψ1

(
(σ1

∫ b
a
G1(s, s)ds)−1

)(
σ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

(particularly, f0 =∞ and f∞ = 0).

(A3) f0 < ψ1

(
(σ1

∫ b
a
G1(s, s)ds)−1

)(
σ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

and

f∞ > ψ2

(
(ρ1

∫ b
a
G1(s, s)ds)−1

)(
ρ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = 0 and f∞ =∞).
Then the BVP (1.1) has at least one symmetric positive solution.

Proof. Let the operator T be defined by (2.12).
(A1) For u ∈ P ∩ ∂Ωr, we have u ∈ [0, r], which implies f(t, u) ≥ φ

(
r
k1

)
. Hence

for t ∈ [a, b], by Lemma 2.3, we obtain

u(t) ≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτφ
( r
k1

))
ds

≥ ρ1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
) r
k1

= r = ‖u‖,

which implies that for u ∈ P ∩ ∂Ωr,

‖Tu‖ ≥ ‖u‖. (3.1)

Next, for u ∈ P ∩ ∂ΩR, we have u ∈ [0, R], which implies f(t, u) ≤ φ
(
R
k2

)
. Hence

for t ∈ [a, b], by Lemma 2.3, we obtain

u(t) ≤ σ1

∫ b

a

G1(s, s)φ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)dτφ
(R
k2

))
ds

≤ σ1

∫ b

a

G1(s, s)dsψ−1
1

(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)R
k2

= R = ‖u‖,

which implies that for u ∈ P ∩ ∂ΩR

‖Tu‖ ≤ ‖u‖. (3.2)

(A2) At first, in view of

f0 > ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

,

there exists r > 0 such that f(t, u) ≥ (f0 − ε1)φ(‖u‖), for t ∈ [a, b], ‖u‖ ∈ [0, r],
where ε ≥ 0 satisfies

ρ1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ(f0 − ε1)
)
≥ 1.
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Then, for t ∈ [a, b], u ∈ P ∩ ∂Ωr, which implies ‖u‖ ≤ r, we have

(Tu)(t) ≥
∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)(f0 − ε1)φ(‖u‖)dτ
)
ds

≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ(f0 − ε1)φ(‖u‖)
)
ds

≥ ρ1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ(f0 − ε1)
)
‖u‖ ≥ ‖u‖,

which implies that for u ∈ P ∩ ∂Ωr,

‖Tu‖ ≥ ‖u‖. (3.3)

Next, turning to

f∞ < ψ1

(
(σ1

∫ b

a

G1(s, s)ds)−1
)(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

,

there exists R > 0 large enough such that f(t, u) ≤ (f∞ + ε2)φ(‖u‖), for t ∈ [a, b],
‖u‖ ∈ (R,∞), where ε2 > 0 satisfies

ψ1

(
(σ1

∫ b

a

G1(s, s)ds)−1
)(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

− f∞ − ε2 > 0.

Set M = max‖u‖≤R,t∈[a,b] f(t, u). Then f(t, u) ≤M + (f∞ + ε2)φ(‖u‖). Choose

R >max
{
r,R, φ−1

(
M
[
ψ1

(
(σ1

∫ b

a

G1(s, s)ds)−1
)

×
(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

− f∞ − ε2

])}
.

Hence for u ∈ P ∩ ∂ΩR, we have

(Tu)(t) ≤ σ1

∫ b

a

G1(s, s)φ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)(M + (f∞ + ε2)φ(‖u‖))dτ
)
ds

≤ σ1

∫ b

a

G1(s, s)dsφ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
( M

φ(R)
+ f∞ + ε2

)
φ(R)

)
≤ σ1

∫ b

a

G1(s, s)dsψ−1
1

(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
( M

φ(R)
+ f∞ + ε2

))
R

≤ R = ‖u‖,

which implies that for u ∈ P ∩ ∂ΩR,

‖Tu‖ ≤ ‖u‖. (3.4)

(A3) Considering

f0 < ψ1

(
(σ1

∫ b

a

G1(s, s)ds)−1
)(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

,

there exists r > 0 such that f(t, u) ≤ ηφ(u), for any u ∈ [0, r], t ∈ [a, b], where

η ≤ ψ1

(
(σ1

∫ b

a

G1(s, s)ds)−1
)(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

.
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Then if Ωr is the ball in C centered at the origin with radius r and if u ∈ P ∩ ∂Ωr,
then we have

