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EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC
SYSTEMS INVOLVING CRITICAL EXPONENTS AND

HARDY TERMS

DENGFENG LÜ

Abstract. Using variational methods, including the Ljusternik-Schnirelmann
theory, we prove the existence of solutions for quasilinear elliptic systems with

critical Sobolev exponents and Hardy terms.

1. Introduction and statement of main results

We consider the critical quasilinear elliptic system

−∆pu− µ
|u|p−2u

|x|p
=

1
p∗
Fu(u, v) +Gu(u, v), x ∈ Ω,

−∆pv − µ
|v|p−2v

|x|p
=

1
p∗
Fv(u, v) +Gv(u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, 0 ∈ Ω, ∆pu =
div(|∇u|p−2∇u) is the p-Laplacian operator, N ≥ p2, 2 ≤ p ≤ q < p∗, p∗ = Np

N−p
denotes the Sobolev critical exponent, F,G ∈ C1(R+ × R+,R) are homogeneous
functions of degrees p∗ and q, respectively. R+ = [0,+∞), (Fu(u, v), Fv(u, v)) =
∇F, (Gu(u, v), Gv(u, v)) = ∇G, 0 ≤ µ < µ̄, µ̄ = (N−pp )p is the best constant of the
Hardy inequality [4]:

µ̄

∫
Ω

|u|p

|x|p
dx ≤

∫
Ω

|∇u|pdx,

for all u ∈ W 1,p
0 (Ω), where W 1,p

0 (Ω) is defined as the completion of C∞0 (Ω) with
respect to the norm ‖u‖ = (

∫
Ω
|∇u|pdx)1/p. For µ ∈ [0, µ̄), it follows from the

Hardy inequality that

‖u‖µ =
(∫

Ω

|∇u|p − µ |u|
p

|x|p
dx
)1/p
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defines a norm in W 1,p
0 (Ω) equivalent to its usual norm. The best Sobolev constant

is defined as

Sµ = inf
u∈D1,p(RN )\{0}

∫
RN (|∇u|p − µ |u|

p

|x|p )dx

(
∫

RN |u|p
∗dx)p/p∗

, µ ∈ [0, µ̄). (1.2)

In recent years, much attention has been focused on singular problems involving
both the Hardy potential and the Sobolev critical term. For example, see [7, 13,
16, 18, 19, 20, 23, 26] and the references therein. In [9], Ding and Xiao consider
the p-Laplacian system

−∆pu =
2α

α+ β
|u|α−2u|v|β + λ|u|q−2u, x ∈ Ω,

−∆pv =
2β

α+ β
|u|α|v|β−2v + δ|v|q−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.3)

where p ≤ q < p∗, α, β > 1, α + β = p∗. Using standard tools of the variational
theory and the Ljusternik-Schnirelmann category theory, in [9] sufficient conditions
on λ, δ are given for (1.3) to have at least catΩ(Ω) positive solutions. This result
extended the result of Alves and Ding in [2] where the single equation case was
studied. Hsu [17] obtained the existence of two positive solutions for (1.3) including
a sublinear perturbation of 1 < q < p < N . Recently, Shen and Zhang extended
the results in [25] to a general class of homogeneous functions and obtained similar
results. For similar problems, we refer the reader to [3, 6, 8, 10, 11, 12, 14, 15, 21,
22, 24] and the references therein.

In this paper, motivated by [2, 9, 17, 25], we shall extend these results to the
case containing a general class of homogeneous nonlinearities and Hardy terms. To
the best of our knowledge, problem (1.1) has not been considered before. Thus, it
is necessary for us to investigate the related singular critical systems.

The following assumptions are used in this article:

(F0) F ∈ C1(R+×R+,R) and F (tu, tv) = tp
∗
F (u, v)(t > 0) holds for all (u, v) ∈

R+ × R+,
(F1) Fu(0, 1) = Fv(1, 0) = 0,
(F2) Fu(u, v) ≥ 0, Fv(u, v) ≥ 0 for all u, v ≥ 0,
(F3) the 1-homogeneous function (u, v) 7→ F (u

1
p∗ , v

1
p∗ ) is concave for all (u, v) ∈

R+ × R+.
(G0) G is q-homogeneous for some p ≤ q < p∗,
(G1) Gu(0, 1) = Gv(1, 0) = 0.

To present our results, we define

λ = max{G(u, v) : u, v ≥ 0, uq + vq = 1}, (1.4)

δ = min{G(u, v) : u, v ≥ 0, uq + vq = 1}. (1.5)

If Y is a closed subset of a topological space X, we denote, by catX(Y ), the
Ljusternik-Schnirelmann category of Y in X, namely the least number of closed
and contractible sets in X which cover Y . We say that a weak solution (u, v) ∈
W 1,p

0 (Ω)×W 1,p
0 (Ω) of problem (1.1) is nonnegative if u, v ≥ 0 in Ω.

The main results of this paper are stated in the following two theorems whose
conclusions are new (to the best of our knowledge).
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Theorem 1.1. Suppose (F0)–(F3), (G0)–(G1) are satisfied, and one of the follow-
ing two conditions holds:

(I) p̄ < q < p∗ with p̄ = max
{
p, N

b(µ) ,
p(2N−pb(µ)−p)

N−p

}
, 0 ≤ µ < µ̄ and λ, δ > 0;

(II) q = p, 0 ≤ µ ≤ Np−1(N−p2)
pp and λ, δ ∈ (0, 1

pΛ1), where Λ1 is the first
eigenvalue of (−∆p,W

1,p
0 (Ω)).

Then problem (1.1) has at least one nonnegative solution.

Theorem 1.2. Suppose (F0)–(F3), (G0)–(G1) are satisfied, and one of the follow-
ing two conditions holds:

(I) p̄ < q < p∗ with p̄ = max
{
p, N

b(µ) ,
p(2N−pb(µ)−p)

N−p

}
, 0 ≤ µ < µ̄;

(II) q = p, 0 ≤ µ ≤ Np−1(N−p2)
pp .

