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ABSTRACT. In this article, we study the existence of renormalized and entropy
solutions of SIR epidemic disease cross-diffusion model with Dirichlet boundary
conditions. Under the assumptions of no growth conditions and integrable
data, we establish that the renormalized solution is also an entropy solution.

1. INTRODUCTION

The primary concern of this paper is the study of a certain class of nonlin-
ear parabolic systems more precisely, the so-called cross-diffusion systems (see
[]), which arise in various fields of sciences and have long been the subject of
extensive mathematical studies. Many time and space dependent chemical, phys-
ical or biological processes can be described with partial differential equations,
respectively, by reaction-diffusion equations. A special kind of reaction-diffusion
equations is given by systems of parabolic partial differential equations with cross-
diffusion effects. In recent years, considerable amount of work has been done on
the existence of solutions of biological parabolic systems such as epidemiological
model [3, [ 6, 20, 22, 23] B0] and its related chemotaxis, predator-prey model
[2, 9L 10}, 16, 25| 28 29, [32], B4], see the references therein.

Here one of the topics of interest is the problem of cross-diffusion, the phenome-
non in which a gradient in the concentration of one species induces a flux of another
chemical species, has generally been neglected in the study of reaction-diffusion sys-
tems. It is worth mentioning that nowadays there is still no general theory available
that covers all possible cross-diffusion models, even in the simplest case of only two
coupled partial differential equations. Furthermore, let us point out that cross-
diffusion effects are not that well studied in literature. In this particular context,
there are very few contributions dealing, some extent, with cross-diffusion terms
(see [Bl 15, [16] 241 25| 26] 27, BT, 33]) and also the references therein.
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Being inspired by the mathematical reaction-diffusion system with cross-diffusion
terms [4], we show the existence of equivalence of renormalized and entropy solu-
tions of the following parabolic system

3u1

W — le(Al (ul, Vul))

—div ((k‘lul + 517211,2 + 5173U3)VU1 + 5/1,2’LL1V’LL2 + 5173U1V’U43)

= —o(ui,ug,u3) — pur + f in Qr,
3u2

E — diV(AQ (UQ, VUQ))

—div ((5271’11,1 -+ k2u2 + 5273U3)VU2 -+ 5/2,1’UJ2V’UJ1 + 5&73U2VU3> (11)

= o(u1,uz,u3) — ouz — pguz + g in Qr,
3U3

ot div(As(us, Vus))

—div ((53711“ + 532’&2 + ngg)VUg + 5é’1U3VU1 + 5&72U3VU2)
= guz — p3uz +h in Qr,
with the initial and boundary conditions

ui(2,0) = u;o(x) inQ,i=12,3,
ui(xz,t) =0 on X, i =1,2,3,

where Q7 = Q x (0,7), Xr = 92 x (0,T), Q is a bounded domain in RY with
boundary 02 (no smoothness assumed on the boundary 9Q) and T' > 0. We con-
sider the propagation of an epidemic disease in a spatially distributed population
wherein uq (z,t) represents the density of susceptible individuals, us(x, t) represents
the density of infected individuals, and ug(x,t) represents the density of recovered
individuals at location x and time ¢. Here the homogeneous Dirichlet boundary con-
dition means that the model is self-contained and has no population on the
boundary 9f2. In the above system , the diffusion operator is non-linear, k; > 0,
1 = 1,2,3, denote the self-diffusion rates and éi, j, 5;]-, 1 # j are cross-diffusion
rates. The duration of infectious stage is given by 1/r > 0 and the mortality rate
w; > 0,4 =1,2,3. There is no fertility function so that the system models the
evolution of a given group of individuals. The incidence function o (uy, us, usz), yield-
ing the recruitment of newly infected individuals from the susceptible class takes a
proportionate mixing or a frequency dependence form o(ug,ug, us) = 01#23_%
for some o7 > 0, and w1, us,u3 > 0. According to the definition of the incidence
function o, it is easy to realize that o(u1, uz2,u3) < amin(uy, us) for uy, uz, ug > 0.
For more details regarding the incidence term and their properties, one can see
[3, 41 20} 211, 22| 23]. For sake of simplicity in this work, without loss of generality,
we assume that the coefficients k; > 1 and 0; ; = 6§7j =1,i#j,4,j=1,2,3.

It is worth mentioning that to prove the existence of renormalized and entropy
solutions to system , we are in need of the following hypotheses throughout this
article. The divergence form operator A;(s,¢) : R x RY — RY is a Caratheodory
function (that is, it is continuous with respect to s and ¢) such that

(H1) A;(s,¢)¢ > a;[¢)?, for every ¢ € RN, where a; > 0 and i = 1,2, 3;
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(H2) For any k > 0, there exists 3, > 0 and a function Cy(x,t) € L?(Q7) such
that |A;(s, Q)| < Ci(x,t) + Bi|C], i = 1,2,3;

(H3) [Ai(s, () = Ai(s, (][ = (] > 0,0 =1,2,3.

(H4) ui’o(l‘) S LI(Q), 1=1,2,3.

(H5) f(@,1),9(z,t), h(z,t) € L(Qr).

for almost every (z,t) in Qr, for every s in R and for every ¢, ¢’ in RV, (¢ # ().
Under these assumptions, establishing the weak solutions to the system in the
sense of distribution is really a tough task. To overcome this difficulty, we use the
framework of renormalized solutions was introduced by Diperna and Lions [17] for
Boltzmann equation and also the different notion of entropy solutions introduced
and studied by Bénilan et al. [1].

As mentioned earlier one of our mail goal of this paper is establishing the exis-
tence of renormalized solutions and further we want show the equivalence of renor-
malized solutions and entropy solutions of the cross-diffusion system . As far
as the notion of renormalized solution is concerned, the literature is very vast. After
the pioneering work of Diperna and Lions [I7], the notion is strongly followed by
Blanchard et al. for nonlinear parabolic equations with integrable data [I1] and, for
nonlinear elliptic and parabolic equations by Boccardo et al. [12] 13, 4], see the
references therein for more details.

Apart from the literature mentioned above for the existence of solutions of partial
differential equations, to the best of our knowledge, as far as the existence of solu-
tions of parabolic system is concerned, only few articles have appeared; for example,
Bendahmane and Karlsen established the existence of renormalized solutions of the
reaction-diffusion system with L! data [6, 8], Bendahmane and Saad studied the
existence of solutions of predator-prey system with L! data in [9] and Bendahmane
et al. proved existence of solutions of reaction-diffusion epidemic disease system
with L' data in [I0]. On the other hand regarding the equivalence between the
renormalized solutions and entropy solutions only two papers are available in the
literature for parabolic equations, see [I8], [35] and also for the system of parabolic
equations concerned there is no paper available in the literature. Accordingly in
our paper, in contrast to above results, we study the existence and equivalence of
the renormalized and entropy solutions with no growth conditions and integrable
data.