‖Tu‖ = max
t∈[a,b]

∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds

≤ σ1

∫ b

a

G1(s, s)φ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)ηφ(u(τ))dτ
)
ds

≤ σ1

∫ b

a

G1(s, s)dsφ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)ηφ(r)dτ
)

≤ rσ1

∫ b

a

G1(s, s)dsψ−1
1

(
ησ2

∫ b

a

G2(τ, τ)w(τ)dτ
)
≤ r = ‖u‖,

which implies that for u ∈ P ∩ ∂Ωr

‖Tu‖ ≤ ‖u‖. (3.5)

On the other hand, we use the assumption

f∞ > ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

.

Then there exists R > 0 large enough such that f(t, u) ≥ %φ(u) for any u ∈ [R,∞),
t ∈ [a, b], where

% ≥ ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

.

If we define ΩR = {u ∈ C : ‖u‖ < R}, for t ∈ [a, b] and u ∈ P ∩ ∂ΩR, we get

(Tu)(t) ≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)%φ(u(τ))dτ
)
ds

≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)%φ(R)dτ
)
ds

≥ Rρ1

∫ b

a

G1(s, s)dsψ−1
2

(
%ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)
≥ r = ‖u‖,

which implies that for u ∈ P ∩ ∂ΩR

‖Tu‖ ≥ ‖u‖. (3.6)

Applying Lemma 2.9 to (3.1) and (3.2), (3.3) and (3.4) or (3.5) and (3.6) yields
that T has a fixed point u ∈ P∩Ωr,R with 0 ≤ r ≤ ‖u‖ ≤ R. It follows from Lemma
2.9 that problem (1.1) has at least one symmetric positive solution u. �

Theorem 3.2. Assume (H0)-(H5) hold. Furthermore, suppose one of the following
conditions is satisfied.

(A4) (i) f0 > ψ2

(
(ρ1

∫ b
a
G1(s, s)ds)−1

)(
ρ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

and f∞ >

ψ2

(
(ρ1

∫ b
a
G1(s, s)ds)−1

)(
ρ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = f∞ =∞).
(ii) There exists c > 0 satisfying f(t, u) < φ

(
c
k2

)
, (t, b) ∈ [a, b]× [0, c].
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(A5) (i) f0 < ψ1

(
(σ1

∫ b
a
G1(s, s)ds)−1

)(
σ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

and f∞ <

ψ1

(
(σ1

∫ b
a
G1(s, s)ds)−1

)(
σ2

∫ b
a
G2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = f∞ = 0).
(ii) There exists c > 0 satisfying f(t, u) > φ

(
c
k1

)
, (t, b) ∈ [a, b]× [0, c].

Then (1.1) has at least two symmetric positive solutions u1(t) and u2(t), which
satisfy 0 < ‖u1‖ < c < ‖u2‖.

Proof. (A4) Consider (i). If

f0 > ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

,

it follows from the proof of (3.3) that we can choose r with 0 < r < c such that

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ωr. (3.7)

If

f∞ > ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

,

then as in the proof of (3.6), we can choose R with c < R such that

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂ΩR. (3.8)

Next, for u ∈ P∩ ∂Ωc, we have u ∈ [0, c], then from (ii), we obtain f(t, u) < φ
(
c
k2

)
.

Thus for t ∈ [a, b], like in the proof of (3.2), we get

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ωc. (3.9)

Applying Lemma 2.9 to (3.7) and (3.9), or (3.2) and (3.9) yields that T has a fixed
point u1 ∈ P ∩ Ωr,c, and a fixed point u2 ∈ P ∩ Ωc,R. It follows from Lemma 2.7
that problem (1.1) has at least two symmetric positive solutions u1(t) and u2(t),
which satisfy 0 < ‖u1‖ < c < ‖u2‖.

(A5) It can be proved in a way similar to (A2) and (A3) of Theorem 3.1 and
(A4) of Theorem 3.2. The proof is complete. �

Now we define the nonnegative, continuous concave functional ϕ : P → [0,∞)
by ϕ(u) = mint∈[a,b] u(t). Obviously, for every u ∈ P, we have ϕ(u) ≤ ‖u‖.

Theorem 3.3. Assume (H0)–(H5) hold. In addition, there exist three positive
constants x, y and z with 0 < x < y < ωz such that

(A6) f(t, u) < φ
(
z
k2

)
, for all t ∈ [a, b], and 0 ≤ u ≤ z.

