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POSITIVE SOLUTIONS FOR A 2nTH-ORDER p-LAPLACIAN
BOUNDARY VALUE PROBLEM INVOLVING ALL

DERIVATIVES

YOUZHENG DING, JIAFA XU, XIAOYAN ZHANG

Abstract. In this work, we are mainly concerned with the positive solutions
for the 2nth-order p-Laplacian boundary-value problem

−(((−1)n−1x(2n−1))p−1)′ = f(t, x, x′, . . . , (−1)n−1x(2n−2), (−1)n−1x(2n−1)),

x(2i)(0) = x(2i+1)(1) = 0, (i = 0, 1, . . . , n− 1),

where n ≥ 1 and f ∈ C([0, 1] × R2n
+ , R+)(R+ := [0,∞)). To overcome the

difficulty resulting from all derivatives, we first convert the above problem

into a boundary value problem for an associated second order integro-ordinary

differential equation with p-Laplacian operator. Then, by virtue of the classic
fixed point index theory, combined with a priori estimates of positive solutions,

we establish some results on the existence and multiplicity of positive solutions

for the above problem. Furthermore, our nonlinear term f is allowed to grow
superlinearly and sublinearly.

1. Introduction

In this paper, we investigate the existence and multiplicity of positive solu-
tions for the following 2nth-order p-Laplacian boundary value problem involving
all derivatives

−(((−1)n−1x(2n−1))p−1)′ = f(t, x, x′, . . . , (−1)n−1x(2n−2), (−1)n−1x(2n−1)),

x(2i)(0) = x(2i+1)(1) = 0, (i = 0, 1, . . . , n− 1),
(1.1)

where f ∈ C([0, 1]×R2n
+ ,R+). Here, by a positive solution (1.1) we mean a function

u ∈ C2n[0, 1] that solves (1.1) and satisfies u(t) > 0 for all t ∈ (0, 1].
We are here interested in the case where f depends explicitly on all derivatives.

When f involves all even derivatives explicitly, many researchers [1, 2, 4, 12, 15]
study the Lidstone boundary value problem

(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)), n ≥ 2,

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , n− 1.
(1.2)
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Yang [19] considered the existence and uniqueness of positive solutions for the
following generalized Lidstone boundary value problem

(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

α0u
(2i)(0)− β0u

(2i+1)(0) = 0, α1u
(2i)(1)− β1u

(2i+1)(1) = 0, i = 0, 1, 2, . . . , n− 1,
(1.3)

where αj ≥ 0, βj ≥ 0 (j = 0, 1) and α0α1 + α0β1 + α1β0 > 0. In view of the sym-
metry, the results in [1, 2, 4, 12, 15, 19] demonstrate that problems (1.2) and (1.3)
are essentially identical with second-order Dirichlet problem and Sturm-Liouville
problem (the case n = 1), respectively.

Yang, O’Regan and Agarwal [20] studied the existence and multiplicity of posi-
tive solutions for the second-order boundary value problem depending on the first-
order derivative u′

u′′ + f(t, u, u′) = 0,

u(0) = u′(1) = 0.
(1.4)

In order to overcome the difficulty resulting from the first-order derivative, they im-
posed the Bernstein-Nagumo condition [3, 13] on the nonlinear term f to establish
several existence theorems for (1.4).

Yang and O’Regan [21] studied the existence, multiplicity and uniqueness of pos-
itive solutions for the 2nth-order boundary value problem involving all derivatives
of odd orders

(−1)nu(2n) = f(t, u, u′,−u′′′, . . . , (−1)n−1u(2n−1)),

u(2i)(0) = u(2i+1)(1) = 0, i = 0, 1, 2, . . . , n− 1,
(1.5)

where n ≥ 2 and f ∈ C([0, 1]× Rn+1
+ ,R+) depends on u and all derivatives of odd

orders. As application, they utilized their results to discuss the positive symmetric
solutions for a Lidostone problem involving an open question posed by Eloe [5].
Yang [22] discussed a 2nth-order ordinary differential equation involving all deriva-
tives, and the results improved and extended the corresponding ones in [19, 20, 21].

