
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 271, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

DECAY OF NON-OSCILLATORY SOLUTIONS FOR A SYSTEM
OF NEUTRAL DIFFERENTIAL EQUATIONS

HELENA ŠAMAJOVÁ, EVA ŠPÁNIKOVÁ, JULIO G. DIX

Abstract. In this article we study the non-oscillatory solutions for a system

of neutral functional differential equation. We give sufficient conditions for all
non-oscillatory solutions to tend to zero as t approaches infinity. Our results

are illustrated with an example.

1. Introduction

In this article we study the non-oscillatory solutions to the homogeneous system
of neutral differential equations[

|y1(t)− a(t)y1(g(t))|β−1
(
y1(t)− a(t)y1(g(t))

)]′ = p1(t)y2(t),

y′i(t) = pi(t)yi+1(t), i = 2, 3, . . . , n− 1,

y′n(t) = σpn(t)f(y1(h(t))), t ≥ t0,
(1.1)

where β is a positive constant, n ≥ 3, σ = ±1, and a, g, h, f, pi are continuous
functions that satisfy the condition specified below.

Asymptotic properties of solutions to systems of functional differential equations
with deviating arguments have been studied by many authors; see for example the
references in this article and their references. When the coefficients pi are positive,
(1.1) can be written as n-order differential equation. In which case there are many
results available, including for non-homogeneous and more general equations; see
for example [2, 9].

The existence of oscillatory solutions to (1.1), with β = 1, and such that
limt→∞ yi(t) = 0 or limt→∞ |yi(t)| = ∞ were established in [19]. The existence
of non-oscillatory solutions to (1.1) has been shown among others by Marušiak [8]
and Erbe-Kong-Zhang [1].

Non-oscillatory solutions for equation of the type (1.1), with β = 1, have been
grouped in to classes by Marušiak [7]. The authors in [18] expanded this classi-
fication, and used it for showing that if the function y1(t) is bounded, then non-
oscillatory solutions decay to zero as t→∞. The goal in this article is to show the
decay of non-oscillatory solutions, without such assumption.
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The results here are different from those in [2] in the sense that our coefficients
pi are allowed to have zeros, and our delayed arguments g(t) and h(t) are allowed
to exceed t, while in [2] the delay arguments are bounded by t. However, in [2] the
differential equation has a forcing term that (1.1) does not have. In this article, as
in [18], we use the following assumptions:

(A1) the coefficient a : [t0,∞)→ (0,∞] is a continuous function;
(A2) the advanced arguments g, h : [t0,∞) → R are continuous and strictly

increasing functions, with limt→∞ g(t) =∞ and limt→∞ h(t) =∞;
(A3) The coefficients pi : [t0,∞) → [0,∞) are continuous functions, pn is not

identically zero in any neighborhood of infinity, and
∫∞
t0
pi(t) dt = ∞ for

i = 1, 2, . . . , n− 1;
(A4) the function f : R→ R is continuous, with uf(u) > 0 for u 6= 0, and there

is a positive constant M such that |f(u)| ≥M |u|β .
The inverse of the functions in (A2) will be denoted by g−1(t) and h−1(t). For

simplifying of notation, we define the function

z1(t) = |y1(t)− a(t)y1(g(t))|β−1
(
y1(t)− a(t)y1(g(t))

)
. (1.2)

Note if β is the quotient of odd integers, then |x|β−1x = xβ . Also note that for
β > 0 and x a differentiable function, (|x|β−1x)′ and x′ have the same sign. This
is proved by considering the possible signs of x.

A function y = (y1, . . . , yn) is a solution of (1.1) if there is a t1 ≥ t0 such that y is
continuous for t ≥ min{t1, g(t1), h(t1)}; the functions z1(t) and yi(t), i = 2, 3, . . . , n
are continuously differentiable on [t1,∞); and y satisfies (1.1) on [t1,∞). In this
article, we consider only solutions that are eventually non-trivial; i.e., solutions
such that

sup
t≥t1

max
1≤i≤n

|yi(t)| > 0 .

A solution is non-oscillatory if there exist i and Ty ≥ t0 such that yi(t) 6= 0 for all
t ≥ Ty. Otherwise, a solution y is said to be oscillatory.