(A7) f(t, u) ≥ φ
(
y
k1

)
, for all t ∈ [a, b], and y ≤ u ≤ y

ω .
(A8) f(t, u) ≤ φ

(
x
k2

)
, for all t ∈ [a, b], and 0 ≤ u ≤ x.

Then (1.1) has at least three symmetric positive solutions u1(t), u2(t) and u3(t)
such that

‖u1‖ < x, y < ϕ(u2), x < ‖u3‖, ϕ(u3) < y.

Proof. We show that all the conditions of Lemma 2.10 are satisfied. We first assert
that there exists a positive number z such that T (Qz) ⊂ Qz. By (A6), we obtain

‖Tu‖ = max
t∈[a,b]

(Tu)(t)

= max
t∈[a,b]

∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds
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≤ σ1

∫ b

a

G1(s, s)φ−1
(
σ2

∫ b

a

G2(τ, τ)w(τ)φ
( z
k2

)
dτ
)
ds

≤ zσ1

k2

∫ b

a

G1(s, s)dsψ−1
1

(
σ2

∫ b

a

G2(τ, τ)w(τ)dτ
)

= z.

Therefore, we have T (Qz) ⊂ Qz. Especially, if u ∈ Qx, then assumption (A8) yields
T : Qx → Qx.

We now show that condition (i) of Lemma 2.10 is satisfied. Clearly, {u ∈
Q(ϕ, y, yω ) : ϕ(u) > y} 6= ∅. Moreover, if u ∈ Q(ϕ, y, yω ), then ϕ(u) ≥ y, so
y ≤ ‖u‖ ≤ y

ω . By the definition of ϕ and (A7), we obtain

‖Tu‖ = min
t∈[a,b]

(Tu)(t)

= min
t∈[a,b]

∫ b

a

H1(t, s)φ−1
(∫ b

a

H2(s, τ)w(τ)f(τ, u(τ))dτ
)
ds

≥ ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)φ
( y
k1

)
dτ
)
ds

≥ yρ1

k1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)

= y.

Therefore, condition (i) of Lemma 2.10 is satisfied.
Finally, we address condition (iii) of Lemma 2.10. For this we choose u ∈

Q(ϕ, y, z) with ‖Tu‖ > y
ω . Then from Lemma 2.6, we deduce

ϕ(Tu) = min
t∈[a,b]

(Tu)(t) ≥ ω‖Tu‖ > y.

Hence, (iii) of Lemma 2.10 holds. By Lemma 2.10, then we obtain that (1.1) has
at least three symmetric positive solutions u1(t), u2(t) and u3(t) such that

‖u1‖ < x, y < ϕ(u2), x < ‖u3‖, ϕ(u3) < y.

The proof is complete. �

Theorem 3.4. Assume (H0)–(H5) hold. Furthermore, suppose one of the following
conditions are satisfied:

(A9) f(t, u) > φ
(‖u‖
k1

)
for all t ∈ [a, b], u ∈ [0,∞).

(A10) f(t, u) < φ
(‖u‖
k2

)
for all t ∈ [a, b], u ∈ [0,∞).

Then (1.1) has no positive solution.

Proof. Assume u(t) is a positive solution of (1.1), we have

‖u‖ = ‖Tu‖ ≥ (Tu)(t)

>ρ1

∫ b

a

G1(s, s)φ−1
(
ρ2

∫ b

a

G2(τ, τ)w(τ)φ
(‖u‖
k1

)
dτ
)
ds

≥ ‖u‖ρ1

k1

∫ b

a

G1(s, s)dsψ−1
2

(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)

= ‖u‖.

which is a contradiction. So, due to (A9), equation (1.1) has no positive solution.
Similarly, due to (A9), we obtain that (1.1) has no positive solution. �
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4. Further remarks

Consider the fourth-order integral BVP with with φ-Laplacian operator[
q(t)φ(p(t)u′′(t))

]′′ = w(t)f(t, u(t)), t ∈ [a, b],

αu(a)− βu′(a) =
∫ b

a

g(s)u(s)ds, αu(b) + βu′(b) =
∫ b

a

g(s)u(s)ds,

γq(a)φ(p(a)u′′(a))− δ[q(a)φ(p(a)u′′(a))]′ =
∫ b

a

h(s)q(s)φ(p(s)u′′(s))ds,

γq(b)φ(p(b)u′′(b)) + δ[q(b)φ(p(b)u′′(b))]′ =
∫ b

a

h(s)q(s)φ(p(s)u′′(s))ds.