Then there exists Λ > 0 such that problem (1.1) has at least catΩ(Ω) distinct non-
negative solutions for λ, δ ∈ (0,Λ).

Remark 1.3. Our Theorem 1.1 is a generalization of [16, Theorem 1.1] from quasi-
linear elliptic equations to quasilinear elliptic systems.

Remark 1.4. Theorem 1 in [9] is the special case of our Theorem 1.2 corresponding
to µ = 0, F (u, v) = 2|u|α|v|β , α+ β = p∗ and G(u, v) = λ|u|q + δ|v|q. In this paper,
different from [25], we can deal with F (u, v) which possesses both coupled and
uncoupled terms. For example, let

F (u, v) = aup
∗

+
k∑
i=1

biu
αivβi + cvp

∗
,

where a, bi, c ≥ 0, αi, βi > 1, αi + βi = p∗. F (u, v) obviously satisfies (F0)–(F3).

This article is organized as follows. In Section 2, some notation and the mountain
pass levels are established and Theorem 1.1 is proven. We present some technical
lemmas which are crucial in the proof of Theorem 1.2 in Section 3. Theorem 1.2 is
proven in Section 4.

2. Preliminaries and proof of Theorem 1.1

Throughout this paper, C,Ci will denote various positive constants whose exact
values are not important. And → (respectively ⇀) denotes strong (respectively
weak) convergence. O(εt) denotes |O(εt)|/εt ≤ C, om(1) denotes om(1) → 0 as
m → ∞. Ls(Ω), for(1 ≤ s < +∞), denotes Lebesgue spaces, the norm Ls is
denoted by | · |s for 1 ≤ s < +∞. Let Br(x) denote a ball centered at x with
radius r. The dual space of a Banach space E will be denoted by E−1. We define
the product space E := W 1,p

0 (Ω) ×W 1,p
0 (Ω) endowed with the norm ‖(u, v)‖E =(

‖u‖pµ + ‖v‖pµ
)1/p.

In view of (F1), (G1), we can extend the function F (u, v) and G(u, v) to the
whole R2 by considering F (u, v) = F (u+, v+), G(u, v) = G(u+, v+), where u+ =
max{u, 0} and v+ = max{v, 0}. It is easy to check that F (u, v) and G(u, v) ∈
C1(R2). Therefore, we always consider F (u, v) and G(u, v) as these extensions.

A pair of functions (u, v) ∈ E is said to be a weak solution of problem (1.1) if∫
Ω

(|∇u|p−2∇u∇ϕ1 − µ
|u|p−2uϕ1

|x|p
+ |∇v|p−2∇v∇ϕ2 − µ

|v|p−2vϕ2

|x|p
)dx
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− 1
p∗

∫
Ω

(Fu(u, v)ϕ1 + Fv(u, v)ϕ2)dx−
∫

Ω

(Gu(u, v)ϕ1 +Gv(u, v)ϕ2)dx = 0,

for all (ϕ1, ϕ2) ∈ E. Using (F0)-(G1) and well-known arguments, we know that
the weak solutions of (1.1) are precisely the critical points of the C1-functional
Iλ,δ : E → R given by

Iλ,δ(u, v)

=
1
p

∫
Ω

(|∇u|p − µ |u|
p

|x|p
+ |∇v|p − µ |v|

p

|x|p
)dx− 1

p∗

∫
Ω

F (u, v)dx−
∫

Ω

Gλ,δ(u, v)dx.

We notice that, in the definition of Iλ,δ, we are denoting Gλ,δ(u, v) := G(u, v)
for (u, v) ∈ R2. We shall write Gλ,δ instead of G to emphasize that the main
theorems depend on the value of the parameters λ and δ defined in (1.4) and (1.5),
respectively.

The functional I ∈ C1(E,R) is said to satisfy the (PS)c condition if any sequence
{zm} ⊂ E such that as m → ∞, I(zm) → c, I ′(zm) → 0 strongly in E−1 contains
a subsequence converging in E to a critical point of I. In this paper, we will take
I = Iλ,δ and E = W 1,p

0 (Ω)×W 1,p
0 (Ω).

In this section, we will find the range of c where the (PS)c condition holds for
the functional Iλ,δ. First, let us define

SF = inf
(u,v)∈E\{(0,0)}

{∫
Ω
|∇u|p − µ |u|

p

|x|p + |∇v|p − µ |v|
p

|x|p dx

(
∫

Ω
F (u, v)dx)p/p∗

:
∫

Ω

F (u, v)dx > 0
}
.

(2.1)

Lemma 2.1. Suppose (F0)–(F3), (G0)–(G1) are satisfied, then the functional Iλ,δ
satisfies the (PS)c condition for all c < 1

N S
N/p
F , provided either p < q < p∗ or q = p

and the parameter λ defined in (1.4) belongs to (0, 1
pΛ1), where Λ1 > 0 denotes the

first eigenvalue of (−∆p,W
1,p
0 (Ω)).

Proof. Let {(um, vm)} ⊂ E such that I ′λ,δ(um, vm) → 0 and Iλ,δ(um, vm) → c <
1
N S

N/p
F . Now, we firstly prove that {(um, vm)} is bounded in E. If p < q < p∗, it

suffices to use the definition of Iλ,δ to obtain C1 > 0 such that

c+ C1‖(um, vm)‖E + om(1) ≥ Iλ,δ(um, vm)− 1
q
〈I ′λ,δ(um, vm), (um, vm)〉

=
(1
p
− 1
q

)
‖(um, vm)‖pE +

(1
q
− 1
p∗

)∫
Ω

F (um, vm)dx

≥ q − p
pq
‖(um, vm)‖pE ,

which implies that {(um, vm)} ⊂ E is bounded. When q = p, in this case, it follows
that ∫

Ω

Gλ,δ(um, vm)dx ≤ λ
∫

Ω

(|um|p + |vm|p)dx ≤
λ

Λ1
‖(um, vm)‖pE ,

and therefore,

c+ C1‖(um, vm)‖E + om(1) ≥ Iλ,δ(um, vm)− 1
p∗
〈I ′λ,δ(um, vm), (um, vm)〉

=
1
N
‖(um, vm)‖pE −

p

N

∫
Ω

G(um, vm)dx
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≥ 1
N

(
1− pλ

Λ1

)
‖(um, vm)‖pE .