2. Preliminaries

Our first lemma is a simplified version of [2, lemma 2.1], [6, lemma 5.2.1], [18,
lemma 2.2].

Lemma 2.1. Let y = (y1, . . . , yn) be a solution of (1.1). Assume that (A3) holds
and y′n(t) is eventually of one sign.

(i) There exists t2 ≥ t0 such that z1, y2, . . . , yn are monotonic and of constant
sing on [t2,∞).

(ii) There exists an index ` such that z1, y2, . . . , y` have the same sign, and
y`(t)y`+1(t) < 0, y`+1(t)y`+2(t) < 0, . . . , yn(t)y′n(t) < 0. When z1(t)y2(t) <
0 we set ` = 1, and when z1, y2, . . . , y

′
n have the same sign, we set ` = n+1.

Lemma 2.2. Under the assumptions on Lemma 2.1, for s, t, xk ∈ [t2,∞), we have:
If there is a k in {2, 3, . . . , n} for which yk(t)yk+1(t) < 0 (with yn+1 = y′n), then

|yk(xk)|

≥
∫ t

xk

pk(xk+1)
∫ t

xk+1

. . .

∫ t

xn−1

pn−1(xn)
∫ t

xn

|y′n(xn+1)| dxn+1 . . . dxk+1

:= Jn+1−k(xk, t; pk, . . . , pn−1, 1; |y′n|), ∀xk ≤ t .

(2.1)
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Note that t can be arbitrarily large, thus we can use the limit as t→∞. Also note
that when k = 1, the above estimate has the form |z1(x1)| ≥ Jn(. . . ).

If there is a k in {2, 3, . . . , n+ 1} for which z1(t), y2(t), . . . , yk(t) have the same
sign (with the convention yn+1 = y′n), then

|z1(t)| ≥
∫ t

s

p1(x2)
∫ x2

s

p2(x3) . . .
∫ xk−1

s

pk−1(xk)|yk(xk)| dxk . . . dx2

:= Ik−1(s, t; p1, . . . , pk−1; |yk|) ∀s ≤ t .
(2.2)

When k = ` as defined by Lemma 2.1, and 2 ≤ ` ≤ n+ 1, we have

|z1(t)|

≥
∫ t

s

p1(x2)
∫ x2

s

. . .

∫ x`−1

s

p`−1(x`)
∫ t

x`

p`(x`+1)

×
∫ t

x`+1

p`+1(x`+2)
∫ t

x`+2

. . .

∫ t

xn−1

pn−1(xn)
∫ t

xn

|y′n(xn+1)| dxn+1 . . . dx2

= I`−1

(
s, t; p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn−1, 1; |y′n|

))
, ∀s ≤ t .

(2.3)

Proof. Assuming that ym and ym+1 have opposite signs, we have

|ym(xm)| = |ym(t)|+
∫ t

xm

pm(xm+1)|ym+1(xm+1)| dxm+1

≥
∫ t

xm

pm(xm+1)|ym+1(xm+1)| dxm+1.

Inequality (2.1) follows by applying this inequality for yk, yk+1, . . . , yn (with the
convention yn+1 = y′n).

Now assume that z1 and y2 are of the same sign. Then

|z1(t)| = |z1(s)|+
∫ t

s

p1(x2)|y2(x2)| dx2 ≥
∫ t

s

p1(x2)|y2(x2)| dx2.

Using this inequality for y2, y3, . . . yk, we obtain (2.2). When k = ` in the two
inequalities above, we have (2.3). �

The functionals similar to Ik and Jk have been defined recursively in [7, 18].

Lemma 2.3 ([5, Lemma 2.2]). Assume (A1)–(A2) hold, g(t) > t, and

1 ≤ a(t) for t ≥ t0.

Let y1(t) be a continuous non-oscillatory solution to the functional inequality

y1(t)[y1(t)− a(t)y1(g(t))] > 0

defined in a neighborhood of infinity. Then y1(t) is bounded. Moreover, if there
exist a constant a∗ such that

1 < a∗ ≤ a(t), ∀t ≥ t0,

then limt→∞ y1(t) = 0.

