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IMPULSIVE NEUTRAL FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE
DEPENDENT DELAYS AND INTEGRAL CONDITION

JAYDEV DABAS, GANGA RAM GAUTAM

Abstract. In this article, we establish the existence of a solution for an im-

pulsive neutral fractional integro-differential state dependent delay equation

subject to an integral boundary condition. The existence results are proved
by applying the classical fixed point theorems. An example is presented to

demonstrate the application of the results established.

1. Introduction

Let X be a Banach space and PCt := PC([−d, t];X), d > 0, 0 ≤ t ≤ T < ∞,
be a Banach space of all such functions φ : [−d, t] → X, which are continuous
everywhere except for a finite number of points ti, i = 1, 2, . . . ,m, at which φ(t+i )
and φ(t−i ) exists and φ(ti) = φ(t−i ), endowed with the norm

‖φ‖t = sup
−d≤s≤t

‖φ(s)‖X , φ ∈ PCt,

where ‖ · ‖X is the norm in X.
In this article we study an impulsive neutral fractional integro-differential equa-

tion of the form

Dα
t

[
x(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

]
= f(t, xρ(t,xt), B(x)(t)), t ∈ J = [0, T ], T <∞, t 6= tk,

(1.1)

∆x(tk) = Ik(x(t−k )), ∆x′(tk) = Qk(x(t−k )), k = 1, 2, . . . ,m, (1.2)

x(t) = φ(t), t ∈ [−d, 0], (1.3)

ax′(0) + bx′(T ) =
∫ T

0

q(x(s))ds, a+ b 6= 0, b 6= 0, (1.4)

where x′ denotes the derivative of x with respect to t and Dα
t , α ∈ (1, 2) is Caputo’s

derivative. The functions f : J × PC0 × X → X, g : J × PC0 → X, and q :
X → X are given continuous functions where PC0 = PC([−d, 0], X) and for any
x ∈ PCT = PC([−d, T ], X), t ∈ J , we denote by xt the element of PC0 defined by
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xt(θ) = x(t + θ), θ ∈ [−d, 0]. In the impulsive conditions for 0 = t0 < t1 < · · · <
tm < tm+1 = T , Qk, Ik ∈ C(X,X), (k = 1, 2, . . . ,m), are continuous and bounded
functions. We have ∆x(tk) = x(t+k ) − x(t−k ) and ∆x′(tk) = x′(t+k ) − x′(t−k ). The
term Bx(t) is given by

Bx(t) =
∫ t

0

K(t, s)x(s)ds, (1.5)

where K ∈ C(D,R+), is the set of all positive functions which are continuous on
D = {(t, s) ∈ R2 : 0 ≤ s ≤ t < T} and B∗ = supt∈[0,t]

∫ t
0
K(t, s)ds <∞.

The study of fractional differential equations has been gaining importance in
recent years due to the fact that fractional order derivatives provide a tool for
the description of memory and hereditary properties of various phenomena. Due to
this fact, the fractional order models are capable to describe more realistic situation
than the integer order models. Fractional differential equations have been used in
many field like fractals, chaos, electrical engineering, medical science, etc. In recent
years, we have seen considerable development on the topics of fractional differential
equations, for instance, we refer to the articles [8, 10, 26, 27].

The theory of impulsive differential equations of integer order is well developed
and has applications in mathematical modelling, especially in dynamics of popu-
lations subject to abrupt changes as well as other phenomena such as harvesting,
disease, and so forth. For general theory and applications of fractional order dif-
ferential equations with impulsive conditions, we refer the reader to the references
[1, 7, 11, 17, 21, 22, 28, 29, 30].

Integral boundary conditions have various applications in applied fields such as
blood flow problems, chemical engineering, thermoelasticity, underground water
flow, population dynamics, etc. For a detailed description of the integral boundary
conditions, we refer the reader to some recent papers [4, 5, 6, 13, 16, 17] and the
references therein. On the other hand, we know that the delay arises naturally in
systems due to the transmission of signal or the mechanical transmission. More-
over, the study of fractional order problems involving various types of delay (finite,
infinite and state dependant) considered in Banach spaces has been receiving at-
tention, see [2, 3, 8, 12, 14, 15, 18, 19, 20, 23, 24, 25] and references cited in these
articles.