Since pλ < Λ1, the boundedness of {(um, vm)} follows as in the first case.
So {(um, vm)} is bounded in E. Going if necessary to a subsequence, we can

assume that

(um, vm) ⇀ (u, v), in E,

(um, vm)→ (u, v), a.e. in Ω,

(um, vm)→ (u, v), in Ls(Ω)× Ls(Ω), 1 ≤ s < p∗,

as m→∞. Clearly, we have that∫
Ω

Gλ,δ(um, vm)dx =
∫

Ω

Gλ,δ(u, v)dx+ om(1). (2.2)

Moreover, a standard argument shows that I ′λ,δ(u, v) = 0. Thus, we obtain

Iλ,δ(u, v) =
1
p
‖(u, v)‖pE −

1
p∗

∫
Ω

F (u, v)dx−
∫

Ω

Gλ,δ(u, v)dx

=
(1
p
− 1
q

)
‖(u, v)‖pE +

(1
q
− 1
p∗

)∫
Ω

F (u, v)dx ≥ 0.
(2.3)

Let (ũm, ṽm) = (um − u, vm − v). Then by the Brezis-Lieb Lemma [5], we have

‖(ũm, ṽm)‖pE = ‖(um, vm)‖pE − ‖(u, v)‖pE + om(1). (2.4)

By the same method as in [11, Lemma 8], we obtain∫
Ω

F (um, vm)dx =
∫

Ω

F (u, v)dx+
∫

Ω

F (ũm, ṽm)dx+ om(1). (2.5)

By (2.2),(2.3),(2.4),(2.5) and the weak convergence of (um, vm), we have

c+ om(1) = Iλ,δ(u, v) +
1
p
‖(ũm, ṽm)‖pE −

1
p∗

∫
Ω

F (ũm, ṽm)dx

≥ 1
p
‖(ũm, ṽm)‖pE −

1
p∗

∫
Ω

F (ũm, ṽm)dx.
(2.6)

Using that I ′λ,δ(um, vm)→ 0 and (2.2), (2.4), (2.5), we obtain

om(1) = 〈I ′λ,δ(um, vm), (um, vm)〉

= ‖(um, vm)‖pE −
∫

Ω

F (um, vm)dx− q
∫

Ω

Gλ,δ(um, vm)dx

= 〈I ′λ,δ(u, v), (u, v)〉+ ‖(ũm, ṽm)‖pE −
∫

Ω

F (ũm, ṽm)dx.

Recalling that I ′λ,δ(u, v) = 0, we can use the above equality and (2.6) to obtain

lim
m→∞

‖(ũm, ṽm)‖pE = k = lim
m→∞

∫
Ω

F (ũm, ṽm)dx, c ≥
(1
p
− 1
p∗

)
k =

1
N
k,

where k ≥ 0.
In view of the definition of SF , we deduce that

‖(ũm, ṽm)‖pE ≥ SF
(∫

Ω

F (ũm, ṽm)dx
)p/p∗

.
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Taking the limit, we obtain k ≥ SF k
p/p∗ . So, if k > 0, we conclude that k ≥ S

N/p
F

and therefore
1
N
S
N/p
F ≤ 1

N
k ≤ c < 1

N
S
N/p
F ,

which is a contradiction. Hence k = 0 and therefore (um, vm)→ (u, v) in E. �

For all µ ∈ [0, µ̄), we consider the limiting problem

−∆pU − µ
Up−1

|x|p
= Up

∗−1, in RN \ {0},

U > 0, in RN \ {0},
U → 0, as |x| → +∞.

(2.7)

From [1], we know that problem (2.7) has a ground state Up,µ, which is unique up
to scaling. That is, all ground states must be of the form

Vp,µ,ε(x) = ε−
N−p
p Up,µ

(x
ε

)
= ε−

N−p
p Up,µ

( |x|
ε

)
, ε > 0, (2.8)

that satisfy∫
RN

(|∇Vp,µ,ε(x)|p − µ |Vp,µ,ε(x)|p

|x|p
)dx =

∫
RN
|Vp,µ,ε(x)|p

∗
dx = SN/pµ , (2.9)

where Sµ is the best Sobolev constant given in (1.2).
Moreover, the ground state Up,µ is radially symmetric and decreasing, and the

following asymptotic properties at the origin and infinity for Up,µ(r) and U ′p,µ(r)
hold:

lim
r→0+

ra(µ)Up,µ(r) = c1 > 0, lim
r→0+

ra(µ)+1|U ′p,µ(r)| = c1a(µ) ≥ 0,

lim
r→+∞

rb(µ)Up,µ(r) = c2 > 0, lim
r→+∞

rb(µ)+1|U ′p,µ(r)| = c2b(µ) > 0,

where c1 and c2 are positive constants depending only on N, p, µ, and a(µ), b(µ),
the zeros of the function h(t) = (p − 1)tp − (N − p)tp−1 + µ, t ≥ 0, which satisfy
0 ≤ a(µ) < b(µ) ≤ N−p

p−1 .
After a direct calculation, we infer that tmin = N−p

p is the unique minimal point
of h(t) and h(N−pp ) = −µ̄ + µ < 0. Moreover, h′(t) < 0 for all 0 < t < tmin and
h′(t) > 0 for all t > tmin. That is, h(t) is decreasing on the interval (0, tmin) and
increasing on the interval (tmin,+∞). Thus 0 ≤ a(µ) < N−p

p < b(µ).
In addition, using [11, Lemma 3] and the homogeneity of F , we obtain A,B > 0

such that

SF =
‖(AVp,µ,ε, BVp,µ,ε‖pE

(
∫

RN F (AVp,µ,ε, BVp,µ,ε)dx)p/p∗
=

Ap +Bp

(F (A,B))p/p∗
· S

N/p
µ

|Vp,µ,ε|pp∗
,

from this and (2.9), we have

SF =
Ap +Bp

(F (A,B))p/p∗
Sµ. (2.10)

