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ABSTRACT. We study the solvability of the boundary value problem
(¢P(m/))l = f(tvx7m/)7 z(0) = 4, xl(l) =B,
where ¢p,(s) = s|s|P~2, using the barrier strip type arguments. We establish

the existence of C?2[0, 1]-solutions, restricting our considerations to p € (1,2].
The existence of positive monotone solutions is also considered.

1. INTRODUCTION

In this article, we study the existence of C?-solutions to the boundary-value
problem (BVP)

(¢P(z/))/ = f(t,l',l’/), le (Oa 1)7
x( A, 2'/(1)=B, B>0

0) =
where ¢,(s) = s[s|P72, p € (1,2], and the scalar function f(¢,z,y) is defined for
(t,z,y) € [0,1] x Dy x Dy, D, D, C R, and continuous on a suitable subset of its
domain.

Various boundary-value problems for have been studied in the general case
p > 1, and the obtained results guarantee C'-solutions.

Guo and Tian [4] discussed the existence of positive solutions of the differential
equation ¢,(2'))" + q(t)f(t,z) = 0, t € (0,1), satisfying either z(0) = 2’(1) = 0 or
z(0) = 2(1) =0, where p > 1, f:[0,1] x [0,00) — [-M,00) and ¢ : (0,1) — [0,00)
are continuous.

The solvability of BVPs for the equation

—(8(a")" = q(=’ () f(t, x(t), 2" (1)),

with nonlinear functional boundary conditions, and for the equation

((b(x,))l = f(t7$<t)7 .’L‘(T(t)),x/(t)),

(1.1)
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with homogeneous Neumann boundary conditions, has been studied in Cabada and
Pouso [2] and Liu [6], respectively. In these works ¢ : R — R is an increasing home-
omorphism, and f is a Carathéodory function; in [2], the right side is discontinuous
in the z’ argument.

Much attention has been paid to singular problems with p-Laplacian. Lii and
Zhong [7] consider the BVP

(")) + f(t,2(t) =0, te(0,1),

2(0)=2z(1)=0 (1.2)

where ¢,(s) = s|s|P72, p > 1, and f: C((0,1) x [0,00),[0,00)) may be singular at
the ends of the interval. Similar problems, singular not only at t = 0 and ¢t = 1
but also at & = 0, are studied in Agarwal et al [I] and Jiang et al [5]; the main
nonlinearity in [B] depends on 2.

Stanék [§] showed that the equation

(¢(z")) + pf(t,x,2’) =0, te(0,T), (1.3)
where the parameter p is positive, has a solution satisfying boundary conditions
of the form (1.2). Here ¢ € C(R) is an odd and increasing function, and f €
C(]0,T] x (0,00) x (R\ {0})) is singular at = = 0. Stanék [9] study the solvability
of a BVP for (1.3) (in the case u < 0) with the boundary conditions

z(0) —az’(0) = A, z(T)+ B2 (0) +~2'(T)=A, a,A>0, 3,7>0.

Now ¢ : R — R is an increasing and odd homeomorphism, and f(t,z,y) satisfies
the Carathéodory conditions on [0,7] x D, D = (0,(1 + 8/a)A] x (R\ {0}), is
singular at * = 0 and may be singular at y = 0.

Note that in the most of the cited papers, the obtained results guarantee positive
solutions. As a rule, they are established under the assumption that the consid-
ered problems admit lower and upper solutions or that growth type conditions are
satisfied.

To prove our existence result, we use the Topological transversality theorem [3].
For its application, the needed a priori bounds follow from the assumption:

(R1) There are constants L;, F;,i = 1,2, and a sufficiently small ¢ > 0 such that
Fi>0, Ly—o>L >B>F >F+o,
[A—0o, L+0]CD,, [F L) CD,,
where L = Ly + A,
f@t,z,y) € C([0,1] x [A—0,L+ 0] x [Fy —0,L1 +0]),

ft,z,y) >0 for (¢t,x,y) € [0,1] x Dy X [L1, La], nonumber (1.4)
ft,z,y) <0 for (t,z,y) € [0,1] x Dy x [Fa, Fi] (1.5)

where Dy = (—o0, L] N D,.

Let us recall that the strips [0, 1] x [L1, Lo] and [0, 1] x [Fy, Fy] are called barrier
strips since they keep the values of 2’ between themselves.