Lemma 2.4 ([5, Lemma 2.1]). Assume (A1)–(A2) hold, g(t) < t, and

0 < a(t) ≤ 1 for t ≥ t0.
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Let y1(t) be a continuous non-oscillatory solution to the functional inequality

y1(t)[y1(t)− a(t)y1(g(t))] < 0

defined in a neighborhood of infinity. Then y1(t) is bounded. Moreover, if there is
a constant a∗ such that

0 < a(t) ≤ a∗ < 1, ∀t ≥ t0,

then limt→∞ y1(t) = 0.

Lemma 2.5 ([11, Lemma 4]). Assume that q : [t0,∞)→ [0,∞) and δ : [t0,∞)→ R
are continuous functions, with δ(t) > t for t ≥ t0, and

lim inf
t→∞

∫ δ(t)

t

q(s) ds >
1
e
.

Then the functional inequality

x′(t)− q(t)x(δ(t)) ≥ 0, t ≥ t0
has no eventually positive solution, and the functional inequality

x′(t)− q(t)x(δ(t)) ≤ 0, t ≥ t0
has no eventually negative solution.

The next Lemma can be proved as in [7, Lemma 2].

Lemma 2.6. Let y = (y1, y2, . . . , yn) be a non-oscillatory solution of (1.1), and
let limt→∞ |z1(t)| = L1, limt→∞ |yk(t)| = Lk for k = 2, . . . , n. For k ≥ 2,

Lk > 0 =⇒ Li =∞, for i = 1, . . . , k − 1 . (2.4)

For 1 ≤ k < n,

Lk <∞ =⇒ Li = 0, for i = k + 1, . . . , n. (2.5)

3. Main results

Theorem 3.1. Assume (A1)–(A4), and let σ = (−1)n. Also assume the following
conditions hold: there exist constants a∗, a∗ such that

1 < a∗ ≤ a(t) ≤ a∗, for t ≥ t0; (3.1)

t < g(t) < h(t) for t ≥ t0; (3.2)

for all k in {3, 4, . . . , n}, the functionals defined by (2.1)-(2.2) satisfy

lim sup
s→∞

Ik−1

(
s, g−1(h(s)); p1, . . . , pk−1; Jn+1−k

(
xk, g

−1(h(s)); pk,

. . . , pn;
M

aβ(g−1(h))
))

> 1 ;
(3.3)

lim inf
s→∞

∫ g−1(h(s))

s

p1(x2)Jn−1

(
x2,∞; p2, . . . , pn;

M

aβ(g−1(h))

)
dx2 >

1
e
. (3.4)

Then every non-oscillatory solution of (1.1) decays to zero; i.e., limt→∞ yi(t) = 0
for i = 1, 2, . . . , n.
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Proof. Let y be a non-oscillatory solution of (1.1). Note that if y(t) is solution
of (1.1), then −y(t) is also a solution; therefore, we assume that y1(t) is positive,
without loss of generality. Then by (A4), y′n is one sign and, by Lemma 2.1, each
of the functions z1, y2, . . . is of one sign (positive or negative); thus we have only
the following cases:

Case 1p: z1(t) > 0 for all t ≥ t2, and no restriction on y2, y3, . . . . Since z1(t)
is positive so is y1(t) − a(t)y1(g(t)). By Lemma 2.3, limt→∞ y1(t) = 0. Then
limt→∞ z1(t) = 0, because a is bounded. Then by Lemma 2.6, limt→∞ yi(t) = 0 for
i = 1, 2, . . . , n.

Case 1n2p: z1(t) < 0, y2(t) > 0 for all t ≥ t2, and no restriction on y3, y4, . . . .
Then by (2.1) we have ` = 1, and y2, y4, y6, . . . are positive, while y3, y5, y7, . . . are
negative. However, (A4), the choice σ = (−1)n, and the fact that y1 > 0 do not
allow this case to happen. See Theorem 3.2 below.