We define a cut-off function φ(x) ∈ C∞0 (RN ) such that φ(x) = 1 if |x| ≤ R; φ(x) = 0
if |x| ≥ 2R and 0 ≤ φ(x) ≤ 1, where B2R(0) ⊂ Ω and set uε = φ(x)Vp,µ,ε

|φVp,µ,ε|p∗
, where
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Vp,µ,ε was defined in (2.8). So, |uε|p∗ = 1. Thus, we can get the following results
from [26, Lemma 2.2] (or [16]):

‖uε‖pµ = Sµ +O(εpb(µ)+p−N ), (2.11)

∫
Ω

|uε|ξdx ≈


ε(b(µ)−N−pp )ξ, if 1 ≤ ξ < N

b(µ) ,

εN−
N−p
p ξ| ln ε|, if ξ = N

b(µ) ,

εN−
N−p
p ξ, if N

b(µ) < ξ < p∗,

(2.12)

where A ≈ B means C1B ≤ A ≤ C2B.
As Iλ,δ is not bounded below on E, we need to study Iλ,δ on the Nehari manifold:

Nλ,δ =
{

(u, v) ∈ E \ {(0, 0)} : 〈I ′λ,δ(u, v), (u, v)〉 = 0
}
.

Note that Nλ,δ contains every nonzero solution of problem (1.1), and we define the
minimax cλ,δ as

cλ,δ = inf
(u,v)∈Nλ,δ

Iλ,δ(u, v).

Next, we present some properties of cλ,δ and Nλ,δ. Their proofs can be done as [27,
Theorem 4.2]. First of all, we note that there exists ρ > 0 such that

‖(u, v)‖E ≥ ρ > 0, ∀ (u, v) ∈ Nλ,δ. (2.13)

It is standard to check that Iλ,δ satisfies the mountain pass geometry, so we can use
the homogeneity of F and G to prove that cλ,δ can be alternatively characterized
by

cλ,δ = inf
γ∈Γ

max
t∈[0,1]

Iλ,δ(γ(t)) = inf
(u,v)∈E\{(0,0)}

max
t≥0

Iλ,δ(t(u, v)) > 0, (2.14)

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Iλ,δ(γ(1)) < 0}. Moreover, for each
(u, v) ∈ E\{(0, 0)}, there exists a unique t∗ > 0 such that t∗(u, v) ∈ Nλ,δ. The
maximum of the function t 7→ Iλ,δ(t(u, v)), for t ≥ 0, is achieved at t = t∗.

Lemma 2.2. Suppose that (F0) − (F3) and (G0) − (G1) hold, p̄ < q < p∗ with
p̄ = max

{
p, N

b(µ) ,
p(2N−pb(µ)−p)

N−p

}
, 0 ≤ µ < µ̄ and λ, δ defined in (1.4), (1.5) are

positive, then cλ,δ <
1
N S

N/p
F . The same result holds if q = p, 0 ≤ µ ≤ Np−1(N−p2)

pp

and λ, δ ∈ (0, 1
pΛ1).

Proof. We can use the homogeneity of F and G to get, for any t ≥ 0,

Iλ,δ(tAuε, tBuε) =
tp

p
(Ap +Bp)‖uε‖pµ −

tp
∗

p∗
F (A,B)− tqGλ,δ(A,B)|uε|qq.

We shall denote the right-hand side of the above equality by h(t) and consider two
distinct cases.
Case 1: p̄ < q < p∗ with p̄ = max

{
p, N

b(µ) ,
p(2N−pb(µ)−p)

N−p

}
. From the fact that

limt→+∞ h(t) = −∞ and h(t) > 0 when t is close to 0, there exists tε > 0 such that

h(tε) = max
t≥0

h(t). (2.15)

Let

g(t) =
tp

p
(Ap +Bp)‖uε‖pµ −

tp
∗

p∗
F (A,B), t ≥ 0,
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and notice that the maximum value of g(t) occurs at the point

t̃ε =
( (Ap +Bp)‖uε‖pµ

F (A,B)

) 1
p∗−p

.

So, for each t ≥ 0,

g(t) ≤ g(t̃ε) =
1
N

( (Ap +Bp)‖uε‖pµ
(F (A,B))p/p∗

)N/p
,

and therefore

h(tε) ≤
1
N

( (Ap +Bp)‖uε‖pµ
(F (A,B))p/p∗

)N/p
− tqεGλ,δ(A,B)|uε|qq. (2.16)

We claim that, for some C2 > 0, there holds

tqεGλ,δ(A,B) ≥ C2.

Indeed, if this is not the case, we have that tεm → 0 for some sequence εm → 0+,
then

0 < cλ,δ ≤ sup
t≥0

Iλ,δ(tAuεm , tBuεm) = Iλ,δ(tεmAuεm , tεmBuεm)→ 0,

which is a contradiction. So, the claim holds, and we infer from (2.16), (2.10),
(2.11) and (2.12) that

h(tε) ≤
1
N

( Ap +Bp

(F (A,B))p/p∗
(
Sµ +O(εpb(µ)+p−N )

))N/p
− C2|uε|qq

≤ 1
N
S
N/p
F +O(εpb(µ)+p−N )− C2|uε|qq

≤ 1
N
S
N/p
F +O(εpb(µ)+p−N )−O(εN−

N−p
p q).

(2.17)

By p̄ < q < p∗, we obtain pb(µ) + p − N > N − N−p
p q. Thus, from the above

inequality we conclude that, for each ε > 0 small, there holds

cλ,δ ≤ sup
t≥0

Iλ,δ(tAuε, tBuε) = h(tε) <
1
N
S
N/p
F .

