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Abstract. We study the solvability of the boundary value problem

(φp(x′))′ = f(t, x, x′), x(0) = A, x′(1) = B,

where φp(s) = s|s|p−2, using the barrier strip type arguments. We establish

the existence of C2[0, 1]-solutions, restricting our considerations to p ∈ (1, 2].

The existence of positive monotone solutions is also considered.

1. Introduction

In this article, we study the existence of C2-solutions to the boundary-value
problem (BVP)

(φp(x′))′ = f(t, x, x′), t ∈ (0, 1),

x(0) = A, x′(1) = B, B > 0
(1.1)

where φp(s) = s|s|p−2, p ∈ (1, 2], and the scalar function f(t, x, y) is defined for
(t, x, y) ∈ [0, 1]×Dx ×Dy, Dx, Dy ⊆ R, and continuous on a suitable subset of its
domain.

Various boundary-value problems for (1.1) have been studied in the general case
p > 1, and the obtained results guarantee C1-solutions.

Guo and Tian [4] discussed the existence of positive solutions of the differential
equation φp(x′))′ + q(t)f(t, x) = 0, t ∈ (0, 1), satisfying either x(0) = x′(1) = 0 or
x(0) = x(1) = 0, where p > 1, f : [0, 1]× [0,∞)→ [−M,∞) and q : (0, 1)→ [0,∞)
are continuous.

The solvability of BVPs for the equation

−(φ(x′))′ = q(x′(t))f(t, x(t), x′(t)),

with nonlinear functional boundary conditions, and for the equation

(φ(x′))′ = f(t, x(t), x(τ(t)), x′(t)),

2000 Mathematics Subject Classification. 34B15, 34B18.
Key words and phrases. Boundary value problem; second order differential equation;

p-Laplacian, sign condition.
c©2013 Texas State University - San Marcos.

Submitted June 27, 2012. Published January 28, 2013.

1



2 P. S. KELEVEDJIEV, S. A. TERSIAN EJDE-2013/28

with homogeneous Neumann boundary conditions, has been studied in Cabada and
Pouso [2] and Liu [6], respectively. In these works φ : R→ R is an increasing home-
omorphism, and f is a Carathéodory function; in [2], the right side is discontinuous
in the x′ argument.

Much attention has been paid to singular problems with p-Laplacian. Lü and
Zhong [7] consider the BVP

(φ(x′))′ + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x(1) = 0
(1.2)

where φp(s) = s|s|p−2, p > 1, and f : C((0, 1) × [0,∞), [0,∞)) may be singular at
the ends of the interval. Similar problems, singular not only at t = 0 and t = 1
but also at x = 0, are studied in Agarwal et al [1] and Jiang et al [5]; the main
nonlinearity in [5] depends on x′.

Staněk [8] showed that the equation

(φ(x′))′ + µf(t, x, x′) = 0, t ∈ (0, T ), (1.3)

where the parameter µ is positive, has a solution satisfying boundary conditions
of the form (1.2). Here φ ∈ C(R) is an odd and increasing function, and f ∈
C([0, T ]× (0,∞)× (R \ {0})) is singular at x = 0. Staněk [9] study the solvability
of a BVP for (1.3) (in the case µ < 0) with the boundary conditions

x(0)− αx′(0) = A, x(T ) + βx′(0) + γx′(T ) = A, α,A > 0, β, γ ≥ 0 .

Now φ : R → R is an increasing and odd homeomorphism, and f(t, x, y) satisfies
the Carathéodory conditions on [0, T ] × D, D = (0, (1 + β/α)A] × (R \ {0}), is
singular at x = 0 and may be singular at y = 0.

Note that in the most of the cited papers, the obtained results guarantee positive
solutions. As a rule, they are established under the assumption that the consid-
ered problems admit lower and upper solutions or that growth type conditions are
satisfied.

