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VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS OF
MEROMORPHIC FUNCTIONS

YONG LIU, XIAOGUANG QI, HONGXUN YI

Abstract. In this article, we study the value distribution of difference polyno-
mials of meromorphic functions, and obtain some results which can be viewed

as discrete analogues of the results given by Yi and Yang [11]. We also consider

the value distribution of

ϕ(z) = f(z)(f(z)− 1)
nY

j=1

f(z + cj).

1. Introduction and main results

In this article, we assume that the reader is familiar with the fundamental results
and the standard notation of the Nevanlinna theory (see, e.g., [7, 10]). Let f(z)
and g(z) be two non-constant meromorphic functions in the complex plane. By
S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞, possibly
outside a set of finite logarithmic measure. Then the meromorphic function α is
called a small function of f(z), if T (r, α) = S(r, f). If f(z)− α and g(z)− α have
same zeros, counting multiplicity (ignoring multiplicity), then we say f(z) and g(z)
share the small function α CM (IM). Denote

δ(α, f) = lim inf
r→∞

m(r, 1
f−α )

T (r, f)
,

where α is a small function related to f(z).
In the following sections, we denote by E a set of finite logarithmic measure, it

is not necessarily the same at each appearance. In 1991, Yi and Yang [11] obtained
the following theorem.

Theorem 1.1. Let f(z) and g(z) be meromorphic functions satisfying δ(∞, f) =
δ(∞, g) = 1. If f ′ and g′ share 1 CM and δ(0, f) + δ(0, g) > 1, then either f ≡ g
or f ′g′ ≡ 1.

Lately, there has been an increasing interest in studying difference equations
in the complex plane. For example, Halburd and Korhonen [3, 4] established a
version of Nevanlinna theory based on difference operators. Ishizaki and Yanagihara
[9] developed a version of Wiman-Valiron theory for difference equations of entire
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functions of small growth. Also Chiang and Feng [1] has a difference version of
Wiman-Valiron. The main purpose of this article is to establish partial difference
counterparts of Theorem 1.1. Our results can be stated as follows.

Theorem 1.2. Let cj , aj , bj(j = 1, 2, . . . , k) be complex constants, and let f(z) and
g(z) be two nonconstant finite order meromorphic functions satisfying δ(∞, f) =
δ(∞, g) = 1. Let L(f) =

∑k
i=1 aif(z + ci) and L(g) =

∑k
i=1 big(z + ci). Suppose

that L(f) · L(g) 6≡ 0. If L(f) and L(g) share 1 CM and δ(0, f) + δ(0, g) > 1, then
L(f)L(g) ≡ 1 or L(f) ≡ L(g).

Theorem 1.3. Suppose that f(z) is a nonconstant meromorphic function. Let
δf =

∑
a∈C δ(a, f). If ∆cf(z) = f(z + c)− f(z) 6≡ 0 (c ∈ C \ {0}), then

N
(
r,

1
∆cf(z)

)
≤
(

(1− δf
2

+ ε)T (r,∆cf(z)
)

(r 6∈ E),

where ε is any fixed positive number.

Recently, Zhang [13] considered the value distribution of difference polynomial
of entire functions, and obtain the following result.

Theorem 1.4. Let f(z) be a transcendental entire function of finite order, and
α(z) be a small function with respect to f(z). Suppose that c is a non-zero complex
constant and n is an integer. If n ≥ 2, then fn(z)(f(z) − 1)f(z + c) − α(z) has
infinitely many zeros.

A natural question arises: If n = 1, whether we can get a similar conclusion?
The following theorems give a partial answer to this question.

Theorem 1.5. Let f(z) be a finite order transcendental entire function with one
Borel exceptional value d according to the condition or its proof described. Let
cj(j = 1, . . . , n), b be complex constants. If dn+2 − dn+1 − b 6= 0, then ϕ(z) =
f(z)(f(z)− 1)

∏n
j=1 f(z+ cj)− b has infinitely many zeros and λ(ϕ(z)− b) = ρ(f).

Theorem 1.6. Let f(z) be a finite order transcendental entire function, and let cj
(j = 1, . . . , n), bj (j = 1, . . . , n), b be complex constants. If f(z) or f(z) − 1 has
infinitely many multi-order zeros, then f(z)(f(z)− 1)

∏n
i=1(f(z + ci)− bi)− b has

infinitely many zeros.

2. Proof of Theorem 1.2

We need the following lemmas. The first lemma is a difference analogue of the
logarithmic derivative lemma.

Lemma 2.1 ([3]). Let f(z) be a meromorphic function of finite order and let c be
a non-zero complex number. Then for any small periodic function a(z) with period
c,

m
(
r,
f(z + c)− f(z)
f(z)− a(z)

)
= S(r, f).