In [17] authors have established the existence and uniqueness of a solution for
the following system

Dα
t x(t) = f(t, xt, Bx(t)), t ∈ J = [0, T ], t 6= tk,

∆x(tk) = Qk(x(t−k )), k = 1, 2, . . . ,m,

∆x′(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0],

ax′(0) + bx′(T ) =
∫ T

0

q(x(s))ds,

(1.6)

the results are proved by using the contraction and Krasnoselkii’s fixed point the-
orems. This paper is motivated from some recent papers treating the boundary
value problems for impulsive fractional differential equations [4, 5, 13, 17, 30].

To the best of our knowledge, there is no work available in literature on impul-
sive neutral fractional integro-differential equation with state dependent delay and
with an integral boundary condition. In this article, we first establish a general
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framework to find a solution to system (1.1)–(1.4) and then by using classical fixed
point theorems we proved the existence and uniqueness results.

2. Preliminaries

In this section, we shall introduce notations, definitions, preliminary results
which are required to establish our main results. We continue to use the func-
tion spaces introduced in the earlier section. For the following definitions we refer
to the reader to see the monograph of Podlunby [27].

Definition 2.1. Caputo’s derivative of order α for a function f : [0,∞) → R is
defined as

Dα
t f(t) =

1
Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds = Jn−αf (n)(t), (2.1)

for n− 1 ≤ α < n, n ∈ N . If 0 ≤ α < 1, then

Dα
t f(t) =

1
Γ(1− α)

∫ t

0

(t− s)−αf (1)(s)ds. (2.2)

Definition 2.2. The Riemann-Liouville fractional integral operator for order α >
0, of a function f : R+ → R and f ∈ L1(R+, X) is defined by

J0
t f(t) = f(t), Jαt f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0, t > 0, (2.3)

where Γ(·) is the Euler gamma function.

Lemma 2.3 ( [30]). For α > 0, the general solution of fractional differential equa-
tions Dα

t x(t) = 0 is given by x(t) = c0 + c1t + c2t
2 + c3t

3 + · · · + cn−1t
n−1 where

ci ∈ R, i = 0, 1, . . . , n− 1, n = [α] + 1 and [α] represent the integral part of the real
number α.

Lemma 2.4 ([21, Lemma 2.6]). Let α ∈ (1, 2), c ∈ R and h : J → R be continuous
function. A function x ∈ C(J,R) is a solution of the following fractional integral
equation

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds−

∫ w

0

(w − s)α−1

Γ(α)
h(s)ds+ x0 − c(t− w), (2.4)

if and only if x is a solution of the following fractional Cauchy problem

Dα
t x(t) = h(t), t ∈ J, x(w) = x0, w ≥ 0. (2.5)

As a consequence of Lemma 2.3 and Lemma 2.4 we have the following result.

Lemma 2.5. Let α ∈ (1, 2) and f : J×PC0×X → X be continuously differentiable
function. A piecewise continuous differential function x(t) : (−d, T ] → X is a
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solution of system (1.1)–(1.4) if and only if x satisfied the integral equation

x(t) =



φ(t), t ∈ [−d, 0],

φ(0)−
∫ t

0
(t−s)α−1

Γ(α) g(s, xρ(s,xs))ds+ bt
a+b

{
1
b

∫ T
0
q(x(s))ds

−
∑k
i=1Qi(x(t−i )) +

∫ T
0

(T−s)α−2

Γ(α−1) g(s, xρ(s,xs))ds

−
∫ T

0
(T−s)α−2

Γ(α−1) f(s, xρ(s,xs), B(x)(s))ds
}

+
∫ t

0
(t−s)α−1

Γ(α) f(s, xρ(s,xs), B(x)(s))ds, t ∈ [0, t1],

. . .