To prove our existence result, we use the Topological transversality theorem [3].
For its application, the needed a priori bounds follow from the assumption:

(R1) There are constants Li, Fi, i = 1, 2, and a sufficiently small σ > 0 such that

F1 > 0, L2 − σ ≥ L1 ≥ B ≥ F1 ≥ F2 + σ,

[A− σ, L+ σ] ⊆ Dx, [F2, L2] ⊆ Dy,

where L = L1 +A,

f(t, x, y) ∈ C
(
[0, 1]× [A− σ, L+ σ]× [F1 − σ, L1 + σ]

)
,

f(t, x, y) ≥ 0 for (t, x, y) ∈ [0, 1]×Dx × [L1, L2], nonumber (1.4)

f(t, x, y) ≤ 0 for (t, x, y) ∈ [0, 1]×DA × [F2, F1] (1.5)

where DA = (−∞, L] ∩Dx.
Let us recall that the strips [0, 1]× [L1, L2] and [0, 1]× [F2, F1] are called barrier

strips since they keep the values of x′ between themselves.

2. Fixed point theorem

The proofs of the following theorems can be found in Granas et al [3]. To state
them, we need standard topological notions.
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Let Y be a convex subset of a Banach space E and U ⊂ Y be open in Y . Let
L∂U (U, Y ) be the set of compact maps from U to Y which are fixed point free on
∂U ; here, as usual, U and ∂U are the closure of U and boundary of U in Y .

A map F in L∂U (U, Y ) is essential if every map G in L∂U (U, Y ) such that
G/∂U = F/∂U has a fixed point in U . It is clear, in particular, every essential map
has a fixed point in U .

Theorem 2.1 (Topological transversality theorem). Let Y be a convex subset of a
Banach space E and U ⊂ Y be open. Suppose:

(i) F,G : U → Y are compact maps.
(ii) G ∈ L∂U (U, Y ) is essential.
(iii) H(x, λ), λ ∈ [0, 1], is a compact homotopy joining F and G; i.e., H(x, 1) =

F (x) and H(x, 0) = G(x).
(iv) H(x, λ), λ ∈ [0, 1], is fixed point free on ∂U .

Then H(x, λ), λ ∈ [0, 1], has at least one fixed point in U and in particular there is
a x0 ∈ U such that x0 = F (x0).

Theorem 2.2. Let l ∈ U be fixed and F ∈ L∂U (U, Y ) be the constant map F (x) = l
for x ∈ U . Then F is essential.

3. Auxiliary results

For λ ∈ [0, 1] consider the family of BVPs

(φp(x′))′ = λf(t, x, x′), t ∈ (0, 1),

x(0) = A, x′(1) = B,
(3.1)

where f : [0, 1]×Dx ×Dy → R, Dx, Dy ⊆ R. Since

φp(s) = s|s|p−2 =

{
sp−1, s ≥ 0
−(−s)p−1, s < 0,

we obtain

φ′p(s) = (p− 1)|s|p−2 =

{
(p− 1)sp−2, s ≥ 0
(p− 1)(−s)p−2, s < 0

and (φp(x′(t)))′ = (p − 1)|x′(t)|p−2x′′(t), if x′′(t) exists. So, we can write (3.1) in
the form

(p− 1)|x′(t)|p−2x′′(t) = λf(t, x, x′), t ∈ (0, 1),

x(0) = A, x′(1) = B,
(3.2)

Our first auxiliary result gives a priori bounds for the C2[0, 1]-solutions of the
family (3.1) (as well as of (3.2)).

Lemma 3.1. Let (R1) hold and x ∈ C2[0, 1] be a solution to family (3.1) for each
fixed p ∈ (1, 2]. Then

A ≤ x(t) ≤ L, F1 ≤ x′(t) ≤ L1, mp ≤ x′′(t) ≤Mp for t ∈ [0, 1],

where mp = m(p−1)−1L2−p
1 , Mp = M(p−1)−1L2−p

1 , m = min{f(t, x, y) : (t, x, y) ∈
[0, 1]×[A,L]×[F1, L1]} and M = max{f(t, x, y) : (t, x, y) ∈ [0, 1]×[A,L]×[F1, L1]}.
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Proof. Let us assume on the contrary that

x′(t) ≤ L1 for t ∈ [0, 1] (3.3)

is not true. Then x′(1) = B ≤ L1 and x′ ∈ C[0, 1] imply that the set

S+ = {t ∈ [0, 1] : L1 < x′(t) ≤ L2}
is not empty. Then, there exists an interval [α, β] ⊂ S+ with the property

x′(α) > x′(β). (3.4)

This inequality and the continuity of x′(t) guarantee the existence of a γ ∈ [α, β]
such that

x′′(γ) < 0.
On the other hand, as x(t) is a C2[0, 1]-solution of (3.1), we have

(γ, x(γ), x′(γ)) ∈ [0, 1]×Dx ×Dy.