Case 2: q = p and 0 ≤ µ ≤ Np−1(N−p2)
pp . In this case, we have that h′(t) = 0 if and

only if
(Ap +Bp)‖uε‖pµ − pGλ,δ(A,B)|uε|pp = tp

∗−pF (A,B).

Since we suppose λ < 1
pΛ1, we can use Poincaré inequality to obtain

pGλ,δ(A,B)|uε|pp ≤ pλ(Ap +Bp)|uε|pp
< Λ1(Ap +Bp)|uε|pp
≤ (Ap +Bp)‖uε‖pµ.

Thus, there exists tε > 0 satisfying (2.15).
Arguing, as in the first case, we conclude that, from (2.17), for ε > 0 small, there

holds

h(tε) ≤
1
N
S
N/p
F +O(εpb(µ)+p−N )− C2|uε|pp

=

{
1
N S

N/p
F +O(εpb(µ)+p−N )−O(εp| ln ε|), b(µ) = N

p ,
1
N S

N/p
F +O(εpb(µ)+p−N )−O(εp), b(µ) > N

p .
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If b(µ) = N/p, then pb(µ) + p−N = p, so εpb(µ)+p−N = o(εp| ln ε|). If b(µ) > N/p,
then pb(µ) + p −N > p, so εpb(µ)+p−N = o(εp). Choosing ε > 0 small enough, we
have

cλ,δ ≤ sup
t≥0

Iλ,δ(tAuε, tBuε) = h(tε) <
1
N
S
N/p
F .

On the other hand, it is easy to verify that the function

g(t) = (p− 1)tp − (N − p)tp−1 + µ, t ≥ 0

has the only minimal point t̄ = N−p
p and is increasing on the interval (t̄,+∞).

Thus, for N ≥ p2 we deduce that

N

p
≤ b(µ)⇔ g(

N

p
) ≤ g(b(µ)) = 0⇔ 0 ≤ µ ≤ Np−1(N − p2)

pp
.

This concludes the proof. �

Using Lemmas 2.1 and 2.2, we can prove our first result.

Proof of Theorem 1.1. Since Iλ,δ satisfies the geometric conditions of the mountain
pass theorem, there exists {(um, vm)} ⊂ E such that Iλ,δ(um, vm) → cλ,δ, and
I ′λ,δ(um, vm) → 0. It follows from Lemmas 2.1 and 2.2 that {(um, vm)} converges,
along a subsequence, to a nonzero critical point (u, v) ∈ E of Iλ,δ. If we then
denote, by u− = max{−u, 0} and v− = max{−v, 0}, the negative part of u and v,
respectively, we obtain

0 = 〈I ′λ,δ(u, v), (u−, v−)〉

= −‖(u−, v−)‖pE −
1
p∗

∫
Ω

(Fu(u, v)u− + Fv(u, v)v−)dx

−
∫

Ω

(Gu(u, v)u− +Gv(u, v)v−)dx

≤ −‖(u−, v−)‖pE .

It thus follows that (u−, v−) = (0, 0). Hence, u, v ≥ 0 in Ω. The theorem 1.1 is
thus proven. �

We finalize this section with the study of the asymptotic behavior of the minimax
level cλ,δ as both the parameters λ, δ approach zero.

Lemma 2.3. limλ,δ→0+ cλ,δ = c0,0 = 1
N S

N/p
F .

Proof. We first prove the second equality. It follows from λ = δ = 0 that G0,0 ≡ 0.
If A,B, uε, gε and tε are the same as those in the proof of Lemma 2.2, we have that
(tεAuε, tεBuε) ∈ N0,0. Thus

c0,0 ≤ I0,0(tεAuε, tεBuε)

=
1
N

( Ap +Bp

(F (A,B))p/p∗
‖uε‖pµ

)N/p
=

1
N

( Ap +Bp

(F (A,B))p/p∗
(
Sµ +O

(
εpb(µ)+p−N)))N/p.

Taking the limit as ε→ 0+ and using (2.10), we conclude that c0,0 ≤ 1
N S

N/p
F .
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In order to obtain the reverse inequality, we consider {(um, vm)} ⊂ E such that
I0,0(um, vm) → c0,0 and I ′0,0(um, vm) → 0. It is easy to show that the sequence
{(um, vm)} is bounded in E and therefore

〈I ′0,0(um, vm), (um, vm)〉 = ‖(um, vm)‖pE −
∫

Ω

F (um, vm)dx = om(1).

It follows that

lim
m→∞

‖(um, vm)‖pE = l = lim
m→∞

∫
Ω

F (um, vm)dx.

Taking the limit in the inequality SF (
∫

Ω
F (um, vm)dx)p/p

∗ ≤ ‖(um, vm)‖pE , we con-
clude, as in the proof of Lemma 2.1, that Nc0,0 = l ≥ SN/pF . Hence,

c0,0 = lim
m→∞

I0,0(um, vm) = lim
m→∞

(1
p
‖(um, vm)‖pE −

1
p∗

∫
Ω

F (um, vm)dx
)

=
1
N
l ≥ 1

N
S
N/p
F ,

and therefore c0,0 = 1
N S

N/p
F .

We proceed now to the calculation of limλ,δ→0+ cλ,δ. Let {λm}, {δm} ⊂ R+

such that λm, δm → 0+. Since δm, defined in (1.5), is positive, we have that
Gλm,δm(u, v) ≥ 0 whenever (u, v) is nonnegative. Thus, for this kind of function,
we have that Iλm,δm(u, v) ≤ I0,0(u, v). It follows that

cλm,δm = inf
(u,v)6=(0,0)

max
t≥0

Iλm,δm(t(u, v))

≤ inf
(u,v)6=(0,0), (u,v)≥0

max
t≥0

Iλm,δm(t(u, v))

≤ inf
(u,v)6=(0,0), (u,v)≥0

max
t≥0

I0,0(t(u, v)) = c0,0.