φ(0) +
∑k
i=1 Ii(x(t−i )) +

∑k
i=1(t− ti)Qi(x(t−i ))

−
∫ t

0
(t−s)α−1

Γ(α) g(s, xρ(s,xs))ds+ bt
a+b

{
1
b

∫ T
0
q(x(s))ds

−
∑k
i=1Qi(x(t−i )) +

∫ T
0

(T−s)α−2

Γ(α−1) g(s, xρ(s,xs))ds

−
∫ T

0
(T−s)α−2

Γ(α−1) f(s, xρ(s,xs), B(x)(s))ds
}

+
∫ t

0
(t−s)α−1

Γ(α) f(s, xρ(s,xs), B(x)(s))ds, t ∈ (tk, tk+1].

(2.6)

Proof. If t ∈ [0, t1], then

Dα
t [x(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds] = f(t, xρ(t,xt), B(x)(t)),

x(t) = φ(t), t ∈ [−d, 0].
(2.7)

Taking the Riemann-Liouville fractional integral of (2.7) and using the Lemma 2.4,
we have

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= a0 + b0t+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds,

(2.8)

using the initial condition, we get a0 = φ(0), then (2.8) becomes

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.9)

Similarly, if t ∈ (t1, t2], then

Dα
t [x(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds] = f(t, xρ(t,xt), B(x)(t)) (2.10)

x(t+1 ) = x(t−1 ) + I1(x(t−1 )), (2.11)

x′(t+1 ) = x′(t−1 ) +Q1(x(t−1 )). (2.12)

Again apply the Riemann-Liouville fractional integral operator on (2.10) and using
the lemma 2.4, we obtain

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= a1 + b1t+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds,

(2.13)
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rewrite (2.13) as

x(t+1 ) +
∫ t1

0

(t1 − s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= a1 + b1t1 +
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds,

(2.14)

due to impulsive condition (2.11) and the fact that x(t1) = x(t−1 ), we may write
(2.14) as

x(t1) + I1(x(t−1 )) +
∫ t1

0

(t1 − s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= a1 + b1t1 +
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.15)

Now from (2.9), we have

x(t1) +
∫ t1

0

(t1 − s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t1 +
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.16)

From (2.15) and (2.16), we get a1 = φ(0) + b0t1− b1t1 + I1(x(t−1 )), hence (2.14) can
be written as

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t1 + b1(t− t1) + I1(x(t−1 )) +
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.17)
On differentiating (2.13) with respect to t at t = t1, and incorporate second impul-
sive condition (2.12), we obtain

x′(t−1 ) +Q1(x(t−1 )) +
∫ t1

0

(t− s)α−2

Γ(α− 1)
g(s, xρ(s,xs))ds

= b1 +
∫ t1

0

(t1 − s)α−2

Γ(α− 1)
f(s, xρ(s,xs), B(x)(s))ds,

(2.18)

Now differentiating (2.9), with respect to t at t = t1, we get

x′(t1) +
∫ t1

0

(t1 − s)α−2

Γ(α− 1)
g(s, xρ(s,xs))ds

= b0 +
∫ t1

0

(t1 − s)α−2

Γ(α− 1)
f(s, xρ(s,xs), B(x)(s))ds.

(2.19)

From (2.18) and (2.19), we obtain b1 = b0 +Q1(x(t−1 )). Thus, (2.17) become

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t+ I1(x(t−1 )) + (t− t1)Q1(x(t−1 ))

+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.20)
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Similarly, for t ∈ (t2, t3], we can write the solution of the problem as

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t+ I1(x(t−1 )) + I2(x(t−2 )) + (t− t1)Q1(x(t−1 )) + (t− t2)Q2(x(t−2 ))

+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

In general, if t ∈ (tk, tk+1], then we have the result

x(t) +
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

= φ(0) + b0t+
k∑
i=1

Ii(x(t−i )) +
k∑
i=1

(t− ti)Qi(x(t−i ))

+
∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(2.21)

Finally, we use the integral boundary condition ax′(0) + bx′(T ) =
∫ T

0
q(x(s))ds,

where x′(0) calculated from (2.9) and x′(T ) from (2.20). On simplifying, we get
the following value of the constant b0,

b0 =
b

a+ b

{1
b

∫ T

0

q(x(s))ds−
m∑
i=1

Qi(x(t−i )) +
∫ T

0

(T − s)α−2

Γ(α− 1)
g(s, xρ(s,xs))ds

−
∫ T

0

(T − s)α−2

Γ(α− 1)
f(s, xρ(s,xs), B(x)(s))ds

}
.