More precisely, (γ, x(γ), x′(γ)) ∈ S+ ×Dx × (L1, L2], which allows to use (R1) to
obtain

0 > (p− 1)|x′(γ)|p−2x′′(γ) = λf(γ, x(γ), x′(γ)) ≥ 0,
a contradiction. Thus (3.3) is true.

Now, by the mean value theorem, for each t ∈ (0, 1] there exists ξ ∈ (0, t) such
that x(t)− x(0) = x′(ξ)t, which yields

x(t) ≤ L for t ∈ [0, 1].

Next, suppose that the set

S− = {t ∈ [0, 1] : F2 ≤ x′(t) < F1}
is not empty. Following the reasoning giving (3.3) and using (1.5), we reach again
a contradiction from which we conclude that

0 < F1 ≤ x′(t) for t ∈ [0, 1],

A ≤ x(t) for t ∈ [0, 1].

To establish the bounds for x′′(t), we observe that from the assumptions

f(t, x, y) ≥ 0 for (t, x, y) ∈ [0, 1]×Dx × [L1, L2]

and [A− σ, L+ σ] ⊆ Dx we have, in particular,

f(t, x, L1) ≥ 0 for t ∈ [0, 1]× [A,L],

which implies M ≥ 0. Similarly, (1.5) implies

f(t, x, F1) ≤ 0 for t ∈ [0, 1]× [A,L],

from where it follows m ≤ 0.
Further, using 0 < x′(t) ≤ L1, t ∈ [0, 1], and −(p− 2) ≥ 0, we get

0 < (x′(t))−(p−2) ≤ L−(p−2)
1 , t ∈ [0, 1].

Then
0 <

1
(p− 1)(x′(t))p−2

≤ 1
(p− 1)Lp−2

1

.

Now, multiplying both sides of this inequality by λM ≥ 0 and λm ≤ 0, we obtain
respectively

λM

(p− 1)(x′(t))p−2
≤ λM

(p− 1)Lp−2
1

≤ M

(p− 1)Lp−2
1

= Mp, t ∈ [0, 1],
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and
λm

(p− 1)(x′(t))p−2
≥ λm

(p− 1)Lp−2
1

≥ m

(p− 1)Lp−2
1

= mp, t ∈ [0, 1].

On the other hand, by the obtained a priori bounds for x(t) and x′(t), for each
t ∈ [0, 1] we have x(t) ∈ [A,L] and x′(t) ∈ [F1, L1]. Consequently,

m ≤ f(t, x(t), x′(t)) ≤M for t ∈ [0, 1]

and multiplying by λ(p− 1)−1|x′(t)|2−p = λ(p− 1)−1(x′(t))2−p ≥ 0, λ, t ∈ [0, 1], we
reach

λm

(p− 1)|x′(t)|p−2
≤ λf(t, x(t), x′(t))

(p− 1)|x′(t)|p−2
≤ λM

(p− 1)|x′(t)|p−2

for λ, t ∈ [0, 1] which combined with the obtained above yields the bounds for
x′′(t). �

Now, we introduce the set C2
BC [0, 1] = {x ∈ C2[0, 1] : x(0) = A, x′(1) = B}

and the operator V : C2
BC [0, 1] → C[0, 1], defined by V x = (φp(x′))′ = (p −

1)|x′(t)|p−2x′′(t), and the operator W : C[0, 1]→ C2
BC [0, 1], defined by

(Wy)(t) = A+
∫ t

0

φq
(∫ s

1

y(v)dv + φp(B)
)
ds,

where φq(s) = s|s|q−2, with p−1 + q−1 = 1, p ∈ (1, 2], is the inverse of the function
φp(s).