Equations of the p-Laplacian form occur in the study of non-Newtonian fluid
theory and the turbulent flow of a gas in a porous medium. Since 1980s, there exist
a very large number of papers devoted to the existence of solutions for differential
equations with p-Laplacian, for instance, see [6, 7, 10, 11, 16, 17, 18, 23, 24, 25] and
the references therein.

Yang and his coauthors [17, 23, 24] studied some boundary value problems with
the p-Laplacian operator. Yang and O’Regan [23] studied the existence and mul-
tiplicity of positive solutions for the focal problem involving both the p-Laplacian
and the first order derivative

((u′)p−1)′ + f(t, u, u′) = 0, t ∈ (0, 1),

u(0) = u′(1) = 0,
(1.6)

where p > 1 and f ∈ C([0, 1] × R2
+,R+). Moreover, they applied their main

results obtained here to establish the existence of positive symmetric solutions to
the Dirichlet problem

(|u′|p−2u′)′ + f(u, u′) = 0, t ∈ (−1, 0) ∪ (0, 1),

u(−1) = u(1) = 0.
(1.7)
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However, the existence of positive solutions for p-Laplacian equation with the
nonlinear term involving the derivatives, such as Lidstone problem, has not been
extensively studied yet. To the best of our knowledge, only [8, 14, 26] is devoted to
this direction. Guo and Ge [8] considered the following boundary-value problem

(Φ(y(2n−1)))′ = f(t, y, y′′, . . . , y(2n−2)), 0 ≤ t ≤ 1,

y(2i)(0) = y(2i)(1) = 0, i = 0, 1, 2, . . . , n− 1,
(1.8)

where f ∈ C([0, 1]×Rn,R)(R := (−∞,+∞)). Some growth conditions are imposed
on f which yield the existence of at least two symmetric positive solutions by using
a fixed point theorem in cones. An interesting feature in [8] is that the nonlinearity
f may be sign-changing.

Motivated by the works mentioned above, in particular [17, 19, 20, 21, 22, 23, 24],
in this work, we discuss the existence and multiplicity of positive solutions for
(1.1). To overcome the difficulty resulting from all derivatives, we first transform
(1.1) into a boundary value problem for an associated second order integro-ordinary
differential equation. Then, we will use fixed point index theory to establish our
main results based on a priori estimates achieved by utilizing some properties of
concave functions, properties including Jensen’s inequalities and our inequality (2.4)
below. The results obtained here improve some existing results in the literature.

2. Preliminaries

Let E := C1[0, 1], ‖u‖ := max{‖u‖0, ‖u′‖0}, where ‖u‖0 := maxt∈[0,1] |u(t)|.
Furthermore, let P := {u ∈ E : u(t) ≥ 0, u′(t) ≥ 0,∀t ∈ [0, 1]}. Then E is a real
Banach space and P a cone on E. For any positive integer i ≥ 2, we denote

k1(t, s) := min{t, s}, ki(t, s) :=
∫ 1

0

ki−1(t, τ)k1(τ, s) dτ,∀t, s ∈ [0, 1].

Define

(Biu)(t) :=
∫ 1

0

ki(t, s)u(s) ds, hi(t, s) := ∂ki(t, s)/∂t, i = 1, 2, . . . ,

Then

((Biu)(t))′ :=
∫ 1

0

hi(t, s)u(s) ds, i = 1, 2, . . . ,

and Bi, B
′
i : E → E are completely continuous linear operators and Bi, B

′
i are also

positive operators.
Let (−1)n−1x(2n−2) := u, it is easy to see that (1.1) is equivalent to the following

system of integro-ordinary differential equations

−((u′)p−1)′ = f(t, (Bn−1u)(t), ((Bn−1u)(t))′, . . . , u, u′),

u(0) = u′(1) = 0.
(2.1)

Furthermore, the above system can be written in the form

u(t) =
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds. (2.2)

Denote by

(Au)(t) :=
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds.
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Hence, f ∈ C([0, 1]× R2n
+ ,R+) implies that A : P → P is a completely continuous

operator, and the existence of positive solutions for (2.1) is equivalent to that of
positive fixed points of A.