On summarizing, we obtain the desired integral equation (2.6). Conversely, assum-
ing that x satisfies (2.6), by a direct computation, it follows that the solution given
in (2.6) satisfies system (1.1)–(1.4). This completes the proof of the lemma. �

3. Existence result

The function ρ : J × PC0 → [−d, T ] is continuous and φ(0) ∈ PC0. Let the
function t→ ϕt be well defined and continuous from the set <(ρ−) = {ρ(s, ψ) :
(s, ψ) ∈ [0, T ] × PC0} into PC0. Further, we introduce the following assumptions
to establish our results.

(H1) There exist positive constants Lf1, Lf2, Lq and Lg, such that

‖f(t, ψ, x)− f(t, χ, y)‖X ≤ Lf1‖ψ − χ‖PC0 + Lf2‖x− y‖X ,
‖g(t, ψ)− g(t, χ)‖X ≤ Lg‖ψ − χ‖PC0 , t ∈ J, ∀ ψ, χ ∈ PC0, ∀ x, y ∈ X,

‖q(x)− q(y)‖X ≤ Lq‖x− y‖X , ∀x, y ∈ X.

(H2) There exist positive constants LQ, LI , Lq, such that

‖Qk(x)−Qk(y)‖X ≤ LQ‖x− y‖X , ‖Ik(x)− Ik(y)‖X ≤ LI‖x− y‖X .

(H3) The functions Qk, Ik, q are bounded continuous and there exist positive
constants C1, C2, C3, such that

‖Qk(x)‖X ≤ C1, ‖Ik(x)‖X ≤ C2, ‖q(x)‖X ≤ C3, ∀x ∈ X.

Our first result is based on the Banach contraction theorem.
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Theorem 3.1. Let the assumptions (H1)–(H2) are satisfied with

4 =
{
m(LI + TLQ) +

TαLg
Γ(α+ 1)

+
bT

a+ b

(TLq
b

+mLQ

+
Tα−1Lg

Γ(α)
+
Tα−1(Lf1 + Lf2B

∗)
Γ(α)

)
+
Tα(Lf1 + Lf2B

∗)
Γ(α+ 1)

}
< 1.

Then (1.1)–(1.4) has a unique solution.

Proof. We transform problem (1.1)–(1.4) into a fixed point problem. Consider the
operator P : PCT → PCT defined by

Px(t) =



φ(t), t ∈ [−d, 0],

φ(0)−
∫ t

0
(t−s)α−1

Γ(α) g(s, xρ(s,xs))ds+ bt
a+b

{
1
b

∫ T
0
q(x(s))ds

−
∑m
i=1Qi(x(t−i )) +

∫ T
0

(T−s)α−2

Γ(α−1) g(s, xρ(s,xs))ds

−
∫ T

0
(T−s)α−2

Γ(α−1) f(s, xρ(s,xs), B(x)(s))ds
}

+
∫ t

0
(t−s)α−1

Γ(α) f(s, xρ(s,xs), B(x)(s))ds, t ∈ [0, t1]

. . .

φ(0) +
∑k
i=1 Ii(x(t−i )) +

∑k
i=1(t− ti)Qi(x(t−i ))

−
∫ t

0
(t−s)α−1

Γ(α) g(s, xρ(s,xs))ds+ bt
a+b

{
1
b

∫ T
0
q(x(s))ds−

∑m
i=1Qi(x(t−i ))

+
∫ T

0
(T−s)α−2

Γ(α−1) g(s, xρ(s,xs))ds−
∫ T

0
(T−s)α−2

Γ(α−1) f(s, xρ(s,xs), B(x)(s))ds
}

+
∫ t

0
(t−s)α−1

Γ(α) f(s, xρ(s,xs), B(x)(s))ds, t ∈ (tk, tk+1].