(4.1)

By methods analogous to the ones abov, we have the following results.

Lemma 4.1. Assume (H0)–(H2) hold and µ 6= α. Then for any v ∈ C[a, b], the
BVP

q(t)φ(p(t)u′′(t)) = v(t), t ∈ [a, b],

αu(a)− βu′(a) =
∫ b

a

g(s)u(s)ds, αu(b) + βu′(b) =
∫ b

a

g(s)u(s)ds,
(4.2)

has a unique solution u and u can be expressed in the form

u(t) = −
∫ b

a

H∗1 (t, s)
1
p(s)

φ−1
(v(s)
q(s)

)
ds, (4.3)

where

H∗1 (t, s) = G∗1(t, s) +
1

α− µ

∫ b

a

G∗1(s, τ)g(τ)dτ, (4.4)

G∗1(t, s) =
1

∆∗1

{
[β + α(s− a)][β + α(b− t)], a ≤ s ≤ t ≤ b,
[β + α(t− a)][β + α(b− s)], a ≤ t ≤ s ≤ b.

(4.5)

Here

∆∗1 = α[2β + α(b− a)], µ =
∫ b

a

g(s)ds.

Lemma 4.2. Assume (H1)–(H4) hold and ν 6= γ. Then for any u ∈ C[a, b], the
BVP

v′′(t) = w(t)f(t, u(t)), t ∈ [a, b],

γv(a)− δv′(a) =
∫ b

a

h(s)v(s)ds, γv(b) + δv′(b) =
∫ b

a

h(s)v(s)ds,

has a unique solution v that can be expressed as

v(t) = −
∫ b

a

H∗2 (t, s)w(s)f(s, u(s))ds,

where

H∗2 (t, s) = G∗2(t, s) +
1

γ − ν

∫ b

a

G∗2(s, τ)h(τ)dτ,

G∗2(t, s) =
1

∆∗2

{
[δ + γ(s− a)][δ + γ(b− t)], a ≤ s ≤ t ≤ b,
[δ + γ(t− a)][δ + γ(b− s)], a ≤ t ≤ s ≤ b.
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Here

∆∗2 = γ[2δ + γ(b− a)], ν =
∫ b

a

h(s)ds.

Lemma 4.3. Assume (H5) holds. Then for any t, s ∈ [a, b], the following results
are true.

(i) G∗1(t, s) ≥ 0, H∗1 (t, s) ≥ 0, G∗2(t, s) ≥ 0, H∗2 (t, s) ≥ 0;
(ii) β2

∆∗
1
≤ G∗1(t, s) ≤ G∗1(s, s) ≤ Λ∗1

∆∗
1

, β2σ1
∆∗

1
≤ H∗1 (t, s) ≤ H∗1 (s, s) ≤ σ1Λ∗1

∆∗
1

,
δ2

∆∗
2
≤ G∗2(t, s) ≤ G∗2(s, s) ≤ Λ∗2

∆∗
2

, δ2σ2
∆∗

2
≤ H∗2 (t, s) ≤ H∗2 (s, s) ≤ σ2Λ∗2

∆∗
2

with

Λ∗1 = [β + α(b− a)]2, σ1 =
α

α− µ
, Λ∗2 = [δ + γ(b− a)]2, σ2 =

γ

γ − ν
;

(iii) G∗1(b − t + a, b − s + a) = G∗1(t, s), H∗1 (b − t + a, b − s + a) = H∗1 (t, s),
G∗2(b− t+ a, b− s+ a) = G∗2(t, s), H∗2 (b− t+ a, b− s+ a) = H∗2 (t, s);

(iv) ρ1G
∗
1(s, s) ≤ H∗1 (t, s) ≤ σ1G

∗
1(s, s), ρ2G

∗
2(s, s) ≤ H∗2 (t, s) ≤ σ2G

∗
2(s, s) with

ρ∗1 =
∆∗1

(α− µ)Λ∗1

∫ b

a

G∗1(s, s)g(s)ds, ρ∗2 =
∆∗2

(γ − ν)Λ∗2

∫ b

a

G∗1(s, s)h(s)ds;

where H∗1 (t, s), G∗1(t, s), H∗2 (t, s) and G∗2(t, s) are defined by (4.4)–(4.2), respec-
tively.