The following lemma is essential for our proof and is due to Heittokangas et al.,
see [8, Theorems 6 and 7].

Lemma 2.2 ([5]). Let f(z) be a meromorphic function of finite order, c 6= 0 be
fixed. Then

N(r, f(z + c)) ≤ N(r, f(z)) + S(r, f),
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N(r, f(z + c)) ≤ N(r, f(z)) + S(r, f).

Lemma 2.3. Let f be a nonconstant meromorphic function of finite order such
that δ(∞, f) = 1 and δ(0, f) > 0. Let L(f) be as in Theorem 1.2. Then

T (r, f) ≤
( 1
δ(0, f)

+ ε
)
T (r, L(f)), r 6∈ E,

and

N
(
r,

1
L(f)

)
< (1− δ(0, f) + ε+ o(1))T (r, L(f)), r 6∈ E,

where ε > 0 can be fixed arbitrarily.

Proof. From δ(∞, f) = 1, we have

N(r, f) = o(T (r, f)).

Then from Lemmas 2.1 and 2.2, we obtain

T (r, L(f)) = m(r, L(f)) +N(r, L(f))

≤ m(r, f) +m
(
r,
L(f)
f

)
+ kN(r, f) + o(T (r, f))

≤ (1 + o(1))T (r, f)), r 6∈ E.

(2.1)

On the other hand,

m
(
r,

1
f

)
≤ m

(
r,

1
L(f)

)
+m

(
r,
L(f)
f

)
= m

(
r,

1
L(f)

)
+ o(T (r, f))

= T (r, L(f))−N
(
r,

1
L(f)

)
+ o(T (r, f)), r 6∈ E.

(2.2)

By the definition of δ(0, f), we obtain

m
(
r,

1
f

)
≥ (δ(0, f)− ε)T (r, f), (2.3)

where ε > 0 can be fixed arbitrarily. Combining (2.2) and (2.3) yields

(δ(0, f)− ε)T (r, f) < T (r, L(f)), r 6∈ E;

that is,

T (r, f) <
( 1
δ(0, f)

+ ε
)
T (r, L(f)), r 6∈ E.

By (2.1), (2.2) and (2.3), we have

(δ(0, f)− ε+ o(1))T (r, L(f)) < T (r, L(f))−N
(
r,

1
L(f)

)
, r 6∈ E;

that is,

N
(
r,

1
L(f)

)
< (1− δ(0, f) + ε+ o(1))T (r, L(f)), r 6∈ E.

�
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Lemma 2.4 ([11]). Let f1, f2 and f3 be three meromorphic functions satisfying
3∑
i=1

fi ≡ 1.

Assume that f1 is not constant, and
3∑
i=1

N2

(
r,

1
fi

)
+

3∑
i=1

N(r, fj) ≤ (λ+ o(1))T (r) (r ∈ I),

where λ < 1, T (r) = max{T (r, fi)|i = 1, 2, 3)}, N2(r, 1/fj) is the counting function
of zeros of fj(j = 1, 2, 3), where a multiple zero is counted two times, and a simple
zero is counted once. Then f2 ≡ 1 or f3 ≡ 1.

Proof of Theorem 1.2. Set I1 = {r : T (r, L(f)) ≥ T (r, L(g))} ⊆ (0,∞) and I2 =
(0,∞)\I1. Then there is at least one Ii (i = 1, 2) such that Ii has infinite logarithmic
measure. Without loss of generality, we may suppose that I1 has infinite logarithmic
measure.

Because δ(0, f) + δ(0, g) > 1, it follows that δ(0, f) > 0 and δ(0, g) > 0. Lemma
2.3 yields

T (r, f) = O(T (r, L(f))), r ∈ I1\E,
T (r, g) = O(T (r, L(g))) = O(T (r, L(f))), r ∈ I1\E.

Thus,

N(r, f) = o(T (r, L(f))), r ∈ I1\E,
N(r, g) = o(T (r, L(f))), r ∈ I1\E.

Since L(f) =
∑k
i=1 aif(z + ci) and L(g) =

∑k
i=1 big(z + ci) share 1 CM, we have

L(f)− 1
L(g)− 1

= h(z), (2.4)

where

N(r, h) +N(r,
1
h

) ≤ kN(r, f) + kN(r, g) + o(T (r, f)) + o(T (r, g)) = o(T (r, L(f))),

for r ∈ I1\E. Let f1 = L(f), f2 = h(z), f3 = −L(g)h(z). Then we obtain
f1 + f2 + f3 ≡ 1, and

3∑
i=1

N(r, fi) ≤ kN(r, f) + kN(r, g) + 2N(r, h) = o(T (r)), r ∈ I1\E,

where T (r) = max1≤i≤3{T (r, fj)}. For any ε satisfying 0 < ε < δ(0,f)+δ(0,g)−1
4 , by