It should be remarked that in the entire paper we use the generic constant c
instead of different constants. Now first we define the truncation function that we
have used throughout in this paper and after that we give the definition of the
renormalized solutions and the entropy solutions of the reaction-diffusion system
with cross-diffusion terms

ko ifz >k,
Tu(z) =492z if|z] <k,
—k ifz<—k,

2

- z Z_ 1 <
Tk(z>:/ Tk(sms—{z , tled<k
0

klz| — & if [2] > k.

Definition 1.1. A renormalized solution of (1.1]) is a triple function (uq,us,us)
satisfying the following conditions: wj,ug,us > 0 for a.e in (z,t) € Qr. For
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i=1,2,3,
u; € L®(0,T; L' () nC([0,T], L' (),
Ti(u;) € L*(0,T; HY (), for any k > 0,
/ A;(us, Vug)dxdt — 0 as n — oo.
{n<Jui|<n+1}
For all S(u;) € C*°(R) with supp S’ compact,

8S(u1)
at

—div (S’(ul)((klul —+ uo + U3)Vu1 + ’LL1V’LL2 + U1VU3)>

- diV(S,(Ul)Al(Ul, Vul)) + S”(Ul)Al (Ul, Vul)Vul

+ S”(ul) ((k1u1 + uo + U3)VU1 + u1Vusg + U1VU3) Vuq
= (=o(u1,u2,u3) — pur + )5 (u1)  in D'(Qr),

aS
8(:;2) — diV(Sl(UQ)AQ(UQ, VUQ)) + SI/(UQ)AQ(UQ, VUQ)VUQ
—div (S/('LLQ)((Ul + koug + U3)VU2 + usVuy + UQVU3)> (1.2)

+ S”(uz)((ul + koug + U3)VU2 + usVuqg + ’LLQV’LLg)V’U,Q

= (o(uy,ug, ug) — oup — piguz + g)S'(uz) in D'(Qr),

65(’&3) . ’ "

T — le(S (U3)A3(U3, Vug)) + 5 (U3)A3(U3, VU3)VU3

—div (S/(U3)((U1 + ug + k3U3)VU3 + uzVuy + ’LL3V’LL2)>

+ S"(u;,»)((ul + (5] =+ ngg)VUg + U3Vu1 + ’LL3V’LL2)V’LL3

= (oug — pzuz + h)S'(uz) in D'(Qr),
and the initial conditions S(u,(x,0)) = S(uio(x)), i = 1,2,3, in  hold.
Definition 1.2. An entropy solution of is a triple function (u, us, ug) satis-
fying the following conditions, that is, for i = 1,2, 3,

ui € L0, T3 L1(9)) N C([0, T, L} (©).

For any k > 0 and for all ¢; € C'(Qr) with ¢; = 0 in X7,

. . T
/QTk(Ul — ¢1)(T)dx — /QTk(Ul — ¢1)(0)dz JF/O (D11, Ti(u1 — ¢1))dt

+ Al(ul,Vul)VTk(ul — ¢1)dl’dt+/ ((k1u1 +U2 +’U,3)V’LL1 +’LL1VU2
Qr T

+ U1VU3)VTk (Ul — ¢1) dx dt

= / (—o(ur,uz,uz) — prur + f)Ti(u1 — ¢1) da dt,

/ Ty (ug — ¢2)(T)dx — / Ty (ug — ¢2)(0)dx +/ (G2t, T (ug — p2))dt
Q Q 0

+ AQ(UQ, VUQ)VTk(Ug — (}52) dx dt + / ((u1 + koug + U3)VUQ + usVuq
QT T

+ UgVUg)VTk (UQ — (Z)g) dx dt



EJDE-2013/268 RENORMALIZED AND ENTROPY SOLUTIONS 5

= / (O-(ula uz, Ug) — QU2 — U2U2 + g)Tk(’UQ — ¢2) dx dt,

/ Ti(us — ) (T)da — / To(us — ¢3)(0)dz + / (a2 Th (s — g))dt
Q Q 0

+ A3(U3, VU3)VTk(U3 — (}53) dxr dt + / ((Ul + ug + k3U3)VU3 + uzVuy
QT T

+ UgVUg)VTk (U3 — ¢3) dx dt

= / (ouz — pgus + )Ty (u1 — ¢1) da dt,
Qr

hold.

It should be remarked that as far as the equivalence between the renormalized
and the entropy solutions of reaction-diffusion system with cross-diffusion terms is
concerned, there is no paper available in the literature. In this connection first we
introduce the main results of the paper that is, the theorems which concern the
existence of renormalized solutions, the existence of entropy solutions and finally
the equivalence of the renormalized and entropy solutions.

Theorem 1.3. Under the hypotheses (H1)—-(H5), there exists a renormalized solu-
tion of (1.1 in the sense of Definition ,

Theorem 1.4. Under the hypotheses (H1)—(H5), the renormalized solution of (1.1)
is also an entropy solution of the same system in the sense of Definition[1.2

Remark 1.5. The renormalized solution of (1.1} is equivalent to the entropy so-
lution of given cross-diffusion epidemic system (|1.1J).

Remark 1.6. We also stress that the same method can be applied for density-
dependent diffusion or p-Laplacian type diffusion under standard variational growth
constraint. For parabolic equations with p-Laplacian diffusion, for example, see
[35] and for a system of nonlinear partial differential equations with anisotropic
diffusivities, for example, see [6].

Remark 1.7. The uniqueness of the renormalized and entropy solutions of the
given cross-diffusion system, by following the classical methods is tough task due to
the given hypothesis and cross-diffusion terms of the problem. However, there is an
another method, which was introduced by Blanchard et al. [11] for the uniqueness
of renormalized solution of parabolic equation, but it cannot be applied here to
prove the uniqueness of the given parabolic system.

The article is organized as follows. In Section 2, we introduce the regularized
problem of the system and we prove the existence of solutions of regularized
problem using Galerkin’s approximation method. Also we establish some basic
lemmas that we have used to prove the main results of the paper. In Section 3, we
prove Theorem that is, the existence of renormalized solutions and finally, in
Section 4, we prove Theorem [T4] that is, the existence of entropy solutions from
the notion of renormalized solutions.



L. SHANGERGANESH, K. BALACHANDRAN EJDE-2013/268

2. APPROXIMATION PROBLEM

In this section, first we introduce an approximation problem for the given r-
action-diffusion system (|1.1)) and then we prove the existence of solutions of the

approximation problem.
For € > 0, let us introduce the following approximations on the data:

(H6) f¢,9%,h® € L?(Qr) and f¢ — f,g° — g and h® — h a.e in Qr and strongly

in L'(Qr) as € tends to zero;
(HT) ujg € L2(Q),i=1,2,3, and uig — ui0,%=1,2,3, a.e in { and strongly in

L'(Q) as ¢ tends to zero.