Lemma 4.4. Assume (H0)–(H5) hold. If u is a solution of (4.1), then

u(t) =
∫ b

a

H∗1 (t, s)φ−1
(∫ b

a

H∗2 (s, τ)w(τ)f(τ, u(τ))dτ
)
ds.

Lemma 4.5. Assume (H0)-(H5) hold. the solution u(t) of (4.1) is positive and

symmetric on [a, b] and mint∈[a,b] u(t) ≥ ω∗‖u‖, where ω∗ = ρ∗1ψ
−1
2 (ρ∗2)

σ1ψ
−1
1 (σ2)

.

Let P∗ = {x ∈ C : u(t) ≥ 0, u′′(t) ≤ 0, u(t) is a symmetric and concave function
on [a, b] and u(t) ≥ ω∗‖u‖}. We introduce the integral operator T ∗ : C→ C by

(T ∗u)(t) =
∫ b

a

H∗1 (t, s)φ−1
(∫ b

a

H∗2 (s, τ)w(τ)f(τ, u(τ))dτ
)
ds. (4.6)

Lemma 4.6. Assume (H0)–(H5) hold. Then u ∈ C is a solution of (1.1) if and
only if u is a fixed point of the operator T ∗.

Lemma 4.7. Assume (H0)-(H5) hold. Then T ∗ : P→ P is a completely continuous
operator.

Now we need to introduce new notation.

k∗1 = ρ∗1

∫ b

a

G∗1(s, s)dsψ−1
2

(
ρ∗2

∫ b

a

G∗2(τ, τ)w(τ)dτ
)
,

k∗2 = σ1

∫ b

a

G∗1(s, s)dsψ−1
1

(
σ2

∫ b

a

G∗2(τ, τ)w(τ)dτ
)
.

Theorem 4.8. Assume (H0)–(H5) hold. Furthermore, suppose one of the following
conditions are satisfied.

(A1*) There exist two constants r and R with 0 < r ≤ k∗1
k∗2
R such that f(t, u) ≥

φ
(
r
k∗1

)
for (t, u) ∈ [a, b]×[0, r], and f(t, u) ≤ φ

(
r
k∗2

)
for (t, u) ∈ [a, b]×[0, R].
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(A2*) f0 > ψ2

(
(ρ∗1
∫ b
a
G∗1(s, s)ds)−1

)(
ρ∗2
∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

and

f∞ < ψ1

(
(σ1

∫ b
a
G∗1(s, s)ds)−1

)(
σ2

∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

(particularly, f0 =∞ and f∞ = 0).

(A3*) f0 < ψ1

(
(σ1

∫ b
a
G∗1(s, s)ds)−1

)(
σ2

∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

and

f∞ > ψ2

(
(ρ∗1
∫ b
a
G∗1(s, s)ds)−1

)(
ρ∗2
∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = 0 and f∞ =∞).
Then (4.1) has at least one symmetric positive solution.

Theorem 4.9. Assume (H0)–(H5) hold. Furthermore, suppose one of the following
conditions are satisfied.

(A4*) (i) f0 > ψ2

(
(ρ∗1
∫ b
a
G∗1(s, s)ds)−1

)(
ρ∗2
∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

and

f∞ > ψ2

(
(ρ∗1
∫ b
a
G∗1(s, s)ds)−1

)(
ρ∗2
∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = f∞ =∞).
(ii) There exists c > 0 satisfying f(t, u) < φ

(
c
k∗2

)
, (t, b) ∈ [a, b]× [0, c].

(A5*) (i) f0 < ψ1

(
(σ1

∫ b
a
G∗1(s, s)ds)−1

)(
σ2

∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

and

f∞ < ψ1

(
(σ1

∫ b
a
G∗1(s, s)ds)−1

)(
σ2

∫ b
a
G∗2(τ, τ)w(τ)dτ

)−1

(particularly, f0 = f∞ = 0).
(ii) There exists c > 0 satisfying f(t, u) > φ

(
c
k∗1

)
, (t, b) ∈ [a, b]× [0, c].

Then (4.1) has at least two symmetric positive solutions u1(t) and u2(t), which
satisfy 0 < ‖u1‖ < c < ‖u2‖.

Theorem 4.10. Assume (H0)–(H5) hold. In addition, there exist three positive
constants x, y and z with 0 < x < y < ω∗z such that
(A6*) f(t, u) < φ

(
z
k∗2

)
, for all t ∈ [a, b], and 0 ≤ u ≤ z.