Case 1n2n3n: z1(t) < 0, y2(t) < 0 y3(t) < 0 for all t ≥ t2, and no restriction on
y4, y5, . . . . Then ` ≥ 3 in Lemma 2.1. By (2.3)

z1(t) ≤ −I`−1

(
s, t; p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn; |σf(y1(h))|

))
≤ I`−1

(
s, t; p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn;−M(y1(h))

)) (3.5)

for all s ≤ t. Since z1(t) is negative so is y1(t)−a(t)y1(g(t)). Therefore, (−z1(t))β =
a(t)y1(g(t)) − y1(t) < a(t)y1(g(t)), and z1(t) > −aβ(t)yβ1 (g(t)). Then for t =
g−1(h(xn+1)),

− yβ1
(
g−1(h(xn+1))

)
<

z1(g−1(h(xn+1))
aβ
(
g−1(h(xn+1))

) . (3.6)

Applying this inequality and that z1 is non-decreasing, in (3.5), we have

z1(t)

≤ z1

(
g−1(h(s))

)
I`−1

(
s, t; p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn;M/aβ(g−1(h))

))
.

Since g(t) < h(t) and g is strictly increasing, s < g−1(h(s)); thus we can set
t = g−1(h(s)). Dividing by z1(t) we have a contradiction to (3.3). Therefore, this
case can not happen.

Case 1n2n3p: z1(t) < 0, y2(t) < 0, y3(t) > 0 for all t ≥ t2, and no restriction
on y4, y5, . . . . Using (2.1) for y2, we obtain

y2(s) ≤ −Jn−1(s, t; p2, . . . , pn; |σf(y1(h))|) ≤ Jn−1(s, t; p2, . . . , pn;−yβ1 (h)M)

Applying (3.6) and that z1 is non-increasing we have

y2(s) ≤ z1

(
g−1(h(s))

)
Jn−1

(
s, t; p2, . . . , pn;M/aβ(g−1(h))

)
∀s ≤ t;

therefore,

y2(s) ≤ z1

(
g−1(h(s))

)
Jn−1

(
s,∞; p2, . . . , pn;M/aβ(g−1(h))

)
.

Multiplying by p1(s) in both sides, we note that z1 is a negative solution of the
differential inequality

z′1(s)− z1

(
g−1(h(s))

)
p1(s)Jn−1

(
s,∞; p2, . . . , pn;M/aβ(g−1(h))

)
≤ 0 .
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Since g(s) < h(s) and g is strictly increasing, s < g−1(h(s)). This inequality is one
of the conditions needed for applying Lemma 2.5. The other condition is

lim inf
s→∞

∫ g−1(h(s))

s

p1(x2)Jn−1

(
x2,∞; p1, . . . , pn;M/aβ(g−1(h))

)
dx2 >

1
e

which is provided by (3.4). The fact that z1 is negative and is a solution of the
differential inequality contradicts Lemma 2.5. Therefore, this case can not happen.
The proof is complete. �

Next we remove the condition σ = (−1)n in Theorem 3.1, at the cost of restricting
the coefficient pn.

Theorem 3.2. Assume (A1)–(A4), (3.1)–(3.2), and that pn is bounded below by a
positive constant. Then every non-oscillatory solution of (1.1) decays to zero; i.e.,
limt→∞ yi(t) = 0 for i = 1, 2, . . . , n.

Proof. Let y be a non-oscillatory solution of (1.1), and without loss of generality
assume that y1(t) is positive. The proofs of the various cases are the same as in
Theorem 3.1, except for one case.
Case 1n2p: z1(t) < 0, y2(t) > 0 for all t ≥ t2. Then by (2.1) we have ` = 1.

First we show that lim inft→∞ y1(t) = 0. The function yn being monotonic and
having its derivative with opposite sign imply the existence of limt→∞ yn(t). From
(1.1) it follows that ∫ ∞

t2

pn(t)σf(y1(h(t))) dt <∞ .

Recall that |f(y)| ≥ M |y|β and that pn is bounded below by a positive constant.
Using a contradiction argument, we can show that lim inft→∞ y1(t) = 0. Then by
(A2),

lim inf
t→∞

y1(g(t)) = 0, lim inf
t→∞

y1(h(t)) = 0 .

Next we show that limt→∞ z1(t) = 0. Since z1 is negative and non-decreasing,
there exists L1 such that 0 ≥ L1 = limt→∞ z1(t) > −∞. Let {tk} be a sequence
such that

lim
k→∞

y1(g(tk)) = lim inf
t→∞

y1(g(t)) = 0 .