8 g
(;;1 —div(4;(uf, Vug)) — div ((k‘le(u’i) + FF(u§) + FF (u§))Vus§

+ X (uf) Vs + F (u5) Va5
= 70'(“?’“‘;7“?3) — i+ f° in Qr,

a £

(;;2 — div(As(ug, Vuy)) — div ((F;(uf) + ko FH (ug) + F2F (u5)) Vg
+ P (u5) Vs + FF (u5) V5

= o(ui,u3,u3) — ou5 — ppuz + g~ In Qr,

ous

G div(As(us, V) — div ((FF (uf) + B (u5) + ks P (u5) Vs
+ P (u§) Vs + FF (u5) Vs )

— ou — pgul + B in Q.

(2.1)

with the initial and boundary conditions

u; (2,0) = ujo(x) in Q,i=1,2,3,
ui(z,t) =0 on Xp,i=1,2,3,

where F*(a) = max(0, Teral):
Remark 2.1. It is easy to understand that, from [4], the diffusion matrix of (2.1))
can be replaced by

8 g
6“; — div(A1 (u5, Vus)) — div(ay, Vs + a2 Vs + ar.3Vus)

= _J(Uivug’ug) - Mlui + f<,

a €
5;2 — div(A2(us, Vug)) — div(ag1 Vui + ag2Vus + as sVus)

_ € 1> 15 € € £
= U(ul,u2,u3) — QU — 2Us + g,

a €
(;;3 — diV(Ag(ug, Vug)) — diV(O{gJVUi + 01372V’U,§ + ag,g,Vu?,)
= ng - M3u§ + hev
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where «; ; = k; F (u$) + Z] 1ji B (u5) for i =1,2,3. Now the diffusion matrix

arg FF(u]) FXF(uf)
M= |FFf(u3) asn  FF(uf)
Fr(ug) FF(u§) osg
is uniformly non-negative from the definition of the approximation problem. Using
the assumptions on k;, ¢ = 1,2,3, and from the inequality ab > —% — % for all
a,b € R, we obtain

3 3
("M = Z(ksz(uf) + Z FHu5)) G+ F (u)) (GG + Giés)

i=1 =1

+ FF(u5) (G + (3G) + F+(u6)(C1C3 + (2@3) (2.2)

3
Zk—lﬁ <2+Z Z CQ>0

=1 j=1,j#i

Lemma 2.2. Assume that uS, € L*(Q), i = 1,2,3, and f¢,¢°,h® € L*(Qr). Then
the approzimation problem (2.1) admits a unique weak solution

ui € L(0,T; L*(92)) N L*(0,T; Hy () N C([0,T], L*(Y)), i =1,2,3,
with ug, € L2(0,T; H=Y(Q)) such that, for any ¢; € L*(0,T; H}(?)), i =1,2,3,

T
/ <8tui,¢1>dt+/ Al(ui,Vuf)ngl dx dt
0 T
+/ (al’lvui+O¢1)2VU§+O&1’3VU§>V¢1 dz dt
— [ (olufug ) — s + 7)o dod,
. T
/ <8tu§,¢2>dt+/ Az (us, Vus) Vo dr dt
0 T

+ / (az’lvui + QQ’QVUE + a273Vu§)V¢>2 dx dt
T

= [ (o5 u808) — 005 — s + 7)o di
T

T
/ (Opus, p3)dt + As(u§, Vu§) Vs da dt
0 Qr

+ / (a371Vui + Oég,gvug + (133VU§)V¢3 dSC dt
T

= / (ous — psus + h®)ps dx dt,
hold.

Proof. The proof of this lemma is not new, we present here a self-contained sketch
of the proof for the sake of simplicity and readability. For more details regarding
this proof, one can refer the article [4] and some details related to the following
method see [19]. Here the proof is relies on using the Faedo-Galerkin approximation
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method. To use this method, a specific basis is required. For that we consider the

approximate spectral problem, see [4, [19] and for that problem, the corresponding
eigen functions w;(z) form an orthogonal basis in Hg () and an orthonormal basis
in L?(Q).

Now we look for the finite-dimensional approximate solutions to problem
in the form of sequences {u; ,}, i = 1,2, 3, defined for t > 0 and x € Q by

n
uf, =Y Cimi(thw(z), i=1,2,3.
=1

Our aim is to determine the set of coefficients {C; » i}, ¢ = 1,2, 3, such that for
m=1,2,...,n,

/Q&gui)nwm dm—l—/QAl (ug ,, VUi )V, dz
+ /Q(al,LnVui)n + a1 2, Vus , + a1737nVu§)n)Vwm dx
= [ (0 5 5.0) =+ £ i,
/Qﬁtugjnwmdx + /Q Ag(us 5 Vs, )V, dr
+ /Q(O‘Z,l,nvui,n + 22, VU5 , + 23, VU3 )V, de (2.3)
— [ (0 s 50) = 00 = 1205+ Y
/ Opu3 Wi, d +/ Ag(ugm,Vug’n)Vwm dx
Q Q
+ /Q(ag,LnVujn +az2.,VU5 , + 33, VU3, )V, dx

— / (gugn — ugugyn + h¥)w,, dz,
Q

where o = kiFF(uS,) + Y0, o FF(us,), for i = 1,2,3, and with initial
conditions 5, (z,0) = ufy,(x) == Y/ Cing(0)wi(x), i = 1,2,3. Further it
should be remarked that the above form of the basis satisfies the required boundary
conditions of the approximation problem . Now, can be rewritten in the

form

’
Clun(®) = = [ A1, V05, T
Q
- / (O‘levui,n + a1727"vu§,n + a1737"vu§,n)vwm dx
Q

- /Q (=0 (0 5 05.0) — o0 1y + )0
GV (6 ACL 21 AC2 0 b1 AC i 1)

Cé,n,m(t) = _/ Az(ugﬁn,vué,n)Vwm dx
Q
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€ € €
- / (allmvul,n + a2727"vu2,n + a2737"vu3,n)vwm dz
Q

[ O 0 05.0) = 205 = 25+ 970
=: G (t, {Crn i1, {C2ma bt {Csn i) s
C4 (1)
= f/QAg(ugn,Vug,n)Vwm dx

€ € €
- / (as1.nVui, +asenVus, + assnVus,)Vwn de
Q

- / QU — pistes p + h Yy dit
Q

= G5 (4 AC 12 {Co b i {Cs i Hi) -

Let p € (0,7) and set U = [0,p]. Choose r > 0 large enough so that the ball
B, C R™ contains {C; (0)},i = 1,2,3; then set V = B,. The components of G,
can be bounded on U x V, from (H; — Hy), we obtain

IGT (t,{CrLmi} i1, {Com i}t {Csmia i)

< (/ |Al(icl,n,lwl,iCl,n,lvwl)2d$)1/2(/ |Vwm|2dx)1
2 =1 =1 Q
=1
+&1:((/Qi:02,n7lel|2d$>l/2
I=1
(1S conivatin) ) [ untiar)”
+ (01 +u1)(/ |§:C1,nylwl|2dx)l/2> (/ |wm|2dglc)1/2
Q= Q

() (o)

< c¢(r,n).
where the constant depends only on r and n. Similarly one can easily obtain
G5 (6, {C b im1 {Camatier, {Cana}izg) | < e(rn),
G5 (6, {Crna}izr {Comitizr, {Canabins) | < elr,n).