The following lemmas give some useful properties of W .

Lemma 3.2. The operator W is well defined for each p ∈ (1, 2].

Proof. It is clear that for each y ∈ C[0, 1] the functions

h(t) =
∫ t

1

y(v)dv + φp(B)

and h′(t) = y(t) are continuous for t ∈ [0, 1]. Then

(φq(h(t)))′ = (q − 1)|h(t)|q−2h′(t)

is also continuous for t ∈ [0, 1] since q − 2 = 2−p
p−1 ≥ 0 for p ∈ (1, 2]. Thus,

(Wy)′′(t) = (φq(h(t)))′ is in C[0, 1]. Finally, it is easy to check that

(Wy)(0) = A, (Wy)′(1) = B,

which means (Wy)(t) ∈ C2
BC [0, 1]. �

Lemma 3.3. The operator W is continuous for each p ∈ (1, 2].

Proof. Let yn, y ∈ C[0, 1], n ∈ N , be such that ‖yn− y‖ → 0 as n→∞. According
to Lemma 3.2, Wyn,Wy ∈ C2

BC [0, 1]. We have to show that

‖(Wyn)(t)− (Wy)(t)‖C2
BC [0,1] = ‖(Wyn)(t)− (Wy)(t)‖C2[0,1] → 0;

i.e.,
lim
n→∞

‖(Wyn)(i)(t)− (Wy)(i)(t)‖C[0,1]

= lim
n→∞

max
t∈[0,1]

|(Wyn)(i)(t)− (Wy)(i)(t)| = 0, i = 0, 1, 2.
(3.5)
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In other words, we have to show that the sequences {(Wyn)(i)} converge uniformly
on [0, 1] to (Wy)(i), i = 0, 1, 2, respectively. To this end, we see firstly that

lim
n→∞

max
t∈[0,1]

|(Wyn)′′(t)− (Wy)′′(t)|

= lim
n→∞

max
t∈[0,1]

∣∣∣ d
dt
φq

(∫ t

1

yn(v)dv + φp(B)
)
− d

dt
φq

(∫ t

1

y(v)dv + φp(B)
)∣∣∣

= (q − 1) lim
n→∞

max
t∈[0,1]

∣∣∣∣∣∣∫ t

1

yn(v)dv + φp(B)
∣∣∣q−2

yn(t)−
∣∣∣ ∫ t

1

y(v)dv + φp(B)
∣∣∣q−2

y(t)
∣∣∣

= 0

and so {(Wyn)′′}, n ∈ N , converges uniformly on [0, 1] to (Wy)′′. By the continuity
and the uniform convergence of the functions {(Wyn)′′}, n ∈ N , it follows that
the sequence {

∫ t
0
(Wyn)′′(v)dv}, n ∈ N , converges uniformly to

∫ t
0
(Wy)′′(v)dv on

[0, 1]. Then, the sequence {(Wyn)′}, n ∈ N , converges uniformly to (Wy)′ on [0, 1]
which means that {Wyn}, n ∈ N , converges uniformly to Wy on [0, 1] and so (3.5)
holds. �

Lemma 3.4. The operator W is the inverse operator of V .

Proof. It is clear, each function x ∈ C2
BC [0, 1] has a unique image V x ∈ C[0, 1].

Also, each function y ∈ C[0, 1] has a unique inverse image x ∈ C2
BC [0, 1] of the form

x(t) = A+
∫ t

0

φq

(∫ s

1

y(v)dv + φp(B)
)
ds,

which is the solution of the BVP

(φp(x′))′ = y(t), t ∈ (0, 1),

x(0) = A, x′(1) = B.

So, the operator V is one-to-one. Further, to show that W is an invertible map, let
V x = y; i.e., (φp(x′))′ = y. Then

W (V x) = Wy = A+
∫ t

0

φq
(∫ s

1

y(v)dv + φp(B)
)
ds

= A+
∫ t

0

φq
(∫ s

1

(φp(x′(v)))′dv + φp(B)
)
ds

= A+
∫ t

0

φq
(
φp(x′(s))− φp(x′(1)) + φp(B)

)
ds

= A+
∫ t

0

φq
(
φp(x′(s))

)
ds

= A+
∫ t

0

x′(s)ds = A+ x(t)− x(0) = x(t).