Since z1(t) is negative so is y1(t)− a(t)y1(g(t)). From y1 being positive,

−(−z1(tk))1/β + a(tk)y(g(tk)) = y1(tk) > 0.

In the limit as k →∞, and using that a is bounded function, we have

0 ≥ −(−L1)1/β + 0 = lim inf
k→∞

y1(g(tk)) ≥ 0 .

Thus L1 = 0.
Next we show that y1(g) is bounded from above, which implies y1 being bounded

from above. Suppose that y1(g) is unbounded, then there is a sequence {tk} such
that limk→∞ y1(g(tk)) = ∞, and y1(g(s)) ≤ y1(g(tk)) for all s ≤ tk. Since g is
strictly increasing, y1(g(s)) ≤ y1(g(tk)) for all s for which g(s) ≤ g(tk). By (A2),
for each tk, there exists an s such that tk = g(s). Then by (3.2), tk < g(tk) and
y1(tk) = y1(g(s)) ≤ y1(g(tk)). From z1(t) and y1(t) − a(t)y1(g(t)) being negative,
and (3.1),

−(−z1(tk))1/β = y(tk)− a(tk)y1(g(tk)) ≤ (1− a∗)y1(g(tk)) < 0 .
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In the limit as k → ∞, the left-hand side approaches zero, while the right-hand
side approaches −∞. This contradiction shows that y1 is bounded.

Next we show that lim supt→∞ y1(t) = 0. Let

α := lim sup
t→∞

y1(t) = lim sup
t→∞

y1(g(t)) ≥ 0,

and let {tk} be a sequence such that limk→∞ y1(g(tk)) = α. Let us recall that
limk→∞ z1(tk) = 0, lim infk→∞ a(tk) ≥ a∗ > 1, and

lim inf
k→∞

y1(tk) ≤ lim sup
k→∞

y1(tk) ≤ lim sup
t→∞

y1(t) = α

From z1(t) and y1(t)− a(t)y1(g(t)) being negative, we have

−(−z1(tk))1/β + a(tk)y(g(tk)) = y(tk),

which by taking the limit inferior yields

0 + a∗α ≤ lim inf
k→∞

y1(tk) ≤ α .

Since a∗ > 1, the only choice for α is being zero.
Therefore, limt→∞ y1(t) = 0. By Lemma 2.6, limt→∞ yi(t) = 0 for i = 2, 3, . . . , n,

which completes the proof. �

Theorem 3.3. Assume (A1)–(A4), and let σ = (−1)n+1. Also assume the follow-
ing conditions: there exist a constant a∗ such that

0 < a(t) ≤ a∗ < 1, for t ≥ t0; (3.7)

g(t) < t < h(t) for t ≥ t0 ; (3.8)

the functionals defined by (2.1) satisfy

lim inf
s→∞

Ik−1

(
s, h(s); p1, . . . , pk−1; Jn+1−k

(
xk, t; pk, . . . , pn;M

))
< 1 ; (3.9)

lim inf
s→∞

∫ h(s)

s

p1(x2)Jn−1

(
x2,∞; p2, . . . , pn,M

)
dx2 >

1
e
. (3.10)

Then every non-oscillatory solution of (1.1) decays to zero; i.e., limt→∞ yi(t) = 0
for i = 1, 2, . . . , n.

Proof. Let y be a non-oscillatory solution of (1.1), and without loss of generality,
assume that y1(t) is positive. Then by (A4), y′n is one sign and, by Lemma 2.1,
each of the functions z1, y2, . . . is of one sign (positive or negative); thus we have
only the following cases:

Case 1n: z1(t) < 0 for all t ≥ t2, and no restriction on y2, y3, . . . . Since z1(t)
is negative, so is y1(t) − a(t)y1(g(t)). By Lemma 2.4, limt→∞ y1(t) = 0. Then
limt→∞ z1(t) = 0, because a is bounded. Then by Lemma 2.6, limt→∞ yi(t) = 0 for
i = 1, 2, . . . , n.

Case 1p2n: z1(t) > 0, y2(t) < 0 for all t ≥ t2, and no restriction on y3, y4, . . . .
Then by (2.1) we have ` = 1, and y2, y4, y6, . . . are negative, while y3, y5, y7, . . . are
positive. However, (A4), the choice σ = (−1)n+1, and the fact that y1 > 0 do not
allow this case to happen. See Theorem 3.4 below.