Then the standard ODE theory shows that {C;,}];, ¢ = 1,2,3, respectively
satisfies (2.3)) for a.e t € [0, p'). Moreover we have

Cl,n,l(t)

t
= Cl,n,l(o) + /0 Gll (7, {Cl,n,m(T)}fn:la {027%771(7—)}21:17 {CB,n,m(T)}%:l)dTa
CQ,n,l<t)

/2
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C3,n,l (t)

= C3JL,Z(O) + /O Gl3(7'a {Cl,n,m(T)}:imlv {02,n,m(7')}?a=1» {CB,n,m(T)}Zzl)dT-

This proves that the functions (uf,,,u5 ,,u5,) are well-defined and approximate

solutions to the problem (2.1)) on [0,p'). Set ¢;n(x,t) = > bini(Owi(z),i =
1,2,3 where the coefficients b; ,,;,¢ = 1,2, 3, are absolutely continuous functions.
Then, from (2.3)), the approximate solutions satisfy the weak formulation

/Qatuin(bl)ndx + /Q Ay (uin7 Vuin)V(bLndw

+ /Q(O‘lev“i,n +a12n,Vus , + a173,nVu§7n)V¢17ndx

= [ (0 08 0005.) = 0+ £V

/Q&gug,n(bg,ndz + /Q Ag(us,,, Vus ,, ) Vo ndx

+ /0(0‘2,1,nv“i,n + a2, VU5, + 23, VU3, ) Voo ndr (2.4)
~ [ (0 s 50) = 00— 1205+ )02l
/Qatug,nqbgyndx + /Q Az(u3 ,,, Vus ) Vo3 ndx

+ /Q(agyl,nVuin + az2nVus, + a3 3,Vu3,,)Vos ndr

= / (ng,n - :u’3u§,n + h8)¢3,ndx~
Q

From now on, 7 is an arbitrary time in the existence interval [0, p’) of Faedo-
Galerkin solutions. Take ¢;, = u$,,i = 1,2,3, respectively in (2.4) and using,

©,n?

Gronwall’s lemma and Young’s inequality (2.2]), we obtain
||uz§,n||L00(07T;L2(Q)) + ||uz§7n||L2(0,T;Hé(Q)) <c
10eu5 ol 20,711 )y T 1o (U 05 U5 s U3 ) L2 (@) S 65
for some constant ¢ > 0 and ¢ = 1,2,3. Moreover one can easily show, using
similar approach of [4] with the above estimates, the global existence of approximate
solutions of the problem (2.1)). Hence, from the above arguments as n — oo, for
1 =1,2,3, we obtain
€

i,n

—u$  a.ein Qr and strongly in L*(Qr),

ug , — u; weakly in L*(0,T; Hy (),

Ai(us ,, Vug ) — ;. weakly in L*(Qr),

0tu5

in — O weakly in L*(0,T; H1(Q)).

—uf  weakly-x in L>(Qr),

us

\n
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Using similar type of arguments as in [{] with the monotonicity assumption on
A;, we can show that A;(uf,Vu§) = n;, ¢ = 1,2,3. Since the solutions uf €
L2(0,T; HY(Q)) N L>=(0,T; L*(R)), i = 1,2,3, using the approximation problem,
we conclude that u$ € C([0,77],L?(2)),i = 1,2,3. This establishes the existence of
weak solutions (u§, u§,u§) of the regularized problem (2.1)). O

Lemma 2.3. Under hypotheses (H6) and (HT), the functions Ty (us) and 8557;1'),

i=1,2,3, are bounded in L*(0,T; H}(Q)) and L*(Q7) N L?(0,T; H=1(Q)) respec-
tively.

Proof. Taking Ty (u$) as a test function in the first equation of (2.1]) and integrating
over Q; = Q x (0,¢), we obtain

/uisTk(ui)dxder/ A1 (ui, Vui) VT (u3) dz ds

+ / (a1,1Vu] + aq,2Vus + a1 3Vus) VI (ui) dz ds
t

— [ (ot u5u8) — s + £)Tu(a) dods,

o (2.5)
/Tk(ui)(t)dwral/ VT (us)|? d ds
Q

t

+ / (1 ,1Vu] + a1 2Vus + a1 3Vus) VI (ui) dz ds

< [ Do) @)do+ | (~o(uf,u5,u5) — s + 1)Tu(u5) do s
Q

Similarly by considering the second and third equations of (2.1]), we obtain
/Tk(ug)(t)dx—kag/ VT (us)|? d ds
Q

t

+ / (a1 VU] + a2 Vus + ag 3Vus) VT (us) de ds

t

\

[ (u0) @) + / (005, 45, u5) — ou§ — o + ¢°)Ti (u5) dr s,

: (2.6)
/T ug)( dm—l—ag/ VT (u§)|? dx ds
_|_

(013 1Vu1 + ag, QVUQ + a3 3Vu3)VTk(u3) drds

< / Tuluf, ) (@)do + [ (ous = pa + )T (u5) di ds.
Q t

Summing the above three inequalities and using the Young’s inequality, the proper-
ties of the functions f¢, g%, b, u$ o(v), i = 1,2,3, o(uf, u5, u3), ), (2:2), the bounded-

ness of approximate solutions with the definition of the functions T (u £),i=1,2,3,
we have

/ VT (us) | dx ds < c, (2.7

T
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for i = 1,2, 3, and for any constant ¢ > 0. This proves that Ty (ug), i = 1,2,3, are
bounded in L?(0,T; H} (2)). Now, multiplying the first equation of (2.1)) by S’(u5),
we obtain
05 (u§
ot

) = div (9" (uf) A1 (uf, Vui)) — " (ul) Ay (uf, Vui) Vui

+ div (Sl(ui)(aleui + OLLQVUE + aLgVug)) (28)
— S”(ui)(aLquf + al’QVUS + 06173VU§)V’U€

+ 8 (ui)(—o(uf, u3,u3) — pui + f°).