(A7*) f(t, u) ≥ φ
(
y
k∗1

)
, for all t ∈ [a, b], and y ≤ u ≤ y

ω∗ .
(A8*) f(t, u) ≤ φ

(
x
k∗2

)
, for all t ∈ [a, b], and 0 ≤ u ≤ x.

Then (4.1) has at least three symmetric positive solutions u1(t), u2(t) and u3(t)
such that

‖u1‖ < x, y < ϕ(u2), x < ‖u3‖, ϕ(u3) < y.

Theorem 4.11. Assume (H0)-(H5) hold. Furthermore, suppose one of the follow-
ing conditions are satisfied.

(A9*) f(t, u) > φ
(‖u‖
k∗1

)
for all t ∈ [a, b], u ∈ [0,∞).

(A10*) f(t, u) < φ
(‖u‖
k∗2

)
for all t ∈ [a, b], u ∈ [0,∞).

Then (4.1) has no positive solution.

Remark 4.12. φ defined as in (H0) generalizes the projection ϕ : R → R which
is an increasing homeomorphism and homomorphism with ϕ(0) = 0. A projection
ϕ : R→ R, which generates the p-Laplacian operator ϕp(u) = |u|p−2u for p > 1, is
called an increasing homeomorphism and homomorphism if the following conditions
are satisfied:
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(i) If x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R;
(ii) ϕ is a continuous bijection and its inverse mapping is also continuous;
(iii) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R. If φ is replaced by ϕ, so all of our

results also hold.

5. Examples

Example 5.1. Consider the following fourth-order integral BVP with φ-Laplacian
operator[ 1

1 + sin(πt)

[
φ
(( u′(t)

1 + sin(πt)
)′)]′]′ = w(t)f(t, u(t)), t ∈ [0, 1],

u(0)− u′(0) =
1
2

∫ 1

0

u(s)ds, u(1) + u′(1) =
1
2

∫ 1

0

u(s)ds,

φ((u′(0))′)− [φ((u′(0))′)]′ =
1
2

∫ 1

0

φ
(( u′(s)

1 + sin(πs)
)′)

ds,

φ((u′(1))′) + [φ((u′(1))′)]′ =
1
2

∫ 1

0

φ
(( u′(s)

1 + sin(πs)
)′)

ds,

(5.1)

where φ(u) = |u|u, w(t) = 1/100 and f(t, u) = (1 + sin(πt))(1 + u) for (t, u) ∈
[0, 1]× [0,∞).

Let ψ1(u) = ψ2(u) = u2, u > 0. Then, by calculations we obtain that µ = ν =
1/2, ∆ = ∆1 = ∆2 = 3 + 2

π ,

G1(t, s) = G2(t, s)

=
1
∆

{(
1 + 1

π + s− 1
π cos(πs)

)(
2 + 1

π − t+ 1
π cos(πt)

)
, 0 ≤ s ≤ t ≤ 1,(

1 + 1
π + t− 1

π cos(πt)
)(

2 + 1
π − s+ 1

π cos(πs)
)
, 0 ≤ t ≤ s ≤ 1,

ρ1 = ρ2 =
(2 + 3π)(−24 + 3π + 18π2 + 13π3)

24π2(1 + π)2
≈ 1.59199, σ1 = σ2 = 2,

ω ≈ 0.710176, k1 =
(2 + 3π)

3
2 (−24 + 3π + 18π2 + 13π3)3

17280π
15
2 (1 + π)3

≈ 1.06639,

k2 =
1

10π
3
2

(13
3
− 8
π3

+
1
π2

+
6
π

)√1
3

(−24 + 3π + 18π2 + 13π3) ≈ 1.50159.

Clearly, the conditions (H0)–(H5) hold. Next, we prove that the condition (A1) of
Theorem 3.1 is satisfied. In fact, choosing r = 1 and R = 6, we have r < k1

k2
R,

φ
(
r
k1

)
≈ 0.879356, φ

(
R
k2

)
≈ 15.9661. For (t, u) ∈ [0, 1] × [0, 1], then f(t, u) =

(1 + sin(πt))(1 + u) ≥ 1 > 0.879356 ≈ φ
(
r
k1

)
.