8 H. ŠAMAJOVÁ, E. ŠPÁNIKOVÁ, J. G. DIX EJDE-2013/271

Case 1p2p3p: z1(t) > 0, y2(t) > 0 y3(t) > 0 for all t ≥ t2, and no restriction on
y4, y5, . . . . Then ` ≥ 3 in Lemma 2.1. By (2.3)

z1(t) ≥ I`−1

(
s, h(s); p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn; |σf(y1(h))|

))
≥ I`−1

(
s, h(s); p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn;Myβ1 (h)

)) (3.11)

for all s ≤ t. Since z1(t) is positive, so is y1(t)− a(t)y1(g(t)). Using the inequality
z

1/β
1 (t) = y1(t) − a(t)y1(g(t)) < y1(t), we have z1(t) < yβ1 (t). Using that z1 is

non-decreasing, in (3.11), we have

z1(t) ≥ z1(h(s))I`−1

(
s, h(s); p1, . . . , p`−1; Jn+1−`

(
x`, t; p`, . . . , pn;M

))
.

Since s < h(s) we can set t = h(s). Dividing by z1(t) we have a contradiction to
(3.9). Therefore, this case can not happen.

Case 1p2p3n: z1(t) > 0, y2(t) > 0, y3(t) < 0 for all t ≥ t2, and no restriction on
y4, y5, . . . . Using (2.1) for y2, we obtain

y2(s) ≥ Jn−1(s, t; p2, . . . , pn; |σf(y1(h))|) ≥ Jn−1(s, t; p2, . . . , pn; y1(h)M) .

Using that z1(t) and y1(t) − a(t)y1(g(t)) are positive, we have the inequalities
(z1(t))1/β = y1(t) − a(t)y1(g(t)) < y1(t) and z1(t) < yβ1 (t). Using that z1 is non-
decreasing we have

y2(s) ≥ z1(h(s))Jn−1

(
s, t; p2, . . . , pn;M)

)
∀s ≤ t ;

therefore,
y2(s) ≥ z1(h(s))Jn−1

(
s,∞; p2, . . . , pn;M)

)
.

Multiplying by p1(s) in both sides, we note that z1 is a positive solution of the
differential inequality

z′1(s)− z1(h(s))Jn−1

(
s,∞; p2, . . . , pn;M

)
≥ 0 .

Since s < h(s), we have one of the conditions needed for applying Lemma 2.5. The
other condition is

lim inf
s→∞

∫ h(s)

s

p1(x2)Jn−1

(
x2,∞; p2, . . . , pn;M

)
dx2 >

1
e
,

which is provided by (3.10). The fact that z1 is positive and is a solution of the
differential inequality contradicts Lemma 2.5. Therefore, this case can not happen.
The proof is complete. �

Next we remove the condition σ = (−1)n in Theorem 3.3, but we need to restrict
the coefficient pn.

Theorem 3.4. Assume (A1)–(A4), (3.7)–(3.8), and that pn is bounded below by a
positive constant. Then every non-oscillatory solution of (1.1) decays to zero; i.e.,
limt→∞ yi(t) = 0 for i = 1, 2, . . . , n.

Proof. Let y1 be a non-oscillatory solution of (1.1), and without loss of generality
assume that y1(t) is positive. The proofs of the various cases are the same as in
Theorem 3.3, except for one case.
Case 1p2n: z1(t) > 0, y2(t) < 0 for all t ≥ t2. Then by (2.1) we have ` = 1. Since
z1(t) is positive, so is y1(t)− a(t)y1(g(t)). The proof of lim inft→∞ y1(t) = 0 is the
same as in Theorem 3.3.
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Next we show that limt→∞ z1(t) = 0. Since z1 is positive and non-increasing,
limt→∞ z1(t) exists. From the inequalities z1/β

1 (t) = y(t)−a(t)y(g(t)) < y1(tk) and
z1(t) < yβ1 , by taking the limit inferior,

0 ≤ lim
t→∞

z
1/β
1 (t) ≤ lim inf

t→∞
y1(t) = 0 .