This may be rewritten in the following way by using the definition of Ty (u5), i =
1,2,3,

aSa(ui)

t

= V(S (u5) A (T (), VT(u5))) — 8" () As (Ta(u), VT (u5)) VT 1)
+ div(S" (uf) (R FXF (Tho(ui)) + FE(Tr () + FF (T(u5))) VT (ui)
+ FX(Tho(ui)) VT (ug) + FXF (T (uf)) VT (u5))) — 8" (uf) (kX (Th(uf))
+ F (T (u3)) + F2 (T (u5))) VT (uf) + F (T (ui)) Vi (u5)
+ F (T (uf)) VT (u5)) VT (uf)
+ (=0 (Ti(ui), T (u3), Tho(u3)) — paTh(ui) + f7) S (uf).

(2.9)
For any S € C*°(R) with supp S’ compact, shows that is bounded in

LY(Qr) N L*(0,T; H-1(2)), from the result . Similar arguments on 8S§?f),
1 = 2,3, proves the desired result. This completes the proof. O

8S(Uq)

Lemma 2.4. The solutions (u5,us,u§) of the regularized problem (2.1)) are non-
negative.

Proof. To prove the non-negativity of the solutions, we consider u; © = sup(—ug,0),
i =1,2,3. Now, multiplying the first equation of ([2.1)) by —Tj(u; ©) and integrating
over (), we obtain

d

G [ RO+ [ At Var ) Ve + [ (P ) + F )

+ F;'(ug_s))Vul_E + FF (uy5)Vuy © + FF (uy ©)Vug ©) VT (ug ©)dr

= [ (Coturt uy®u5) = i+ 5Tl o,
Q

G | B )Ode+ar [ (VIO + [ (nFS )+ P )

Q
+ F (u3®))Vuy® + F(u]®)Vuy © + F (uy ®)Vauz ©) VT (uy ®)de

< [ (o u® )+ i+ 1)) o
Q
By considering —Tj(u; ©), =Tk (u3 ©) respectively as the test functions of the other

two equations of (2.1)), summing all the results, using the boundedness of solutions
ug, ug, u§, (2.2)), the definition of the functions o(ug, us, u§), f¢, g%, h° and finally
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from the non-negativity of the terms on the LHS in resulting inequalities, we obtain

d -

— [ Tp(u; ©)(t)de <0, fori=1,2,3.

dt Jo
The non-negativity of the initial conditions u;,,7 = 1,2, 3, with the above inequal-
ities prove the non-negativity of the solutions (u§,u§, u§). O

Definition 2.5. Let us define the Lipschitz continuous function

0 if |z] <m,
0,(2) = Th11(2) = Th(2) = S (J]z] = n)sgn(z) ifn<|z| <n+1,
sgn(z) if |[z| >n+ 1.

Remark 2.6. From the above definition, one can easily understand that the func-
tion ©(z) satisfies [|©(2)| L~ ®) < 1, for any n > 1 and ©(z) — 0, for any z when
n — oo.

Lemma 2.7. The Lipschitz continuous function ©,(u;), i = 1,2,3, for somen >0
and € > 0 satisfies

¢
lim limsup/ / Ai(u;, Vu;)Vus deds =0
n—=0 0 Jo J(n<lus|<nt1)

and O, (u;) — 0, fori=1,2,3, strongly in L*(0,T; H}()) as n — .

Proof. Using ©,,(u5) as a test function in the first equation of (2.1]) and integrating
over Q and then over (0,t), we have

/ B (1) (£)dz + / As (5, Vi ) VO, (u ) da ds
Q Qt

—|—/ (1,1 VU] + aq 2 Vus + a1 3Vus5) VO, (ug) de ds (2.10)

- / (—o (a5, 45) — pa + F)On (uf) dr ds + / 6, (1 (1)) dz,
Q

t

for almost all ¢ in (0,T) and & < A5 Since O, (uf) > 0,i =1,2,3, for all z € Q,
by taking in account of (2.2)), we obtain the inequality

/ A1 (ui, Vu3) VO, (uf)dzds
t (2.11)
g/ (a(ui,ug,ug)+u1ui—|—f€)@n(u§)d9&ds+/@n(uio(x))dx,
Q

t

for all ¢ in (0,7) and € < n}rl.

For any subsequences u$ (still denoted by s, i = 1,2, 3), Lemma shows that
(uf, us,us) — (ug,u,usz) a.ein Qr,
Ty (u5) — Ty(u;)  weakly in L?(0,T; Hi(Q)), i = 1,2, 3, (2.12)
O, (us) — O, (u;) weakly in L(0,T; H3(Q)), i = 1,2,3,

as ¢ — 0 for any k > 0 and n > 1. From (H2),
[Ai(Th(u5), VT (u5))] < Cr(@,t) + Bl VTk(u5)l, i=1,2,3,
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where Cj, € L?(Qr). It shows that A;(Tk(us), VTk(u$)), i = 1,2,3 is bounded in
L?(Qr). Therefore,

Ai(Ty(us), VTg(us)) = mip weakly in L*(Qr), i = 1,2,3, (2.13)

as ¢ — 0 where ;. € L*(Qr), i = 1,2,3. From (2.5, (2.6) and (2.2) with Lemma
2.3l we obtain

3
> [ Tt de < [ (oluf ) + o + )T dods
=179 ¢

+ / (0 us, uS) + (2 + Q) + ¢°)Ti(us) do ds
T

3
4 / (0u§ + st + BT (u§) dwds + / To(us o)) da.
¢ i=17%

Using the boundedness of the solutions (uj,u5,u5), Lemma the properties of
o(uj,u3,ug), ¢, 9%, h° and Young’s inequality, we obtain

3
> / T (uS) (t)da:
=179
3
< Cr + k(15 2@y + 19 22(r) + 105 2@y + D 05.0(2) | L2())s

i=1

where C}, is a constant independent of €. Taking liminf as € tends to zero in the
above estimate and using (2.12)) and Lemma we obtain

3
Z/ Ty (ui)(t)da
i=1 7%
3
< Cr+ k(L2 @) + I9llzr@r + 1Pz @) + D ltio(@)llzr (@)

i=1
By using the definition of T} (u;), we deduce that

3
k‘2

S [ i ide < O+ - meas(@) + K(1 ercon) + oo

=1

s (2.14)
+ e + Y luio(@) L),
=1

for almost all ¢ in (0,7). This proves that u; € L>(0,T; L' (2)), i = 1,2,3. Now
equation (2.11)) with (2.12]) proves that

/ Aq(uf, Vu]) VO, (uf)dzds
‘ (2.15)

S/ (J(ul,u2,u;g)+,u1u1+f)@n(u1)dxds+/ On(u1,0(x))de.
t Q
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Using (H1), VO, (u]) = X{n<|us|<n+1} VUi and the weak convergence in (2.12), we
obtain

a1/ VO, (u1)|2dzds

‘ i (2.16)

§/ (a(ul,ug,u;;)—l—,ulul+f)®n(u1)dxds+/@n(ul’o(m))dx.
Q

Since ©,,(u1) — 0, as n — oo shows that ©,(u;) — 0, weakly in L2(0,T; H}(Q)).
This leads to the right-hand side of each term of (2.16), that is,

