Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 34, pp. 1-4. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

UNIQUENESS OF POSITIVE SOLUTIONS FOR AN ELLIPTIC SYSTEM ARISING IN A DIFFUSIVE PREDATOR-PREY MODEL

XIAODAN WEI, WENSHU ZHOU

Abstract. In this note, we study the uniqueness of positive solutions for an
elliptic system which arises in a diffusive predator-prey model in the strong-
predator case. The main result extends an earlier results by the same authors.

1. Introduction

In this note, we study the uniqueness of positive solutions for the system

$$
\begin{gather*}
-\Delta u=\lambda u-b u v \quad \text { in } \Omega \\
-\Delta v=\mu v\left(1-\xi \frac{v}{u}\right) \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, ν is the outward unit normal vector on $\partial \Omega, \lambda, b, \mu$ and ξ are positive constants, which arises in the diffusive predator-prey model in the strong-predator case $(\beta \rightarrow+\infty)$:

$$
\begin{gather*}
-\Delta u=\lambda u-a(x) u^{2}-\beta u v \quad \text { in } \Omega \\
-\Delta v=\mu v\left(1-\frac{v}{u}\right) \quad \text { in } \Omega, \tag{1.2}\\
\frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where β is a positive constant, and $a(x)$ is a continuous function satisfying $a(x)=0$ on $\bar{\Omega}_{0}$ and $a(x)>0$ in $\bar{\Omega} \backslash \bar{\Omega}_{0}$ for some smooth domain Ω_{0} with $\bar{\Omega}_{0} \subset \Omega$. We refer the reader to $1,2,5$ for some related studies on 1.2 .

It is easy to see that $(u, v)=\left(\frac{\xi \lambda}{b}, \frac{\lambda}{b}\right)$ is a positive solution for problem 1.1). In [2, Remark 3.2], the authors pointed out that when $N=1$, the positive solution of (1.1) is unique for any $\mu>0$ by a simple variation of the arguments in 3. When $N \geqslant 2$, it was proved in [6] that the uniqueness holds for all sufficiently large μ. In the present paper, we prove the uniqueness for $\mu \geqslant 2 \lambda$. We point out that a key step of the proof is to establish a new a priori estimate on u for the solution (u, v) of problem (1.1), which is stated as follows.

[^0]Theorem 1.1. Let (u, v) be a positive solution of 1.1. If $\mu>\lambda$, then

$$
\begin{equation*}
u \leqslant \frac{\xi \mu \lambda}{b(\mu-\lambda)} \quad \text { on } \bar{\Omega} \tag{1.3}
\end{equation*}
$$

Based on this estimate and the identity in [6, (2.13)], we have
Theorem 1.2. Let $N \geqslant 2$. If $\mu \geqslant 2 \lambda$, then there is a unique positive solution for (1.1).

2. Proofs of main theorems

To prove Theorem 1.1. we need the following maximal principle due to Lou and Ni 4, Lemma 2.1].
Lemma 2.1. Suppose that $g \in C^{1}\left(\bar{\Omega} \times \mathbb{R}^{1}\right), b_{j} \in C(\bar{\Omega})$ for $j=1,2, \ldots, N$.
(i) If $w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies

$$
\begin{gathered}
\Delta w(x)+\sum_{j=1}^{N} b_{j}(x) w_{x_{j}}+g(x, w(x)) \geqslant 0 \quad \text { in } \Omega \\
\partial_{\nu} w \leqslant 0 \quad \text { on } \partial \Omega
\end{gathered}
$$

and $w\left(x_{0}\right)=\max _{\bar{\Omega}} w$, then $g\left(x_{0}, w\left(x_{0}\right)\right) \geqslant 0$.
(ii) If $w \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies

$$
\begin{gathered}
\Delta w(x)+\sum_{j=1}^{N} b_{j}(x) w_{x_{j}}+g(x, w(x)) \leqslant 0 \quad \text { in } \Omega \\
\partial_{\nu} w \geqslant 0 \quad \text { on } \partial \Omega
\end{gathered}
$$

and $w\left(x_{0}\right)=\min _{\bar{\Omega}} w$, then $g\left(x_{0}, w\left(x_{0}\right)\right) \leqslant 0$.
Proof of Theorem 1.1. Denote us denote

$$
\begin{equation*}
(U, V)=\left(\frac{b}{\xi} u, b v\right) \tag{2.1}
\end{equation*}
$$

Then (U, V) satisfies

$$
\begin{gather*}
-\Delta U=U(\lambda-V) \quad \text { in } \Omega \\
-\Delta V=\mu V\left(1-\frac{V}{U}\right) \quad \text { in } \Omega \tag{2.2}\\
\frac{\partial U}{\partial \nu}=\frac{\partial V}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Clearly, estimate 1.3 is equivalent to

$$
\begin{equation*}
U \leqslant \frac{\mu \lambda}{\mu-\lambda} \quad \text { on } \bar{\Omega} \tag{2.3}
\end{equation*}
$$

Let $\varphi=V / U$. Then $V=\varphi U$, and differentiating it twice yields

$$
\Delta V=\varphi \Delta U+2 \nabla U \cdot \nabla \varphi+U \Delta \varphi \quad \text { in } \Omega
$$

therefore,

$$
\begin{equation*}
-\Delta \varphi-\frac{2}{U} \nabla U \cdot \nabla \varphi=-\frac{1}{U} \Delta V+\frac{\varphi}{U} \Delta U \quad \text { in } \Omega \tag{2.4}
\end{equation*}
$$