Next we show that y1 is bounded from above. Suppose that y1 is unbounded,
then there is a sequence {tk} such that limk→∞ y1(tk) = ∞, and y(s) ≤ y(tk) for
all s ≤ tk. In particular for g(tk) < tk, we have y1(g(tk)) ≤ y1(tk), and

z
1/β
1 (tk) = y1(tk)− a(tk)y1(g(tk)) ≥ (1− a∗)y1(g(tk)) > 0 .

In the limit as k → ∞, the left-hand side approaches zero, while the right-hand
side approaches +∞. This contradiction implies y1 being bounded from above.

Next we show that lim supt→∞ y1(t) = 0. Let

α := lim sup
t→∞

y1(t) = lim sup
t→∞

y1(g(t)) ≥ 0,

and let {tk} be a sequence such that limk→∞ y1(tk) = α. Note that limk→∞ z1(tk) =
0, lim supk→∞ a(tk) ≤ a∗ < 1, and

lim sup
k→∞

y1(g(tk)) ≤ lim sup
t→∞

y1(g(t)) = α .

From z1(t) and y(t) − a(t)y(g(t)) being positive, we have y1(tk) = z
1/β
1 (tk) +

a(tk)y(g(tk)), which by taking in the limit superior, yields

α = lim
k→∞

y1(tk) ≤ 0 + a∗ lim sup
k→∞

y1(gtk)) ≤ a∗α .

Since a∗ < 1, the only choice for α is being zero. Therefore, limt→∞ y1(t) = 0. By
Lemma 2.6, limt→∞ yi(t) = 0 for i = 2, 3, . . . , n, which completes the proof. �

Example 3.5. To illustrate Theorem 3.1, we set a(t) = 2, β = 1, f(y) = y,
g(t) = 4t, h(t) = 8t, M = 1, n = 5, p1(t) = t, p2(t) = 3t, p3(t) = 5t, p4(t) = 7t,
p5 = 36t−9, and σ = (−1)5 = −1. Then for t ≥ 1, a solution of (1.1) has the form

y1(t) = 2t−1, z1(t) = y2(t) = −1−3, y3(t) = t−5, y4(t) = −t−7, y5(t) = t−9.

Note that z1(t) = t−1, g−1(h(s)) = 2s and p5(x6)M/aβ(g−1(h(x6))) = 18x−9
6 .

Then ∫ 2s

s

x2

∫ ∞
x2

3x3

∫ ∞
x3

5x4

∫ ∞
x4

7x5

∫ ∞
x5

18x−9
6 dx6 . . . dx2

=
18(1)(3)(5)(7)
(2)(4)(6)(8)

ln(2) > 1/e

which satisfies (3.4). To check (3.3), we compute the expression

Ik−1

(
s, 2s; p1, . . . , pk−1; J6−k

(
xk, 2s; pk, . . . , p5; 1/2

))
which has the following values: 2.00296 for k = 2, 6.17293 for k = 3, 14.8507
for k = 4, and 34.7885 for k = 5. Clearly all the conditions for Theorem 3.1 are
satisfied and the solution decays to zero as t→∞.

We remark that the results in Theorems 3.1–3.4 when the coefficient a(t) crosses,
or approaches, the value 1 remains an open question. On the other hand, Theorems
3.1–3.4 can easily be extended to difference equation and to time scales; see the
extensions indicated in [2].



10 H. ŠAMAJOVÁ, E. ŠPÁNIKOVÁ, J. G. DIX EJDE-2013/271

Acknowledgments. The first two authors gratefully acknowledge the Scientific
Grant Agency (VEGA) of the Ministry of Education of Slovak Republic and the
Slovak Academy of Sciences for supporting this work under Grant No. 1/1245/12.

References

[1] L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation Theory for Functional Differential Equations,

Marcel Dekker, New York, Basel, Hong Kong, 1995.

[2] J. G. Dix; Oscillation of solutions to a neutral differential equation involving an n-order
operator with variable coefficients and a forcing term Differ. Equ. Dynamic Systems DOI

10.1007/s12591-013-0160-z.
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Department of Applied Mathematics, Faculty of Mechanical Engineering, University
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