�

4. Main result

We state our existence result as follows.

Theorem 4.1. Let (R1) hold. Then for each p ∈ (1, 2], BVP (1.1) has at least one
solution in C2[0, 1].
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Proof. We will prove the assertion for an arbitrary fixed p ∈ (1, 2]. At first, prepar-
ing the application of Theorem 2.1, we introduce the set

U =
{
x ∈ C2

BC [0, 1] : A− σ < x < L+ σ, F1 − σ < x′ < L1 + σ,

mp − σ < x′′ < Mp + σ
}
.

According to Lemma 3.1, all C2[0, 1]-solutions of family (3.1) (or (3.2)) are interior
points of U . Next, consider the maps

j : C2
BC [0, 1]→ C1[0, 1], defined by jx = x,

and
Φ : C1[0, 1]→ C[0, 1], defined by (Φx)(t) = f(t, x(t), x′(t))

for t ∈ [0, 1] and x(t) ∈ j(U).
Now, using the map W , introduce the homotopy

Hλ : U × [0, 1]→ C2
BC [0, 1],

defined by H(x, λ) ≡ Hλ(x) ≡ λWΦj(x) + (1−λ)l, where l = Bt+A is the unique
solution of

(φp(x′))′ = 0, t ∈ (0, 1),

x(0) = A, x′(1) = B.

Since the map j is completely continuous, Φ is continuous because f is continu-
ous, and W is continuous by Lemma 3.2, the homotopy is compact. For its fixed
points we have

λWΦj(x) + (1− λ)l = x

and
V x = λΦj(x).

The last means that the fixed points of Hλ coincide with the C2[0, 1]-solutions of
(3.1) which are not in ∂U , by Lemma 3.1. Besides, H0(x) maps each function x ∈ U
in l; i.e., it is a constant map and so is essential, by Theorem 2.2.

So, we can apply Theorem 2.1. It infers that the map H1(x) has a fixed point in
U . It is easy to see that it is a C2[0, 1]-solution of the BVPs of families (3.1) and
(3.2) obtained for λ = 1 and, what is the same, of (1.1). �

The next result guarantees important properties of the established solutions.

Theorem 4.2. Let A > 0 (A = 0) and (R1) hold. Then for each p ∈ (1, 2] BVP
(1.1) has at least one positive (nonnegative) increasing solution in C2[0, 1].

Proof. By Theorem 4.1, BVP (1.1) has a solution x(t) ∈ C2[0, 1] for each p ∈ (1, 2]
and by Lemma 3.1 it is such that

x(t) ≥ A and x′(t) ≥ F1 > 0 for t ∈ [0, 1],

from where the assertion follows immediately. �

Example 4.3. Consider the BVP

(φp(x′))′ = Pn(x′), t ∈ (0, 1),

x(0) = 0, x′(1) = B, B > 0,

where p ∈ (1, 2], and the polynomial Pn(y), n ≥ 2, has two simple zeros p1 and p2

such that p2 > B > p1 > 0.
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Clearly, there is a sufficiently small δ > 0 such that

p2 − δ > B > p1 + δ, p1 − δ > 0

and Pn(y) 6= 0 for t ∈ (p1 − δ, p1) ∪ (p1, p1 + δ) ∪ (p2 − δ, p2) ∪ (p2, p2 + δ).
So, in the case Pn(y) < 0 for t ∈ (p1 − δ, p1) and Pn(y) > 0 for t ∈ (p2, p2 + δ),

we can choose F2 = p1−δ, F1 = p1, L1 = p2 and L2 = p2 +δ to see that (R1) holds
and so the considered problem has a nonnegative increasing solution in C2[0, 1], by
Theorem 4.2.

The same conclusion follows similarly in the rest three cases for the sign of Pn(y)
near p1 and p2.
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[7] H. Lü, C. Zhong; A note on singular nonlinear boundary value problems for one-dimensional

p-Laplacian, Applied Math. Letters 14 (2001) 189-194.
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