From (2.2), we obtain

$$
\begin{gather*}
-\Delta U=U(\lambda-\varphi U) \quad \text { in } \Omega \\
\frac{\partial U}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{2.5}\\
-\Delta V=\mu \varphi U(1-\varphi) \quad \text { in } \Omega \\
\frac{\partial V}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Substituting them into (2.4), we have

$$
\begin{equation*}
-\Delta \varphi-\frac{2}{U} \nabla U \cdot \nabla \varphi=\varphi(\mu-\lambda-\mu \varphi+\varphi U) \quad \text { in } \Omega \tag{2.6}
\end{equation*}
$$

and hence

$$
-\Delta \varphi-\frac{2}{U} \nabla U \cdot \nabla \varphi \geqslant \varphi(\mu-\lambda-\mu \varphi) \quad \text { in } \Omega
$$

Using Lemma 2.1 (ii) and noticing that $\frac{\partial \varphi}{\partial \nu}=0$ on $\partial \Omega$, we obtain

$$
\varphi \geqslant \frac{\mu-\lambda}{\mu} \quad \text { on } \bar{\Omega}
$$

From the estimate and the first equation of (2.5) it follows that

$$
\begin{gathered}
-\Delta U \leqslant U\left(\lambda-\frac{\mu-\lambda}{\mu} U\right) \quad \text { in } \Omega \\
\frac{\partial U}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

By Lemma 2.1 (i), we obtain 2.3. The proof is complete.
Proof of Theorem 1.2. It suffices to show that $(u, v)=\left(\frac{\xi \lambda}{b}, \frac{\lambda}{b}\right)$ for any positive solution (u, v) of 1.1). Let (U, V) be the same as that in 2.1). Then (U, V) satisfies (2.2).

On the other hand, one can show the following identity (i.e. [6, (2.13)]):

$$
\begin{equation*}
\int_{\Omega}(U-2 \lambda) \frac{|\nabla U|^{2}}{U^{3}} d x-\frac{\lambda}{\mu} \int_{\Omega} \frac{|\nabla V|^{2}}{V^{2}} d x=\int_{\Omega} \frac{(\lambda-V)^{2}}{U} d x . \tag{2.7}
\end{equation*}
$$

Indeed, multiplying the equations of U and V by $\frac{\lambda-U}{U^{2}}$ and $\frac{1}{\mu} \frac{\lambda-V}{V}$, respectively, we obtain

$$
-2 \lambda \int_{\Omega} \frac{|\nabla U|^{2}}{U^{3}} d x+\int_{\Omega} \frac{|\nabla U|^{2}}{U^{2}} d x=\int_{\Omega} \frac{(\lambda-U)(\lambda-V)}{U} d x
$$

and

$$
\begin{aligned}
-\frac{\lambda}{\mu} \int_{\Omega} \frac{|\nabla V|^{2}}{V^{2}} d x & =\int_{\Omega} \frac{(U-V)(\lambda-V)}{U} d x \\
& =\int_{\Omega} \frac{(U-\lambda)(\lambda-V)}{U} d x+\int_{\Omega} \frac{(\lambda-V)^{2}}{U} d x
\end{aligned}
$$

Adding the two identities yields (2.7).
Noticing $\mu \geqslant 2 \lambda$, we deduce from 2.3 that $U \leqslant 2 \lambda$, so the first integral of left hand side of 2.7 is non-positive, hence

$$
\int_{\Omega} \frac{(\lambda-V)^{2}}{U} d x \leqslant 0
$$

which implies that $V=\lambda$, so $U=\lambda$. Recalling 2.1), we complete the proof.

Acknowledgments. This research was Supported by National Natural Science Foundation of China (grants 10901030, 11071100), and by Dalian Nationalities University (grants DC110109, DC120101064).

References

[1] Y. H. Du, S. B. Hsu; A diffusive predator-prey model in heterogeneous environment, J. Differential Equations 203 (2004), 331-364.
[2] Y. H. Du, M. X. Wang; Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edin. 136A(2006), 759-778.
[3] J. Lopez-Gomez, R. M. Pardo; Invertibility of linear noncooperative of linear noncooperative elliptic systems, Nonlinear Anal. 31(1998), 687-699.
[4] Y. Lou, W. M. Ni; Diffusion vs cross-Diffusion: an elliptic approach, J. Differential Euations 154(1999), 157-190.
[5] M. X. Wang, Peter Y. H. Pang, W. Y. Chen; Sharp spatial pattern of the diffusive HollingTanner prey-predator model in heterogeneous environment, IMA J. Appl. Math. 73(2008), 815-835.
[6] W. S. Zhou, X. D. Wei; Uniqueness of positive solutions for an elliptic system, Electronic J. Diff. Equa. 2011 (2011), No. 126, 1-6.

Xiaodan Wei
School of Computer Science, Dalian Nationalities University, Dalian 116600, China
E-mail address: weixiaodancat@126.com
Wenshu Zhou
Department of Mathematics, Dalian Nationalities University, Dalian 116600, China
E-mail address: pdezhou@126.com

[^0]: 2000 Mathematics Subject Classification. 35J57, 92D25.
 Key words and phrases. Predator-prey model; strong-predator; positive solution; uniqueness. (C) 2013 Texas State University - San Marcos.

 Submitted September 3, 2012. Published January 30, 2013.