Lemma 2.1. Let κ := 1− 2/e and ψ(t) := tet, t ∈ [0, 1]. Then ψ(t) is nonnegative
on [0, 1] and

κψ(s) ≤
∫ 1

0

k1(t, s)ψ(t) dt ≤ ψ(s). (2.3)

Lemma 2.2. Let u is concave, increasing and nonnegative on [0, 1]. Then∫ 1

0

u(t)ψ(t) dt ≥ κe‖u‖. (2.4)

Proof. The concavity of u and maxt∈[0,1] u(t) = u(1) = ‖u‖ imply∫ 1

0

u(t)ψ(t) dt =
∫ 1

0

u(t · 1 + (1− t) · 0)ψ(t) dt ≥ u(1)
∫ 1

0

tψ(t) dt = κe‖u‖.

This completes the proof. �

Lemma 2.3 ([21]). Let u ∈ P and q > 0. Then∫ 1

0

[
(Bn−1u

q)(t) + 2
n−2∑
i=0

((Bn−1−iu
q)(t))′

]
ψ(t) dt =

∫ 1

0

uq(t)ψ(t) dt. (2.5)

Lemma 2.4 ([9]). Let Ω ⊂ E be a bounded open set and A : Ω ∩ P → P is a
completely continuous operator. If there exists v0 ∈ P \ {0} such that v−Av 6= λv0
for all v ∈ ∂Ω ∩ P and λ ≥ 0, then i(A,Ω ∩ P, P ) = 0, where i is the fixed point
index on P .

Lemma 2.5 ([9]). Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose A :
Ω∩P → P is a completely continuous operator. If v 6= λAv for all v ∈ ∂Ω∩P and
0 ≤ λ ≤ 1, then i(A,Ω ∩ P, P ) = 1.

Lemma 2.6 (Jensen’s inequalities). Let θ > 0 and ϕ ∈ C([0, 1],R+). Then(∫ 1

0

ϕ(t) dt
)θ
≤
∫ 1

0

(ϕ(t))θ dt, if θ ≥ 1,(∫ 1

0

ϕ(t) dt
)θ
≥
∫ 1

0

(ϕ(t))θ dt, if 0 < θ ≤ 1.

3. Main results

For brevity, we define y = (y1, y2, . . . , y2n−1, y2n) ∈ R2n
+ , γp := max{1, 2p−2},

p∗ = min{1, p − 1}, p∗ = max{1, p − 1}, Ki := maxt,s∈[0,1] ki(t, s) > 0, Hi :=
maxt,s∈[0,1] hi(t, s) > 0,

βp :=
{

2p∗−1κ
[
(n− 1)

( n−1∑
i=1

(Ki + Hi)
)p∗−1

+ 1
]}1−p/p∗

,

αp :=
{

2p
∗−1
[
(n− 1)

( n−1∑
i=1

(Ki + Hi)
)p∗−1

+ 1
]}1−p/p∗

.

(H1) f ∈ C([0, 1]× R2n
+ ,R+).
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(H2) There exist a1 > βp and c > 0 such that

f(t, y) ≥ a1

( n−1∑
i=1

(y2i−1+2(n−i)y2i)+y2n−1

)p−1

−c, for all y ∈ R2n
+ and t ∈ [0, 1].