Let x, x∗ ∈ PCT and t ∈ [0, t1]. Then

‖P (x)− P (x∗)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

+
bt

a+ b

{1
b

∫ T

0

‖q(x(s))− q(x∗(s))‖Xds+
m∑
i=1

‖Qi(x(t−i ))−Qi(x∗(t−i ))‖X

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

}
+
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

≤
{ Tα

Γ(α+ 1)
Lg +

bT

a+ b

(T
b
Lq +mLQ +

Tα−1

Γ(α)
Lg

+
Tα−1

Γ(α)
(Lf1 + Lf2B

∗)
)

+
Tα

Γ(α+ 1)
(Lf1 + Lf2B

∗)
}
‖x− x∗‖PCT .

In a similar way for t ∈ (tk, tk+1], we have

‖P (x)− P (x∗)‖X
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≤
k∑
i=1

‖Ii(x(t−i ))− Ii(x∗(t−i ))‖X +
k∑
i=1

(t− ti)‖Qi(x(t−i ))−Qi(x∗(t−i ))‖X

×
∫ t

0

(t− s)α−1

Γ(α)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

+
bt

a+ b

{1
b

∫ T

0

‖q(x(s))− q(x∗(s))‖Xds+
m∑
i=1

‖Qi(x(t−i ))−Qi(x∗(t−i ))‖X

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

}
+
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

≤
{
mLI +mTLQ +

Tα

Γ(α+ 1)
Lg +

bT

a+ b

(T
b
Lq +mLQ +

Tα−1

Γ(α)
Lg

+
Tα−1

Γ(α)
(Lf1 + Lf2B

∗)
)

+
Tα

Γ(α+ 1)
(Lf1 + Lf2B

∗)
}
‖x− x∗‖PCT

≤ ∆‖x− x∗‖PCT .

Since ∆ < 1, implies that the map P is a contraction map and therefore has a
unique fixed point x ∈ PCT , hence system (1.1)–(1.4) has a unique solution on the
interval [−d, T ]. This completes the proof of the theorem. �

Our second result is based on Krasnoselkii’s fixed point theorem.

Theorem 3.2. Let B be a closed convex and nonempty subset of a Banach space
X. Let P and Q be two operators such that

(i) Px+Qy ∈ B, whenever x, y ∈ B. (ii) P is compact and continuous.
(iii) Q is a contraction mapping. Then there exists z ∈ B such that z = Pz+Qz.

Theorem 3.3. Let the function f, g be continuous for every t ∈ [0, T ], and satisfy
the assumptions (H1)–(H3) with

∆ =
{ Tα

Γ(α+ 1)
Lg +

bT

a+ b

(T
b
Lq +

Tα−1

Γ(α)
Lg +

Tα−1

Γ(α)
(Lf1 + Lf2B

∗)
)

+
Tα

Γ(α+ 1)
(Lf1 + Lf2B

∗)
}
< 1.

Then system (1.1)–(1.4) has at least one solution on [−d, T ].

Proof. Choose

r ≥
[
‖φ(0)‖+mLIr +mTLQr +

Tα

Γ(α+ 1)
Lgr +

bT

a+ b
(
T

b
Lqr +mLQr

+
Tα−1

Γ(α)
Lgr +

Tα−1

Γ(α)
(Lf1r + Lf2B

∗r)) +
Tα

Γ(α+ 1)
(Lf1r + Lf2B

∗r)
]
.

Define PCrT = {x ∈ PCT : ‖x‖PCT ≤ r}, then PCrT is a bounded, closed convex
subset in PCT . Consider the operators N : PCrT → PCrT and P : PCrT → PCrT for
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t ∈ Jk = (tk, tk+1], defined by

N(x) = φ(0) +
k∑
i=1

Ii(x(t−i )) +
k∑
i=1

(t− ti)Qi(x(t−i ))− bt

a+ b

m∑
i=1

Qi(x(t−i )) (3.1)

P (x) =
bt

a+ b

{1
b

∫ T

0

q(x(s))ds+
∫ T

0

(T − s)α−2

Γ(α− 1)
g(s, xρ(s,xs))ds

−
∫ T

0

(T − s)α−2

Γ(α− 1)
f(s, xρ(s,xs), B(x)(s))ds

}
−
∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, xρ(s,xs), B(x)(s))ds.