/ o(uy,us,u3)Op(u1) dxds — 0, / 1w 0, (u1) drds — 0,
T

T

fOn(uy)drds — 0
Qr
as n — oo and [|©y(u1,0)||1 (@) < lJu10ll1 (o) implying that [, O, (u10)dz — 0 as
n — oo which follows from the Lebesgue convergence theorem. Hence, passing to

the liminf in (2.15)) and (2.16]), we obtain

t
lim limsup/ / A1 (uf, Vui)VO, (u])dxds — 0,
e e=0 Jo J{n<luil<n+1}

(u1) — 0, strongly in L?(0,T; Hi(2)) as n — oo. Similarly, by considering
n(u5), O, (u) respectively test functions in the second and third equations of
(2.1) and by adopting the above type of arguments to prove that for ¢ = 1,2, 3,

@n 1)
On (u3),

¢
lim lim sup/ / A;(ui, Vui)VO, (ui) dxds — 0,
0 J{n<|uf|<n+1}

N0 =30 (2.17)
O, (u;) — 0, strongly in L?(0,T; Hy(S2)) as n — oo.
This proves the desired result of the lemma. O

Definition 2.8. We define the time regularization of the function, for ¢ = 1,2, 3,
by

t

(Te(us))y = / DT, (wr(z, 5))ds,

ui(x,s) if s >0,
uo(x) if s <O.

where u;(z,s) = {

Let us consider the unique solution (T (u;)), € L>(Qr) N L*(0,T; H3()) of
the monotone problem
0 .
o Le(ui))y +9((Te(ui))y = Tio(ui)) =0 in Qr,
(T (ui(2,0)))y = Th(uipo(x)) n €,

for v > 0 and k¥ > 0. From (2.18) and Lemma we have 2 (Tj(u;)), €
L*(0, T Hy ().

Remark 2.9. For i = 1,2,3, we have (Tx(u;))y — Ti(u;) a.e in Qrp, weak - * in
L>®(Qr) and strongly in L%(0,T; H}(2)) as v — oo and also

(Th (wi))y | Lo (@ry < max([|Th(wi)ll Lo (@r)s | Tk (wi0) L)) < k

(2.18)
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for any v > 0 and k > 0.

Lemma 2.10. Let k > 0 be fized and S be an increasing C(R) function such that
S(z) = z for |z| < k with supp S’ compact. Then, fori=1,2,3,

T 5
lim limsup/ / %:Z)(Tk(uf) — (Tk(us))y) dzds dt > 0.
0 t

n—oo  -_,(

The proof of the above lemma is similar to that of the lemma in [1I], and is
omitted here.

Lemma 2.11. Fori=1,2,3, 0,1, as defined in (2.13), the subsequences us (still
denoted by u$) satisfy

T
lim sup / / Ai (T (us), VI (u;)) VT (u) de ds dt
0 t

e—0

T (2.19)
S/ / 0i6 VT (u;) dr ds dt.
0 t
Proof. Let S, be a sequence of increasing C*°(R) functions such that
Sp(z) =z, for |z| < mn,
!/ 1 (2'20)
supp Sy, C [=(n+1), (n+ 1)}, [S;]lLe@) < 1.
Multiply the first equation of (2.1)) by S, (u5) to obtain
05y (ug :
O5nU) _ iy (5, (w5 s (. V) — S (u) s (o, W Vs
+ div (S5, (u) (1,1 Vi + a1,2Vus + a1 3Vu3)) (2.21)

— Sy (ug) (1,1 Vui + a1 2Vus + ag 3Vui)Vu
+ S (ul) (o (uf, ug, ug) — paui + f°).
From ([2.21)), we understand that 857,67(;1?) € LY(Qr) + L*(0,T; H~1(Q)). Similarly

it holds for i = 2,3, 252(%) ¢ LY (Qr) + L2(0,T; H-(Q2)). For fixed k > 0,7 > 0,
and € > 0, we set

Wiy =Th(ui) — (Ti(ui))y, i=1,2,3. (2.22)
Multiplying (2.21) by Wi, and integrating over Q; x (0,T), we obtain
/ f)s’éigl)wiv dvdsdt =I) + I + Iy + I + I, (2.23)
Q

where

L = —/ Sy (ui)Ax (ui, Vui) VWi da ds dt,
Q
I = — / Syl (uf) Ay (uf, Vu§)Vus W, da ds dt,
Q
= — / 81 (uS) (011 VS + 01 2V + a1 5 Vu5)VWE dar ds dt,
Q

I, = —/ Sy (u§) (11 Vui + a2 Vus + aq 3Vu3)Vui Wi | de ds dt,
Q
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I = / S, () (o (4, ) — o + )W, da ds d,

where Q = Q; x (0,T). By -, for fixed v > 0, W7 — Ti(wi) — (Th(wi))y,
i =1,2,3, weakly in L2(0 T; H () as e — 0. By Remark we conclude that
Wi L (@r) < 2k, for any € > 0 and v > 0. This boundedness of W7 shows
that for fixed v > 0, W¢. — Ty (u;) — (Tk(ui))4, i = 1,2,3, a.e in Qr and L=(Qr)
weak™ as € — 0.

By the definition of S,,, we have supp S}/ C [-(n + 1), (n + 1)] U [n, (n + 1)], for
any n > 1. As a consequence

[I2| < T”SZ”L“(R)||W1€,'yHL°°(QT)/ Ay (ui, Vui)Vui de ds,
{(z,t);n<|u§|<n+1}
for any n > 1,6 < = and v > 0. From |[|[WF ||p=(q,) < 2k and ([2:20), we easily
obtain
lim sup limsup | I3| < ¢lim sup/
Yoo e—0 =0 J{(z,t)m<|uf|<n+1}

for any n > 1, where the constant ¢ depends on T and k. Hence, by Lemma
we achieve that

lim lim sup lim sup/ Sy (ug) Ay (ui, Vui)Vui Wi, dx ds dt = 0. (2.24)

=0 ~y—oo0 e—0

A1 (ui, Vui)Vui dx ds,

For some n > 1, I3 can be rewritten as
/5' u1 kl (To1(ug) + FXN (T (u3)) + 2 (T (u5)) Vg (uf)

o FF (T2 (05) VT (65) + B (T (u) VT 1 (45) ) VWS, di dis dt,

a.e in Qp. Since supp S, C [—(n + 1),(n + 1)], for ¢ = 1,2,3, the definition of
F(u$) and the results (2.12)) lead to S, (u§)F (Thy1(us)) — Sh(ur)The1(u;) a.e
in Qr and in L (Qr) weak* as ¢ — 0. This proves

e—0

=/QSé(ul)((lenﬂ(ul)+Tn+1(u2)+Tn+1(U3))VTn+1(U1)

4 Ty (1) Vs (u2) + Tn+1(u1)VTn+1(u3)) (VTk(u1) — V(Ti(ur))-) do ds dt,

for any v > 0. By using the Remark [2:9] this leads to
lim lim [ S (uf)(o11Vu] + a1 2Vus + a1 3Vu3) VW5 dedsdt = 0. (2.25)

y—o0 e—0 Q

Similarly, we can show that

y—o00 e—0

lim lim [ S} (uf)(e1,1Vui 4+ a1 2Vus + a1 3Vu3)Vui Wi dzdsdt = 0,
@ (2.26)

’ylLH;O 313% ; Sy (ui)(o(ug, us, u3) + paui)Wi , dxds dt = 0.