2. FIXED POINT THEOREM

The proofs of the following theorems can be found in Granas et al [3]. To state
them, we need standard topological notions.
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Let Y be a convex subset of a Banach space E and U C Y be open in Y. Let
Loy (U,Y) be the set of compact maps from U to Y which are fixed point free on
OU;; here, as usual, U and OU are the closure of U and boundary of U in Y.

A map F in Loy (U,Y) is essential if every map G in Loy (U,Y) such that
G/0U = F/OU has a fixed point in U. It is clear, in particular, every essential map
has a fixed point in U.

Theorem 2.1 (Topological transversality theorem). Let Y be a convex subset of a
Banach space E and U CY be open. Suppose:

(i) F,G:U —Y are compact maps.
(ii) G € Loy(U,Y) is essential.
(i) H(z,\), X €[0,1], is a compact homotopy joining F and G; i.e., H(z,1) =
F(z) and H(x,0) = G(x).
(iv) H(xz,A),\ €[0,1], is fixred point free on OU.
Then H(xz,\), A € [0,1], has at least one fized point in U and in particular there is
a xg € U such that xo = F(x0).

Theorem 2.2. Letl € U be fized and F € Loy (U,Y) be the constant map F(z) =1
for x € U. Then F is essential.

3. AUXILIARY RESULTS
For X € [0,1] consider the family of BVPs
(pp(z") = Nf(t,z,2"), te(0,1),
z(0)=A, 2'(1) =B,
where f:[0,1] x D, x D, — R, D,,D, C R. Since
Gp(s) = sl = {( o oz

—s)P71 s <0,

we obtain

/S: o p—2 __ (p 1) SZO
#(5) = (p— Dl {(p Do e

agldf(qbp(x'(t)))’ = (p— )|z’ (t)|P~2a"(t), if 2 (t) exists. So, we can write in
the form

(p - 1)|x/(t)|p_ .%‘”(t) = )\/f(t,.%‘,.%'/), te (07 1)’ (3.2)
z(0)=A, 2'(1) =B,

Our first auxiliary result gives a priori bounds for the C?[0, 1]-solutions of the
family (3.1) (as well as of (3.2)).

Lemma 3.1. Let (R1) hold and x € C?[0,1] be a solution to family (3.1)) for each
fized p € (1,2]. Then

A<z(t)<L, Fy <a'(t) < Ly, m,<z"(t)< M, fortel0,1],

where m, = m(p—1)"'L}", M, = M(p—1)"'L*"?, m = min{f(t,2,9) : (t,2,y) €
[0,1]x[A, L] x [F1, L1]} and M = max{f(t,x,y) : (t,z,y) € [0,1]x[4, L] x[F1, L1]}.
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Proof. Let us assume on the contrary that
2'(t) < Ly forte[0,1] (3.3)
is not true. Then 2/(1) = B < L; and 2’ € C[0, 1] imply that the set
Sy ={te0,1]: L1 <2'(t) < Lo}
is not empty. Then, there exists an interval [a, 5] C S; with the property
' (o) > 2'(B). (3.4)
This inequality and the continuity of z’(¢) guarantee the existence of a v € [a, (]
such that
z"(y) < 0.
On the other hand, as z(t) is a C2[0, 1]-solution of , we have
(v:2(7),2'(7)) € [0,1] X Dy x Dy

More precisely, (v,z(y),2' (7)) € Sy x D, x (L1, La], which allows to use (R1) to
obtain
0> (p— D' (MIF22"(7) = Af(v,2(7). 2'(7)) 2 0,
a contradiction. Thus is true.
Now, by the mean value theorem, for each ¢t € (0, 1] there exists £ € (0,t) such
that x(t) — z(0) = 2/ (€)t, which yields

z(t) <L forte|0,1].
Next, suppose that the set
S_ = {t € [0, 1] By < x'(t) < Fl}

is not empty. Following the reasoning giving (3.3) and using (1.5)), we reach again
a contradiction from which we conclude that

0< F, <a'(t) fortel0,1],
A<z(t) forte]|0,1].
To establish the bounds for z”(t), we observe that from the assumptions
f(t,z,y) >0 for (t,x,y) € [0,1] x D, x [Ly, Lo]

and [A — o, L + o] C D, we have, in particular,

f(t,z,L1) >0 forte[0,1] x [A, L],
which implies M > 0. Similarly, implies

ft,z, F1) <0 fortel0,1] x [A, L],
from where it follows m < 0.