For (t, u) ∈ [0, 1] × [0, 10], then f(t, u) = (1 + sin(πt))(1 + u) ≤ 14 < 15.9661 ≈
φ
(
R
k2

)
. Hence, by (A1) of Theorem 3.1, then BVP (5.1) has at least one symmetric

positive solution.
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Example 5.2. Consider the following fourth-order integral BVP with φ-Laplacian
operator[ 1

1 + t(1− t)

[
φ
(( u′(t)

1 + t(1− t)
)′)]′]′ = w(t)f(t, u(t)), t ∈ [0, 1],

u(0)− u′(0) =
∫ 1

0

su(s)ds, u(1) + u′(1) =
∫ 1

0

su(s)ds,

φ((u′(0))′)− [φ((u′(0))′)]′ =
∫ 1

0

sφ
(( u′(s)

1 + sin(πs)
)′)

ds,

φ((u′(1))′) + [φ((u′(1))′)]′ =
∫ 1

0

sφ
(( u′(s)

1 + sin(πs)
)′)

ds,

(5.2)

where φ(u) = u, w(t) = t2(1− t)2 and f(t, u) =
((
t− 1

2

)2 + 1
)(

1
2 + u

)(
1
4 + u2

)
for

(t, u) ∈ [0, 1]× [0,∞).
Let ψ1(u) = ψ2(u) = u, u > 0. Then, by calculations we obtain that µ = ν =

1/2, ∆ = ∆1 = ∆2 = 19/6,

G1(t, s) = G2(t, s)

=
1
∆

{(
1− s

6 (2s2 − 3s− 6)
)(

13
6 + t

6 (2t2 − 3t− 6)
)
, 0 ≤ s ≤ t ≤ 1,(

1− t
6 (2t2 − 3t− 6)

)(
13
6 + s

6 (2s2 − 3s− 6)
)
, 0 ≤ t ≤ s ≤ 1,

ρ1 = ρ2 =
1745663
1171170

≈ 1.49053, σ1 = σ2 = 2, ω =
3047339309569
5486556675600

≈ 0.555419,

k1 =
263200328806935685377871
711426606363060588000000

≈ 0.369961, k2 =
86370535759
129667230000

≈ 0.666094.

Clearly, the conditions (H0)-(H5) hold. Next, we prove that the condition (A4) of
Theorem 3.2 is satisfied.

f0 = f∞ =∞ > 2.70299 ≈ ψ2

(
(ρ1

∫ b

a

G1(s, s)ds)−1
)(
ρ2

∫ b

a

G2(τ, τ)w(τ)dτ
)−1

.

On the other hand, choosing c = 1
2 , for (t, u) ∈ [0, 1] × [0, c], we have f(t, u) ≤

f(0, c) = 0.625 < 0.750645 ≈ φ
(
c
k2

)
. Hence, by (A4) of Theorem 3.2, BVP (5.2) has

at least two symmetric positive solutions u1 and u2 satisfying 0 < ‖u1‖ < 1
2 < ‖u2‖.

Example 5.3. Consider the BVP (5.2) with

f(t, u) =

{
1

t(1−t)+79u + 8u3, 0 ≤ t ≤ 1, u ≤ 1,
u

t(1−t)+79u + u+ 7, 0 ≤ t ≤ 1, 1 < u,
(5.3)

and other conditions also hold. Choosing x = 1/8, y = 2 and z = 20, then
0 < x < y < ωz. Now, we can verify the validity of conditions (A6)-(A8) in
Theorem 3.3. Indeed, by direct computations, we have

f(t, u) ≤ 1
79

+ 20 + 7 ≈ 27.0127 < 30.0258 ≈ φ
( z
k2

)
,

for all t ∈ [0, 1], and 0 ≤ u ≤ z.

f(t, u) ≥ 1
80

+ 2 + 7 = 9.0125 > 5.40598 ≈ φ
( y
k1

)
,
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for all t ∈ [0, 1], and y ≤ u ≤ y
ω .

f(t, u) ≤ 1
79

+
8
83
≈ 0.0282832 < 0.187661 ≈ φ

( x
k2

)
,

for all t ∈ [0, 1], and 0 ≤ u ≤ x. Thus, according to Theorem 3.3, BVP (5.2) with
(5.3) has at least three positive solutions u1, u2, and u3 satisfying

‖u1‖ <
1
8
, 2 < ϕ(u2),

1
8
< ‖u3‖, ϕ(u3) < 2.
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