(3.2)

We complete the proof in the following steps:
Step 1. Let x, x∗ ∈ PCrT then,

‖N(x) + P (x∗)‖X ≤ ‖φ(0)‖X +
k∑
i=1

‖Ii(x(t−i ))‖X +
k∑
i=1

(t− ti)‖Qi(x(t−i ))‖X

+
bt

a+ b

m∑
i=1

‖Qi(x(t−i ))‖X +
bt

a+ b

{1
b

∫ T

0

‖q(x∗(s))‖Xds

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖g(s, x∗ρ(s,x∗s))‖Xds

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

}
+
∫ t

0

(t− s)α−1

Γ(α)
‖g(s, x∗ρ(s,x∗s))‖Xds

+
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

≤
[
‖φ(0)‖+mC2 +mTC1 +

Tα

Γ(α+ 1)
Lgr +

bT

a+ b
(
T

b
C3

+mC1 +
Tα−1

Γ(α)
Lgr +

Tα−1

Γ(α)
(Lf1r + Lf2B

∗r))

+
Tα

Γ(α+ 1)
(Lf1r + Lf2B

∗r)
]
≤ r.

Which shows that PCrT is closed with respect to both the maps.
Step 2. N is continuous. Let xn → x be sequence in PCrT , then for each t ∈ Jk
‖N(xn)−N(x)‖X

≤
k∑
i=1

‖Ii(xn(t−i ))− Ii(x(t−i ))‖X +
k∑
i=1

(t− ti)‖Qi(xn(t−i ))−Qi(x(t−i ))‖X

+
bt

a+ b

m∑
i=1

‖Qi(xn(t−i ))−Qi(x(t−i ))‖X .

Since the functions Qk and Ik, k = 1, . . . ,m, are continuous, hence ‖N(xn) −
N(x)‖ → 0, as n→∞. Which implies that the mapping N is continuous on PCrT .
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Step 3. The fact that the mapping N is uniformly bounded is a consequence of
the following inequality. For each t ∈ Jk, k = 0, 1, . . . ,m and for each x ∈ PCrT , we
have

‖N(x)‖X ≤ ‖φ(0)‖X +
k∑
i=1

‖Ii(x(t−i ))‖X +
k∑
i=1

(t− ti)‖Qi(x(t−i ))‖X

+
bt

a+ b

m∑
i=1

‖Qi(x(t−i ))‖X

≤ ‖φ(0)‖+mC2 +mTC1 +
bT

a+ b
mC1.

Step 4. Now, to show that N is equi-continuous, let l1, l2 ∈ Jk, tk ≤ l1 < l2 ≤ tk+1,
k = 1, . . . ,m, x ∈ PCrT , we have

‖N(x)(l2)−N(x)(l1)‖X ≤ (l2− l1)
k∑
i=1

‖Qi(x(t−i ))‖X +
b(l2 − l1)
a+ b

m∑
i=1

‖Qi(x(t−i ))‖X .

As l2 → l1, then ‖N(x)(l2) −N(x)(l1)‖ → 0 implies that N is an equi-continuous
map. Combining the Steps 2 to 4, together with the Arzela Ascoli’s theorem, we
conclude that the operator N is compact.
Step 5. Now, we show that P is a contraction mapping. Let x, x∗ ∈ PCrT and
t ∈ Jk, k = 1, . . . ,m, we have

‖P (x)− P (x∗)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

+
bt

a+ b

{1
b

∫ T

0

‖q(x(s))− q(x∗(s))‖Xds

+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖g(s, xρ(s,xs))− g(s, x∗ρ(s,x∗s))‖Xds

.+
∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

}
+
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, xρ(s,xs), B(x)(s))− f(s, x∗ρ(s,x∗s), B(x∗)(s))‖Xds