Further, using 0 < 2/(t) < L1, t € [0,1], and —(p — 2) > 0, we get
0< @) "2 <L7®?  telo1].

Then
1 1

< .
(p=D)('(®)P=2 = (p— 1L~
Now, multiplying both sides of this inequality by AM > 0 and Am < 0, we obtain
respectively

0<

AM LM M
(=D 0P~ (p—-IF? ™ (p—1IF?

=M,, t€]0,1],
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and
Am S Am S m o
P-DEOP? " -y eyt
On the other hand, by the obtained a priori bounds for z(t) and z'(¢), for each
t € [0, 1] we have x(t) € [4, L] and 2/(t) € [F1, L1]. Consequently,
m < f(t,z(t),z'(t)) < M fort e [0,1]

and multiplying by A(p — 1) 72’ (¢)|>7? = A(p — 1)"L1(2/(¢))>7P > 0, A\, t € [0,1], we
reach

t €10,1].

Am < A (t z(t), 2/ (t)) AM
(p=Dlz'@®F=2 = (p= D' ()= = (p = D2’ (t)[7~2

for \,t € [0,1] which combined with the obtained above yields the bounds for

z'(t). 0
Now, we introduce the set C%,[0,1] = {x € C?[0,1] : z(0) = A,2/(1) = B}
and the operator V : C%,[0,1] — CJ0,1], defined by Vz = (¢,(z)) = (p —

1)]2’(t)|P~22"(t), and the operator W : C[0,1] — C%,0, 1], defined by

<Wy><t>=A/ / v)do + ¢p(B))ds,

where ¢4(s) = s|s|772, with p~! + ¢~1 = 1,p € (1,2], is the inverse of the function
Pp(s).

The following lemmas give some useful properties of W.
Lemma 3.2. The operator W is well defined for each p € (1,2].
Proof. Tt is clear that for each y € C[0, 1] the functions

t
h(t) = / y(v)dv + ¢,(B)
1
and h/(t) = y(t) are continuous for ¢ € [0, 1]. Then

(@q(h(t))" = (¢ = VIR (1)

is also continuous for ¢ € [0,1] since ¢ — 2 = 2;7’1’ > 0 for p € (1,2]. Thus,

(Wy)'(t) = (¢q(R(t))) is in C[0,1]. Finally, it is easy to check that

(Wy)(0)=A4, (Wy)'(1) =
which means (Wy)(t) € C%.[0,1]. O
Lemma 3.3. The operator W is continuous for each p € (1,2].

Proof. Let y,,y € C[0,1], n € N, be such that ||y, —y|| — 0 as n — oo. According
to Lemma Wyn, Wy € C%,[0,1]. We have to show that

[(Wyn) (@) = (Wy)(®)lloz 101y = [(Wyn) () = (Wy)(t)lc2(0,1) — 05
Tim [[(Wya) () = (W) )l e,
= lim max |(Wy,) D) — (Wy)D @) =0, i=0,1,2.

n—00 te(0,1]

(3.5)
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In other words, we have to show that the sequences {(Wy,)®} converge uniformly
on [0,1] to (Wy)®, i =0,1,2, respectively. To this end, we see firstly that

fin | mas [(Wyn)"(8) = (Wy)" (t)]

n—o0 te(o,

t

- i s e [ )~ [ i ,5)

=(¢g—1) lim maXH/ Yn(v)dv + ¢, (B) . 2 —‘/ v)dv + ¢p( )‘ 72y(t)‘

n—o0 t€[0,1]

=0

and so {(Wy,,)"},n € N, converges uniformly on [0, 1] to (Wy)”. By the continuity
and the uniform convergence of the functions {(Wy,)"},n € N, it follows that
the sequence {f;(Wyn)”(v)dv},n € N, converges uniformly to fOt(Wy)”(v)dv on
[0,1]. Then, the sequence {(Wy,)'},n € N, converges uniformly to (Wy)’ on [0, 1]
which means that {Wy,},n € N, converges uniformly to Wy on [0,1] and so
holds. O

Lemma 3.4. The operator W is the inverse operator of V.