Since fS(u1) € LY(Qr), and Remark [2.9]lead to
lim lim/ fe8, (ug)Wi ., dx ds dt = 0. (2.27)

y—00 e—0
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Consequently, from Lemma |T1_TT| and the definition of W7, we have

lim lim asni(ul)ﬂff,Y drdsdt >0 for any n > k. (2.28)
v—o0e—0 Jo Ot ’

It is easy to understand that, from (2.24)-(2.27)) along with (2.23) and (2.28), we

obtain

lim lim I; = lim liH(l) Sy (ug) Ay (uf, Vui)VWE  dx dsdt < 0. (2.29)

y—00 e—0 y—o0 e— Q

Since
Sy (ui) A (ui, Vui) VT (uf) = Ar(uf, Vui) VT (ui)
for k < % and k < n because of the definition of S,, and from ([2.29)), we obtain

lim sup / Aq(u3, Vu3) VT (u3) de ds dt
Q

e—0

< lim lim [ S) (u])A:1(uf, Vui)V(T)(ug))y dzdsdt for k < n.
Q

y—o00 e—0
For e < 1/(n+ 1), we know that
Sy (ui)Ar (uf, Vug) = S, (u]) Ar (T (u]), Vg (uf))

a.e in Q. Due to (2.13), we have S/, (u$)A1(Th+1(us), VTnt1(u§)) = S5 (u1)n1 nt1
weakly in L?(Qr) as ¢ — 0. This help us to prove that, for any n < 1,

lim lim [ S (uf)A;(uf, Vui)V(Tk(u3)) dz ds dt

y—00 e—0 Q

:/ Sy ()M 1 VT (ur) da ds dt (2.30)
Q

= / M.n+1VTg(u1) de dsdt.
Q
For any k < n, we have
Al(Tn+1(Ui>7 anJrl(”i))xﬂuﬂgk) = Al(Tk(Ui)y VTk(ui))Xﬂ“ﬂSk) a.e in QT—

The above equation with (2.12) and (2.13) implies that 71,41 ,c <y = Tk q1uz <y
x{lufI< Fx{lufl<
a.e in Qr — {|u§| = k} for k < n as e — 0. Therefore, (2.30) becomes

e—0

lim sup / A1 (T (uS), VTi (u3)) VT (u5) dr dsdt = / Mk VTk(u1) dedsdt.
Q Q
Similar arguments as we used to obtain the previous equation lead to, for i = 1,2, 3,

lim sup / Ai (T (us), VT (u5)) VT (uf) de ds dt = / 05,6 VI (u;) de ds dt.
Q Q

e—0

This completes the proof of the lemma. O

Lemma 2.12. For any k >0 and i =1,2,3, we have

e—0

lim sup /Q AT (), VT () — Au(Ti(uE), VT ()]

X [VTi(uf) — VTi(u;)] dedsdt = 0.
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Proof. The monotone assumption (H3) shows that, for i = 1,2,3,

lim sup/Q [Ai(Tk(uf),VTk(uf)) — Ai(Tk(uf),VTk(ui))]

e—0

(2.31)
X [VTg(uf) — VTi(u;)] dedsdt >0
for any k > 0. We remark that (H2) and first result of (2.12) implies that
Ai(Ty(uf), VT (us) — Ai(Tr(us), VI (us)),

a.e in Qp as ¢ — 0 and that A; (T (uf), VTi(u;)) < Cr(x,t) + Be|VIk(u;)| ae. in
Qr, uniformly with respect to e. Then, by Lemma|2.11} (2.12]) and (2.13]), we have,
fori=1,2,3,

fimsup | [A(TL(0), VTu(a) ~ Ai(Ti(u), Ve ()]
e—
X [VTk(if) — VTi(u;)] da dsdt = 0.
This completes the proof. (Il
Lemma 2.13. For fized k > 0 and i = 1,2,3, we have
ik = Ai(Ti(ui), VT (u;))  a.e in Qrp,

Ai(Th(uf), VT (us)) VT (u5) = Ag(Te(ui), VT (ui)) VT (u;)  weakly in LN(Qr).
Proof. For any k > 0and 0 < ¢ < %, from Lemma convergence implies
that, for i = 1,2, 3,

limsup/ Ai (T (us), VT (u$)) VT (uf) dwdsdt:/ 0ik VI (u;) de ds dt.
Q Q

e—0

Using Minty’s type arguments and (2.12)), (2.13]), from the above equation we obtain
Ap(Ti(us), VIg(ui)) = nig, for ¢ = 1,2,3, and any k > 0. This proves the first
result of the present lemma. For any k& > 0,7’ < T, Lemma [2.12| shows that, for
i=1,2,3,

[Ai(Th(u5), VT3 (uf)) — As(Th(u5), V()] [V Tk (uf) = VTk(ui)] — 0

strongly in L*(2 x (0,7")), as ¢ — 0. By (2.12) and with the first result of this
lemma, for i = 1, 2,3, we obtain

Ai(Ty(uS), VT (us)) VT (u;) = Ai(Ty(ui), VT (1)) VT (u;)  weakly in L' (Qr),
Ai(T (), VT3 (ui)) VT (u5) = Ai(Th(us), VT3 (ui)) VTk (1) - weakly in L' (Qr),
Ai(Th(uS), VT (1)) VT (1) — Ai(Th(wi), VT (u3))VTk(u;)  strongly in LY(Qr),
as € — 0. Hence

Ai(Tio(u7), VT (u7 ) VT (ug) = Ai(Tho(ui), VT (i) VT (ui)

weakly in LY(Q x (0,7")), for any 77 < T as € — 0. According to the defini-
tion of the function A;(s,() and f,g,h, the assumptions hold true for all time
T. Hence AZ(Tk(uf),VTk(uf))VTk(uf) — Al(Tk(uZ),VTk(ul))VTk(ul) Weakly in
LY(Q7) holds. O

Lemma 2.14. For anyn >0, andi=1,2,3,

/ A;(us, Vu )Vudedt — 0 as n — 0.
{(z,t)eQr;n<|u;|<n+1}
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Proof. Fori=1,2,3,

lim A;(uf, Vui)Vus dx dt
O M@ eQrim<|us|<n+1}

= lir% A;(us, Vus )V (T (u5) — T (ug)) da dt
E— QT

EJDE-2013/268

Qr Qr

= / Ai(u;, Vu;)Vu; de dt  for
{(z,t)eQrin<|ui|<n+1}

Using Lemma [2.7 and from the above equality, we have
{(z,t)eQr;n<|u;|<n+1}
This completes the proof.

any n > 0.

as n — OQ.