Lemma 2.3, we obtain
3∑
i=1

N2

(
r,

1
fj

)
≤ N

(
r,

1
L(f)

)
+N

(
r,

1
L(g)

)
+ 2N(r, h)

≤ (2− δ(0, f)− δ(0, g) + o(1) + 2ε)T (r)

= (λ+ o(1))T (r), r ∈ I1\E,

where λ = 2−δ(0, f)−δ(0, g)+2ε < 1. If f1(z) = L(f) is a constant, by Lemma 2.3,
we see that f(z) is also a constant, a contradiction. Hence, f1(z) is not constant.
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By Lemma 2.4, we obtain f2 ≡ 1 or f3 ≡ 1. If f2 ≡ 1, then we obtain L(f) ≡ L(g).
If f3 ≡ 1, we have L(f) ≡ − 1

h , L(g) ≡ −h, and so L(f)L(g) ≡ 1. �

3. Proof of Theorem 1.3

We need the following lemmas.

Lemma 3.1 ([5, 6]). Let f(z) be a nonconstant finite order meromorphic function
and let c 6= 0 be an arbitrary complex number. Then

T (r, f(z + |c|)) = T (r, f(z)) + S(r, f).

Remark 3.2. It is shown in [2, p. 66], that for c ∈ C \ {0}, we have

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z))

hold as r → ∞, for a general meromorphic function. By this and Lemma 3.1, we
obtain

T (r, f(z + c)) = T (r, f(z)) + S(r, f)

Proof of Theorem 1.3. Without loss of generality, we assume that there exist in-
finitely many values a such that δ(a, f) > 0. Then there is an sequence {ai}∞i=1

satisfying ai 6= aj(i 6= j) and
∑∞
i=1 δ(ai, f) = δf . Hence for any fixed positive

number ε, there exists an integer q such that

δ =
q∑
i=1

δ(ai, f) > δf −
ε

3
. (3.1)

Set

F (z) =
q∑
i=1

1
f(z)− ai

.

Then
q∑
i=1

m
(
r,

1
f − ai

)
= m(r, F ) +O(1). (3.2)

Hence by Lemma 2.1, we obtain

m(r, F ) ≤ m
(
r,

1
∆cf(z)

)
+

q∑
i=1

m
(
r,

∆cf(z)
f − ai

)
+O(1)

= T (r,∆cf(z))−N
(
r,

1
∆cf(z)

)
+ S(r, f).

(3.3)

and
q∑
i=1

m
(
r,

1
f − ai

)
≥
(
δf −

ε

3

)
T (r, f), r 6∈ E. (3.4)

From (3.1)-(3.4) and Remark 1, we have

N(r,
1

∆cf(z)
) ≤ T (r,∆cf(z))− (δf −

2
3
ε)T (r, f)

≤ T (r,∆cf(z))− (
δf
2
− ε)T (r,∆cf(z))

= (1− δf
2

+ ε)T (r,∆cf(z)), r 6∈ E.

�
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4. Proof of Theorem 1.5

The following lemma is a generalization of Borel’s Theorem on linear combina-
tions of entire functions.

Lemma 4.1 ([10, pp. 79-80]). Let fj(z) (j = 1, 2, . . . , n;n ≥ 2) be meromorphic
functions, gj(z) (j = 1, 2, . . . , n) be entire functions, and assume they satisfy

(i) f1(z)eg1(z) + · · ·+ fk(z)egk(z) ≡ 0;
(ii) when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant.
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E1),

where E ⊂ (1,∞) is of finite logarithmic measure.
Then fj ≡ 0 (j = 1, . . . , n).

Proof of Theorem 1.5. Set ϕ(z) = f(z)(f(z) − 1)
∏n
j=1 f(z + cj). Next we prove

that ρ(ϕ) = ρ(f). We write ϕ(z) as

ϕ(z) = fn+1(z)(f(z)− 1)
n∏
j=1

(f(z + cj)
f(z)

)
(4.1)

By Lemma 2.1, we obtain

T (r, ϕ) = m(r, ϕ) ≤ (n+ 1)m(r, f) +m(r, f − 1) +
n∑
i=1

m
(
r,
f(z + cj)
f(z)

)
+ S(r, f)

= (n+ 2)T (r, f) + S(r, f).
(4.2)

On the other hand,

(n+ 2)T (r, f) = (n+ 2)m(r, f)

= m(r, fn+1(z)(f(z)− 1)) + S(r, f)

≤ m(r, ϕ) +
n∑
i=1

m
(
r,

f(z)
f(z + ci)

)
+ S(r, f)

= T (r, ϕ) + S(r, f).