Proof. 1t is clear, each function z € C%,[0,1] has a unique image Vz € C[0,1].
Also, each function y € C[0, 1] has a unique inverse image z € C%[0, 1] of the form

x(t) = A+/Ot ¢q(/lsy(v)dv+¢p(3))ds’

which is the solution of the BVP

((Z)p(x/))/ = y(t)v te (07 1)a
z(0)=A4, 2'(1)=B.

So, the operator V is one-to-one. Further, to show that W is an invertible map, let
Ve =y;ie., (¢p(2')) =y. Then

W) =Wy=A+ /Ot bq (/13 y(v)dv + ¢p(B))ds
=t ol [ 0o + 0y
=4+ [ 6466 6, (1) + 6y (B)) s
_ A+/Ot 6o (6p(a’ (5)))ds

=A +/0 2'(s)ds = A+ z(t) — z(0) = z(t).

4. MAIN RESULT
We state our existence result as follows.

Theorem 4.1. Let (R1) hold. Then for each p € (1,2], BVP (1.1)) has at least one
solution in C?[0,1].
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Proof. We will prove the assertion for an arbitrary fixed p € (1,2]. At first, prepar-
ing the application of Theorem we introduce the set
U={zeCc0,1]]:A—0c<z<L+oF —0c<a <L +o,
my—o <z"<M,+0}.
According to Lemma [3.1] all C2[0, 1]-solutions of family (3.1) (or (3:2)) are interior
points of U. Next, consider the maps
j:C%500,1] — C*0,1], defined by jx =z,

and
®:CY0,1] — C[0,1], defined by (®x)(t) = f(t,z(t),2'(t))

for t € [0,1] and x(t) € j(U).

Now, using the map W, introduce the homotopy

Hy :U x[0,1] = C3e[0,1],
defined by H(z,\) = Hx(z) = \AW®j(x) + (1 — M), where | = Bt + A is the unique
solution of
(¢p(2))" =0, t€(0,1),
z(0) = A, 2/(1) = B.

Since the map j is completely continuous, ® is continuous because f is continu-
ous, and W is continuous by Lemma the homotopy is compact. For its fixed
points we have

AMWOj(x)+(1-ANl=2x
and
Vo= A0j(x).
The last means that the fixed points of H coincide with the C?[0, 1]-solutions of
(3.1)) which are not in 9U, by Lemma Besides, Hy(x) maps each function x € U
in [; i.e., it is a constant map and so is essential, by Theorem

So, we can apply Theorem It infers that the map H;(z) has a fixed point in
U. Tt is easy to see that it is a C?[0, 1]-solution of the BVPs of families (3.1)) and
(13.2) obtained for A =1 and, what is the same, of (1.1)). O

The next result guarantees important properties of the established solutions.

Theorem 4.2. Let A > 0 (A = 0) and (R1) hold. Then for each p € (1,2] BVP
(L.1)) has at least one positive (nonnegative) increasing solution in C2[0,1].

Proof. By Theorem [4.1] BVP (T.1) has a solution z(t) € C[0, 1] for each p € (1,2]
and by Lemma |3.1]it is such that

x(t)>A and 2/(t)>F;, >0 forte|0,1],
from where the assertion follows immediately. ([
Example 4.3. Consider the BVP
(¢p(2")) = Pu(a), t€(0,1),
z(0)=0, 2'(1)=B, B>0,

where p € (1,2], and the polynomial P, (y),n > 2, has two simple zeros p; and po
such that po > B > p; > 0.



8 P. S. KELEVEDIJIEV, S. A. TERSIAN EJDE-2013/28

Clearly, there is a sufficiently small § > 0 such that
p2—0>B>p +9d, p1—06>0

and P, (y) # 0 for t € (p1 — 6,p1) U (p1,p1 +0) U (p2 — 8,p2) U (p2,p2 +9).

So, in the case P, (y) < 0 for t € (p1 — d,p1) and P,(y) > 0 for t € (pa2,pa + 9),
we can choose Fy = p1 — 0, F1 = p1, L1 = ps and Ly = py + 6 to see that (R1) holds
and so the considered problem has a nonnegative increasing solution in C2[0, 1], by
Theorem [£.2

The same conclusion follows similarly in the rest three cases for the sign of P, (y)
near p; and ps.
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