3. EXISTENCE OF RENORMALIZED SOLUTIONS

Proof of the Theorem[1.3 From system (2.1)), we have
95(ug)
ot
- diV(S/(Ui)(aleui + OLLQVU; + a173Vu§))
+ 8" (ui) (1,1 Vug + a1 2 Vus + a1 3Vus) Vus
= (—o(ui, u3, u5) — mui + )5 (u),
95(uj)
ot
— div(S’(u5) (2,1 Vu + a2 2Vus + as 3Vu3))
+ 8" (ug) (2,1 Vui + as 2 Vui + as 3Vus)Vus

= (o(uf, ug, u3) — ous — paus + g°)5'(u3),

95(ug)
ot

— div(S"(u§)(as,1 Vui + as2Vus + az 3Vus))

+ 8" (ug) (3,1 Vui + as 2 Vui + as 3Vus)Vus

= (ouj — paus + h°) S (u3).

Since S is a bounded and continuous function with supp
boundedness of S”(u;),i = 1,2, 3, along with the results

— div(S"(u3) A1 (ug, Vug)) + S" (uj) A1 (ug, Vui)Vus

— div(S' (u5) Az (u3, Vu3)) + 8" (u3) Aa(us, Vus) Vus

— div(S'(u5) As(ug, Vug)) + 5" (u5) As(us, Vug) Vug

S’ C [~k, k], using the

2.12), (2.13)), using the

hypotheses (H5), (H6), (H7) and the Lemmas [2.13] [2.14
equations (|1.2]) of Definition hold. By Lemma and

we conclude that the
Aubin type lemma, we

obtain that S(ug(z,0)) = S(ujy(x)),i = 1,2,3, converges to S(u;o(z)) strongly
in H=5%(2), where s < inf(2, ~~). Then (Hy),(H7) and the smoothness of S
prove the strong convergence in L'({2). Hence we conclude that S(u;(z,0)) =
S(uio(z)),i = 1,2,3. This establishes the existence of renormalized solutions of

the reaction-diffusion system (1.1)).

O
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In this section, we establish the second main result of the paper; that is, the
renormalized solution where we have established in previous section which is also

an entropy solution.

Proof of the Theorem[1.4, Take Tj(u$ — ¢i),1 = 1,2,3, as the test functions, re-
spectively in the equations (1.2)) and for k > 0,¢; € C'(Qr) with ¢, =0,i =1,2,3

in 7. Now, integrating the equation (|1.2]) over Qr, we obtain

T
/ (ufy, T (ug — ¢1))dt+/ Az (uf, Vu) VT (u — ¢1) dx dt
0

T

+ / (a1,1Vu] + a1 2Vus + a1 3Vu3) VT (uf — ¢1) do dt
T

- / (—o (15 ) — i + F)To(us — é1) da dt,

T

T
/ (U5, To(us — do))t+ | As(us, Vus) VT (4 — ) da dt
0

Qr
+ / (CV271VU§ + ag,QVug + a2,3Vu§)VTk(u§ — ¢2) dx dt
T

= / (o(uf,us, u3) — ouy — pous + ¢°)Tk(us — P2) da dt,

T

T
/ (w5, Tie(us — ¢3))dt + / As(ug, Vu§)VTE (u§ — ¢3) da dt
0

T

+ / (a31Vui + a3 2Vus + a3 3Vug) VI (u§ — ¢3) de dt
T

= / (ous — paus + he) T (us — ¢3) dz dt.

T

Note that, if L =k + ||¢1]| L (@) and uf, = (uf — ¢1)¢ + P14, we have

Ay (u3, Vui) VT (u§ — ¢1) da dt
Qr

:/ Ay (Tp (uS), VL (u)) VT (Ul — ¢1) da dt.

- / Tl — 60)(T)da - / To(uf — 1) (0)de
Q Q

T
+ [ 0 T 06) = sy
0

From (4.2)), the first equation of (4.1) can be re-written as

(4.1)

(4.2)

/ Tl — 60)(T)da — / To(u — ) (0)dz + / (D10, T(Tp () — b))t
Q Q 0
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+ o Ay(Tp(u1), VT (u1)) VTR (TL (uy) — ¢1) da dt

+ / (a1,1VTL (u‘i) + OZ172VTL(U§) + 041’3VTL(u§))VTk(TL(Ui) — (;51) dx dt

=/ (—o (0, w5 us) — s + F)To(ess — 1) da d.

T

Using the fact that T is Lipschitz continuous, (H7) and the results (2.12), we
obtain

/ Tr(u — ¢)(T)dx — / Tr(uy — ¢1)(T)d,

Q Q

/ T (i — 61)(0)dz — / To(ur — 61)(0)dz, as e — 0.
Q Q

Finally, by considering the strong convergence of f¢, (2.12), , and the def-
inition of o(uj,u§,u5) and the Lemma we obtain the following result by
extracting the limit as e — 0

Aﬂmr¢MﬂM—AﬁwerWMﬁAwmnwrwmm

+ / Al (’U,l, Vul)VTk (u1 — ¢1) dx dt
T (43)
+ / ((k1u1 + ug + U3)VU1 + u1Vug + U1VU3)VTk(U1 — ¢1) dx dt

= / (—o(ur,u2,ug) — prur + f)Ti(ur — ¢1) da dt.

T

Similar arguments on the other two equations of the (4.1)) lead to

. . T
/QTk(UQ — ¢2)(T)dx — /QTk(U2 — ¢2)(0)dz +/0 (P2t, T (uz — ¢2))dt

+ AQ('UQ, VUQ)VTk(UQ - d)z) dx dt + / ((Ul + k2u2 + U3)VU2 + u2Vu1
Qr T

+ UQVUg)VTk (UQ - ¢2) dz dt

= / (o(u1,ug, usz) — oug — pous + g)Tk(us — ¢o) dx dt,

/ Ty (uz — ¢3)(T)dx — / Ty (u3 — ¢3)(0)dx +/ (¢3t, T (ug — ¢3))dt
Q Q 0

+ A3(U3, VU3)VTk(U3 — (253) dx dt + / ((Ul + ug + k‘3U3)VU3 + uzVuy
Qr T

+ U3VU2)VTk (U3 — ¢3) dx dt

= / (ouz — pgus + h)Ty(uz — ¢3) dx dt,

T

for all k > 0 and for i = 1,2,3,¢; € C'(Qr) with ¢; = 0 in X7 . This completes
the existence of entropy solutions of the system (1.1). (I
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