(4.3)

By (4.2) and (4.3), we have
ρ(ϕ) = σ(f). (4.4)

Suppose that d is the Borel exceptional value of f(z). Then we can write f(z) as

f(z) = d+ g(z) exp{αzk}, (4.5)

where α is a nonzero constant, k ≥ 1 is an integer, and g(z) is an entire function
such that g(z)(6≡ 0), ρ(g) < k. By (4.5), we have

f(z + cj) = d+ g(z + cj)gj(z) exp{αzk}, (j = 1, 2, . . . , n), (4.6)

where gj(z) = exp{α(k1)zk−1cj + α(k2)zk−2c2j + · · ·+ αckj }, ρ(gj) = k − 1. Equality
(4.4) implies that ρ(ϕ−b) = ρ(f). Next, we prove that λ(ϕ(z)−b) = ρ(f). Suppose,
contrary to the assertion, that λ(ϕ(z)− b) < ρ(f). Then

ϕ(z)− b = u(z) exp{βzk}, (4.7)
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where u(z) is an entire function with ρ(u) ≤ max{λ(ϕ(z)− b), k− 1} < k, and β is
a nonzero constant. From (4.5)-(4.7), we have

g2(z)
n∏
i=1

g(z + ci)gi(z) exp{(n+ 2)αzk}+Gn+1(z) exp{(n+ 1)αzk}

+ · · ·+G1(z) exp{αzk}+ dn+2 − dn+1 − b = u(z) exp{βzk},
(4.8)

where Gi(z) (i = 1, . . . , n+ 1) are difference polynomials in g(z), g1(z), g2(z), . . . ,
gn(z), g1(z + c1), g2(z + c2), . . . , gn(z + cn). Since g(z) 6≡ 0, by comparing the
growth of both side of (4.8), we have β = (n + 2)α. Hence we can rewritten (4.8)
as

(g2(z)
n∏
i=1

g(z + ci)gi(z)− u(z)) exp{(n+ 2)αzk}+Gn+1(z) exp{(n+ 1)αzk}

+ · · ·+G1(z) exp{αzk}+ dn+2 − dn+1 − b = 0.
(4.9)

By Lemma 4.1 and (4.9), we obtain that dn+2 − dn+1 − b = 0, a contradiction.
Hence, we obtain λ(ϕ(z)− b) = ρ(f). �

Proof of Theorem 1.6. Suppose that f(z) or f(z) − 1 has infinitely many multi-
order zeros. If b = 0, then H(z) has infinitely many zeros. Next we suppose that
b 6= 0. If H(z)− b has only finitely many zeros, then H(z) can be rewritten as

H(z) = f(z)(f(z)− 1)
n∏
i=1

(f(z + ci)− bi)− b = p(z)eq(z), (4.10)

where p(z), q(z) are polynomials. Suppose that H(z) is a polynomial. Then we
have

H(z) = f(z)(f(z)− 1)
n∏
i=1

(f(z + ci)− bi)− b = P (z), (4.11)

where P (z) is a polynomial. From (4.11), we have

(n+ 2)T (r, f) = T (r,H(z)) + S(r, f)

= T (r, f(z)(f(z)− 1)
n∏
i=1

(f(z + ci)− bi)− b) + S(r, f)

= T (r, P (z)) + S(r, f) = O(log r) + S(r, f).

This is impossible, since f(z) is transcendental. Hence H(z) is transcendental, so
we get p(z) 6≡ 0, deg q(z) ≥ 1, by this, we obtain p′(z) + p(z)q(z) 6≡ 0. Differential
(4.10) and eliminating e

q(z)
, we get

(f(z)(f(z)− 1)
∏n
i=1(f(z + ci)− bj))′

f(z)(f(z)− 1)
∏n
i=1(f(z + ci)− bj)

=
p′(z) + p(z)q′(z)

p(z)
− b p′(z) + p(z)q′(z)

p(z)f(z)(f(z)− 1)
∏n
i=1(f(z + ci)− bj)

Since f(z) or f(z)−1 has infinitely many multi-order zeros, there exists a sufficiently
large point z0 such that the multiplicity of the zero of f(z)(f(z) − 1) at z0 is k
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(k ≥ 2), and p′(z0) + p(z0)q(z0) 6= 0, p(z0) 6= 0. We can easily obtain that the
multiplicity of

(f(z0)(f(z0)− 1)
∏n
i=1(f(z0 + ci)− bi))′

f(z0)(f(z0)− 1)
∏n
i=1(f(z0 + ci)− bi)

=∞

is 1, and the multiplicity of

p′(z0) + p(z)q′(z0)
p(z0)

− b p′(z0) + p(z0)q′(z0)
p(z0)f(z0)(f(z0)− 1)

∏n
i=1(f(z0 + ci)− bi)

=∞

is k (l ≥ k ≥ 2). From the above equation, we get a contradiction. Hence H(z)
takes every value b infinitely often. �
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