In the last equality above, we used the infimum c0,0, which can be attained at a
nonnegative solution. The above inequality implies that

lim sup
m→∞

cλm,δm ≤ c0,0. (2.18)

On the other hand, it follows from Theorem 1.1 that there exists {(um, vm)} ⊂ E
such that

Iλm,δm(um, vm) = cλm,δm , I ′λm,δm(um, vm)→ 0.
Since cλm,δm is bounded, the same argument performed in the proof of Lemma
2.1 implies that {(um, vm)} is bounded in E. Since (um, vm) ≥ 0, we obtain 0 ≤∫

Ω
Gλm,δm(um, vm)dx ≤ λm

∫
Ω

(|um|q + |vm|q)dx, from which it follows that

lim
m→∞

∫
Ω

Gλm,δm(um, vm)dx = 0. (2.19)

Let tm > 0 be such that tm(um, vm) ∈ N0,0. Since (um, vm) ∈ Nλm,δm , we have
that

c0,0 ≤ I0,0(tm(um, vm))

= Iλm,δm(tm(um, vm)) + tqm

∫
Ω

Gλm,δm(um, vm)dx

≤ Iλm,δm(um, vm) + tqm

∫
Ω

Gλm,δm(um, vm)dx
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= cλm,δm + tqm

∫
Ω

Gλm,δm(um, vm)dx.

If {tm} is bounded, we can use the above estimate and (2.19) to obtain

c0,0 ≤ lim inf
m→∞

cλm,δm .

Using this and (2.18), we obtain

c0,0 ≤ lim inf
m→∞

cλm,δm ≤ lim sup
m→∞

cλm,δm ≤ c0,0.

Thus, c0,0 = limm→∞ cλm,δm .
It remains to check that {tm} is bounded. A straightforward calculation shows

that

tm =
( ‖(um, vm)‖pE∫

Ω
F (um, vm)dx

) 1
p∗−p

. (2.20)

Since (um, vm) ∈ Nλm,δm , we obtain

‖(um, vm)‖pE

=
∫

Ω

F (um, vm)dx+ q

∫
Ω

Gλm,δm(um, vm)dx ≤ S−
p∗
p

F ‖(um, vm)‖p
∗

E + om(1).

Hence ‖(um, vm)‖pE ≥ C3 > 0, and therefore from the above expression, it follows
that

∫
Ω
F (um, vm)dx ≥ C4 > 0. Thus, the boundedness of {(um, vm)} and (2.20)

imply that {tm} is bounded. This completes the proof. �

3. Some technical lemmas

In this section, we will recall and prove some lemmas which are crucial in the
proof of Theorem 1.2. The first lemma is standard, and its proof follows adapting
arguments found in [27].

Lemma 3.1. Let {(um, vm)} ⊂ E such that
∫

Ω
F (um, vm)dx = 1 and

lim
m→∞

‖(um, vm)‖pE = SF .

Then there exist {rm} ⊂ (0,+∞) and {ym} ⊂ RN such that

ωm(x) = (ω1
m(x), ω2

m(x)) = r
N−p
p

m (um(rmx+ ym), vm(rmx+ ym)) (3.1)

contains a convergent subsequence, denoted again by {ωm}, such that ωm → ω in
D1,p(RN )×D1,p(RN ). Moreover, as m→∞, we have rm → 0 and ym → y ∈ Ω.

Up to translations, we may assume that 0 ∈ Ω. Since Ω is a smooth bounded
domain of RN , we can choose r > 0 small enough such that Br = Br(0) = {x ∈
RN : d(x, 0) < r} ⊂ Ω and the sets

Ω+
r = {x ∈ RN : dist(x,Ω) < r}, Ω−r = {x ∈ RN : dist(x, ∂Ω) > r}

are homotopically equivalent to Ω. Let

W 1,p
0,rad(Br) =

{
u ∈W 1,p

0 (Br) : u is radial
}
,

Erad(Br) = W 1,p
0,rad(Br)×W 1,p

0,rad(Br).

We thus define the functional

IBr (u, v) =
1
p

∫
Br

(|∇u|p − µ |u|
p

|x|p
+ |∇v|p − µ |v|

p

|x|p
)dx



12 D. LÜ EJDE-2013/35

− 1
p∗

∫
Br

F (u, v)dx−
∫
Br

Gλ,δ(u, v)dx

for (u, v) ∈ Erad(Br), and set

mλ,δ = inf
(u,v)∈NBrλ,δ

IBr (u, v),

where
NBr
λ,δ := {(u, v) ∈ Erad(Br) \ {(0, 0)} : 〈I ′Br (u, v), (u, v)〉 = 0}.

Clearly, mλ,δ is nonincreasing in λ, δ. Note that mλ,δ > 0 for all λ, δ > 0.
Arguing, as in the proof of Lemma 2.3 and Theorem 1.1, we obtain the following

result.

Lemma 3.2. Suppose (F0)-(F3), (G0)–(G1) are satisfied. Then the infimum mλ,δ

is attained by a positive radial function (uλ,δ, vλ,δ) ∈ Erad whenever p̄ < q < p∗

with p̄ = max
{
p, N

b(µ) ,
p(2N−pb(µ)−p)

N−p

}
, 0 ≤ µ < µ̄ and λ, δ > 0, or q = p, 0 ≤ µ ≤

Np−1(N−p2)
pp and λ, δ ∈ (0, 1

pΛ1,rad), and where Λ1,rad > 0 is the first eigenvalue of
the operator (−∆pu,W

1,p
0,rad(Br)). Moreover,

mλ,δ <
1
N
S
N/p
F , lim

λ,δ→0+
mλ,δ =

1
N
S
N/p
F .

We introduce the barycenter map β : Nλ,δ → RN as

β(u, v) = S
−N/p
F

∫
Ω

F (u, v)x dx.

This map has the following property.

Lemma 3.3. If (F0)–(F3), (G0)–(G1), then there exists λ∗ > 0 such that β(u, v) ∈
Ω+
r whenever (u, v) ∈ Nλ,δ, λ, δ ∈ (0, λ∗) and Iλ,δ(u, v) ≤ mλ,δ.