≤
{ Tα

Γ(α+ 1)
Lg +

bT

a+ b

(T
b
Lq +

Tα−1

Γ(α)
Lg

+
Tα−1

Γ(α)
(Lf1 + Lf2B

∗)
)

+
Tα

Γ(α+ 1)
(Lf1 + Lf2B

∗)
}
‖x− x∗‖PCrT

≤ ∆‖x− x∗‖PCrT

As ∆ < 1, it implies that P is a contraction map. Thus all the assumptions of the
Krasnoselkii’s theorem are satisfied. Hence we have that the set PCrT has a fixed
point which is the solution of system (1.1)–(1.4) on (−d, T ]. This completes the
proof of the theorem. �
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4. Example

Consider the following example to demonstrate the application of the results
established.

Dα
t [x(t) +

∫ t

0

1
47
x(t− σ(x)ds] =

etx(t− σ(x(t)))
25 + x2(t− σ(x(t)))

+
∫ t

0

cos(t− s) xes

4 + x
ds,

t ∈ [0, T ], t 6= ti,

∆x(ti) =
∫ ti

−d

γi(ti − s)x(s)
25

ds, ∆x′(ti) =
∫ ti

−d

γi(ti − s)x(s)
9

ds,

x(t) = φ(t), t ∈ (−d, 0], x′(0) + x′(T ) =
∫ T

0

sin(
1
4
x(s))ds,

where γi ∈ C([0,∞), X), σ ∈ C(X, [0,∞)), 0 < t1 < t2 < · · · < tn < T . Set γ > 0,
and choose PCγ as

PCγ = {φ ∈ PC((0,∞], X) : lim
t→−d

eγtφ(t) exist}

with the norm ‖φ‖γ = supt∈(0,∞] e
γt|φ(t)|, φ ∈ PCγ . We set

ρ(t, ϕ) = t− σ(ϕ(0)), (t, ϕ) ∈ J × PCγ ,

f(t, ϕ) =
et(ϕ)

25 + (ϕ)2
, (t, ϕ) ∈ J × PCγ ,

g(t, ϕ) =
ϕ

47
ds, ϕ ∈ PCγ ,

B(x)(t) =
∫ t

0

cos(t− s) xes

(4 + x)
ds, (t, x) ∈ I × PCγ ,

Qk(x(tk)) =
∫ ti

−d

γi(ti − s)x(s)
25

ds,

Ik(x(tk)) =
∫ ti

−d

γi(ti − s)x(s)
9

ds.

We can see that all the assumptions of Theorem 3.1 are satisfied with

|f(t, ϕ)− f(t, χ)| ≤ et ‖ϕ− χ‖
25

∀t ∈ J, ϕ, χ ∈ PCγ ,

|B(x)−B(y)| ≤ et ‖x− y‖
4

∀t ∈ J, x, y ∈ PCγ ,

|g(t, ϕ)− g(t, χ)| ≤ 1
47
‖ϕ− χ‖, ∀t ∈ J, ϕ, χ ∈ PCγ ,

|Qk(x(tk))−Qk(y(tk))| ≤ γ∗ 1
25
‖x− y‖, x, y ∈ X,

|Ik(x(tk))− Ik(y(tk))| ≤ γ∗ 1
9
‖x− y‖, x, y ∈ X,

|q(x)− q(y)| ≤ 1
4
‖x− y‖, x, y ∈ X.

Further, we observe that{
mLI +mTLQ +

Tα

Γ(α+ 1)
Lg +

bT

a+ b

(T
b
Lq +mLQ +

Tα−1

Γ(α)
Lg
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+
Tα−1

Γ(α)
(Lf1 + Lf2B

∗)
)

+
Tα

Γ(α+ 1)
(Lf1 + Lf2B

∗)
}

≈ 0.513γ∗ + 0.534 < 1.

We fix γ∗ =
∫ t
−d γi(ti − s)ds < 0, 0 < t1 < t2 < t3 < 1, α = 3/2, T = 1. This

implies that there exists a unique solution of the considered problem in this section.
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