Proof. Arguing by contradiction, we suppose that there exist {λm}, {δm} ⊂ R+

and {(um, vm)} ⊂ Nλm,δm such that λm, δm → 0+ as m → ∞, Iλm,δm(um, vm) ≤
mλm,δm , but β(um, vm) 6∈ Ω+

r .
From {(um, vm)} ⊂ Nλm,δm and Iλm,δm(um, vm) ≤ mλm,δm , it follows that

{(um, vm)} is bounded in E. Moreover,

0 = 〈I ′λm,δm(um, vm), (um, vm)〉

= ‖(um, vm)‖pE −
∫

Ω

F (um, vm)dx− q
∫

Ω

Gλm,δm(um, vm)dx.

Since λm → 0, we can use the boundedness of {(um, vm)} to get

0 ≤
∫

Ω

Gλm,δm(um, vm)dx ≤ λm
∫

Ω

(|um|q + |vm|q)dx→ 0,

from which it follows that

lim
m→∞

‖(um, vm)‖pE = lim
m→∞

∫
Ω

F (um, vm)dx = k ≥ 0.

Notice that

cλm,δm ≤ Iλm,δm(um, vm)

=
1
p
‖(um, vm)‖pE −

1
p∗

∫
Ω

F (um, vm)dx−
∫

Ω

Gλm,δm(um, vm)dx
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≤ mλm,δm .

Recalling that cλm,δm and mλm,δm both converge to 1
N S

N/p
F , we can use the above

expression and
∫

Ω
Gλm,δm(um, vm)dx → 0 again to conclude that k = S

N/p
F . That

is,

lim
m→∞

‖(um, vm)‖pE = S
N/p
F = lim

m→∞

∫
Ω

F (um, vm)dx. (3.2)

Let tm = (
∫

Ω
F (um, vm)dx)−1/p∗ > 0 and notice that tm(um, vm) satisfies the

hypotheses of Lemma 3.1. Using Lemma 3.1, there exist sequences {rm} ⊂ (0,+∞)
and {ym} ⊂ RN satisfying rm → 0, ym → y ∈ Ω. We thus have that ωm → ω in
D1,p(RN )×D1,p(RN ).

The definition of β(u, v), (3.2), the strong convergence of {ωm}, and Lebesgue’s
Theorem provide

β(um, vm) = t−p
∗

m S
−N/p
F

∫
Ω

F (tm(um, vm))xdx

= (1 + om(1))
∫

Ω

F (tmum, tmvm)xdx

= (1 + om(1))
∫

Ω

F (ωm)(rmx+ ym)dx

= (1 + om(1))
(∫

Ω

F (ω)ȳdx+ om(1)
)
.

Since ȳ ∈ Ω and
∫

Ω
F (ω)dx = 1, the above expression implies that

lim
m→∞

dist (β(um, vm),Ω) = 0.

Such contradicts β(um, vm) 6∈ Ω+
r . �

According to Lemma 3.2, for each λ, δ > 0 small, the infimum mλ,δ is attained
by a nonnegative radial function σλ,δ = (uλ,δ, vλ,δ) ∈ NBr

λ,δ . We consider

I
mλ,δ
λ,δ = {(u, v) ∈ E : I(u, v) ≤ mλ,δ}

and define the function γ : Ω−r → I
mλ,δ
λ,δ by setting, for each y ∈ Ω−r ,

γ(y) =

{
σλ,δ(x− y), if x ∈ Br(y),
0, otherwise.

(3.3)

A change of variables and straightforward calculations show that the map γ is well
defined. Since σλ,δ is radial, we have that

∫
Br
F (uλ,δ, vλ,δ)xdx = 0. Hence, for each

y ∈ Ω−r , we obtain

(β ◦ γ)(y) = S
−N/p
F

∫
Ω

F (uλ,δ(x− y), vλ,δ(x− y))xdx

= S
−N/p
F

∫
Ω

F (uλ,δ(t), vλ,δ(t))(t+ y)dt

= S
−N/p
F

∫
Ω

F (uλ,δ(t), vλ,δ(t))ydt = yαλ,δ,

where αλ,δ = S
−N/p
F

∫
Ω
F (uλ,δ(t), vλ,δ(t))dt.

Along the way of proving Lemma 3.3, we can check easily the following.
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Lemma 3.4. If λ, δ → 0+, then αλ,δ → 1.

Proof. By Lemma 3.2, we have

mλ,δ =
1
p

∫
Br

(
|∇uλ,δ|p + |∇vλ,δ|p − µ

|uλ,δ|p + |vλ,δ|p

|x|p
)
dx

− 1
p∗

∫
Br

F (uλ,δ, vλ,δ)dx−
∫
Br

Gλ,δ(uλ,δ, vλ,δ)dx

<
1
N
S
N/p
F .

As before,
∫
Br
Gλ,δ(uλ,δ, vλ,δ)dx → 0. Thus, I ′Br (uλ,δ, vλ,δ) = 0, and the above

expression and the same arguments used in the proof of Lemma 3.2 imply that∫
Ω

F (uλ,δ, vλ,δ)dx→ S
N/p
F .

The above equality and the definition of αλ,δ imply that αλ,δ → 1. The lemma is
thus proven. �

Next we define Hλ,δ : [0, 1]× (Nλ,δ ∩ I
mλ,δ
λ,δ )→ RN by

Hλ,δ(t, (u, v)) =
(
t+

1− t
αλ,δ

)
β(u, v).

Lemma 3.5. Suppose (F0)–(F3), (G0)–(G1) are satisfied. There then exists λ∗∗ >
0 such that

Hλ,δ

(
[0, 1]× (Nλ,δ ∩ I

mλ,δ
λ,δ )

)
⊂ Ω+

r (3.4)

for all λ, δ ∈ (0, λ∗∗).

Proof. Arguing by contradiction, we suppose that there exist sequences {λm},
{δm} ⊂ R+ and tm ∈ [0, 1], (um, vm) ∈ (Nλ,δ ∩ I

mλ,δ
λ,δ ) such that λm, δm → 0+

as m → ∞ and Hλm,δm(tm, (um, vm)) 6∈ Ω+
r for all m, up to a subsequence

tm → t0 ∈ [0, 1]. Moreover, the compactness of Ω and Lemma 3.3 imply that,
up to a subsequence, β(um, vm)→ y ∈ Ω. From Lemma 3.4 αλm,δm → 1, so we can
use the definition of Hλ,δ to conclude that Hλm,δm(tm, (um, vm)) → y ∈ Ω, which
is a contradiction. The lemma is proven. �

4. Proof of Theorem 1.2

We begin with the following lemma.

Lemma 4.1. If (u, v) is a critical point of Iλ,δ on Nλ,δ, then it is a critical point
of Iλ,δ in E.

Proof. The proof is almost the same as [22, Lemma 3.2] and is thus omitted here.
�

Lemma 4.2. Suppose (F0)–(F3), (G0)–(G1) are satisfied. Then any sequence
{(um, vm)} ⊂ Nλ,δ such that Iλ,δ(um, vm) → c < 1

N S
N/p
F and I ′λ,δ(um, vm) → 0

contains a convergent subsequence for λ, δ > 0 if q > p and λ, δ ∈ (0, λ∗) if q = p
for some small λ∗ > 0.
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Proof. By hypothesis, there exists a sequence θm ∈ R such that ‖I ′λ,δ(um, vm) −
θmJ

′
λ,δ(um, vm)‖E → 0 as m→∞, where

Jλ,δ(u, v) =
∫

Ω

(|∇u|p−µ |u|
p

|x|p
+ |∇v|p−µ |v|

p

|x|p
)dx−

∫
Ω

F (u, v)dx−q
∫

Ω

Gλ,δ(u, v)dx.

Thus,
I ′λ,δ(um, vm) = θmJ

′
λ,δ(um, vm) + om(1).

Recall that for all (um, vm) ∈ Nλ,δ,

〈J ′λ,δ(um, vm), (um, vm)〉 = (p−p∗)
∫

Ω

F (um, vm)dx+(p−q)
∫

Ω

Gλ,δ(um, vm)dx ≤ 0.

If 〈J ′λ,δ(um, vm), (um, vm)〉 → 0, we have∫
Ω

F (um, vm)dx→ 0,
∫

Ω

Gλ,δ(um, vm)dx→ 0.

Consequently, ‖(um, vm)‖E → 0. On the other hand, if (um, vm) ∈ Nλ,δ, it follows
that

1 ≤ C(λ‖(um, vm)‖q−pE + δ‖(um, vm)‖q−pE + ‖(um, vm)‖p
∗−p
E )

for some C > 0. Hence we arrive at a contradiction if λ, δ > 0 and q > p
or λ, δ ∈ (0, λ∗) for small λ∗ > 0 when q = p. We may thus assume that
〈J ′λ,δ(um, vm), (um, vm)〉 → ` < 0. Since 〈I ′λ,δ(um, vm), (um, vm)〉 = 0, we conclude
that θm = 0 and, consequently, I ′λ,δ(um, vm)→ 0. Using this fact, we have

I ′λ,δ(um, vm)→ c <
1
N
S
N/p
F and I ′λ,δ(um, vm)→ 0.

By Lemma 2.1 the proof is completed. �

Hereafter, we denote the restriction of Iλ,δ on Nλ,δ by INλ,δ .

Lemma 4.3. If (F0)–(F3), (G0)–(G1) are satisfied. Let Λ = min{λ∗, λ∗∗} > 0,
λ, δ ∈ (0,Λ). Then cat

I
mλ,δ
Nλ,δ

(Imλ,δNλ,δ ) ≥ catΩ(Ω), where λ∗, λ∗∗ are given by Lemma

3.3 and 3.5, respectively.

Proof. Suppose that Imλ,δNλ,δ = A1∪A2∪· · ·∪Am, where Aj , j = 1, 2, · · · ,m, are closed
and contractible sets in Imλ,δNλ,δ , this means that there exists hj ∈ C([0, 1]×Aj , I

mλ,δ
Nλ,δ )

such that
hj(0, z) = z, hj(1, z) = ϑ, for all z ∈ Aj ,

where ϑ ∈ Aj is fixed. Consider Bj = γ−1(Aj), 1 ≤ j ≤ m. The sets Bj are closed
and

Ω−r = B1 ∪B2 ∪ · · · ∪Bm.
We define the deformation gj : [0, 1]×Bj by setting

gj(t, y) = Hλ,δ(t, hj(t, γ(y)))

for λ, δ ∈ (0,Λ). Note that

gj(0, y) = Hλ,δ(0, hj(0, γ(y))) =
(β ◦ γ)(y)
αλ,δ

implies
gj(0, y) =

αλ,δy

αλ,δ
= y, for all y ∈ Bj ,
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and gj(1, y) = Hλ,δ(1, hj(1, γ(y))) = β(hj(1, γ(y))) implies

gj(1, y) = β(ϑ) ∈ Ω+
r .

Thus Bj are contractible in Ω+
r . Hence catΩ(Ω) = catΩ+

r
(Ω+

r ) ≤ m. �

Proof of Theorem 1.2. Using Lemma 2.1, Lemma 2.2, and Lemma 3.2 we know
that cλ,δ,mλ,δ <

1
N S

N/p
F for λ, δ ∈ (0,Λ). Moreover, by Lemma 4.2, INλ,δ satisfies

the (PS)c condition for all c < 1
N S

N/p
F . Therefore, by Lemma 4.3, a standard

deformation argument implies that for λ, δ ∈ (0,Λ), INλ,δ contains at least catΩ(Ω)
critical points of the restriction of Iλ,δ on Nλ,δ. Now, Lemma 4.1 implies that
Iλ,δ has at least catΩ(Ω) critical points, and therefore at least catΩ(Ω) nontrivial
solutions of (1.1). As Theorem 1.1, the obtained solutions are nonnegative in Ω.
The proof is completed. �
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