(H3) For any M0 > 0 there is a function ΦM0 ∈ C(R+,R+) such that

f(t, y) ≤ ΦM0(yp−1
2n ),∀(t, y) ∈ [0, 1]× [0,M0]2n−1 × R+,∫ ∞

δ

dξ
ΦM0(ξ)

=∞ for any δ > 0.

(H4) There exist b1 ∈ (0, αp) and r > 0 such that

f(t, y) ≤ b1
( n−1∑
i=1

(y2i−1 +2(n− i)y2i)+y2n−1

)p−1

for all y ∈ [0, r]2n and t ∈ [0, 1].

(H5) There exist a2 > βp and r > 0 such that

f(t, y) ≥ a2

( n−1∑
i=1

(y2i−1 + 2(n− i)y2i) + y2n−1

)p−1

for all y ∈ [0, r]2n and t ∈ [0, 1].

(H6) There exist b2 ∈ (0, αp) and c > 0 such that

f(t, y) ≤ b2
( n−1∑
i=1

(y2i−1 + 2(n− i)y2i) + y2n−1

)p−1

+ c for all y ∈ R2n
+ and t ∈ [0, 1].

(H7) f is increasing in y and there is a constant ω > 0 such that∫ 1

0

fp
∗/(p−1)(s, ω, . . . , ω) ds < ω.

Remark 3.1. A function f is said to be increasing in y if f(t, x) ≤ f(t, y) holds for
every pair x, y ∈ R2n

+ with x ≤ y, where the partial ordering ≤ in R2n
+ is understood

componentwise.

Theorem 3.2. If (H1)–(H4) hold, then (1.1) has at least one positive solution.

Proof. Let
M1 := {u ∈ P : u = Au+ λϕ, for some λ ≥ 0},

where ϕ(t) := te−t. Clearly, ϕ(t) is nonnegative and concave on [0, 1]. We claim
M1 is bounded. We first establish the a priori bound of ‖u‖0 for M1. Indeed,
u ∈M1 implies u is concave (by the concavity of A and ϕ) and u(t) ≥ (Au)(t). By
definition we obtain

u(t) ≥
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds (3.1)

for all u ∈M1. Note that p∗, p∗/p− 1 ∈ [0, 1]. Now, by (H2), we find[
a1

( n−1∑
i=1

(y2i−1+2(n−i)y2i)+y2n−1

)p−1] p∗
p−1 ≤ (f(t, y)+c)

p∗
p−1 ≤ f

p∗
p−1 (t, y)+c

p∗
p−1 .

(3.2)
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Combining this and Jensen’s inequality, we obtain

up∗(t)

≥
[ ∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds
]p∗

≥
∫ t

0

∫ 1

s

f
p∗

p−1 (τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ ds

=
∫ 1

0

k1(t, s)f
p∗

p−1 (s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds

≥ a
p∗

p−1
1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

((Biu)(s) + 2(n− i)((Biu)(s))′) + u(s)
]p∗

ds− c
p∗

p−1

2

≥ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

(
(Biu)(s) + 2(n− i)((Biu)(s))′

)]p∗
ds

+ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)up∗(s) ds− c
p∗

p−1

2

= 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

∫ 1

0

(ki(s, τ) + 2(n− i)hi(s, τ))u(τ) dτ
]p∗

ds

+ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)up∗(s) ds− c
p∗

p−1

2

= 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)
[ ∫ 1

0

∑n−1
i=1 (ki(s, τ) + 2(n− i)hi(s, τ))∑n−1

i=1 (Ki + Hi)

n−1∑
i=1

(Ki

+ Hi)u(τ) dτ
]p∗

ds+ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)up∗(s) ds− c
p∗

p−1

2

≥
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

a
p∗

p−1
1

∫ 1

0

k1(t, s)

×
[ n−1∑
i=1

∫ 1

0

(ki(s, τ) + 2(n− i)hi(s, τ))up∗(τ) dτ
]

ds

+ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)up∗(s) ds− c
p∗

p−1

2

=
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

a
p∗

p−1
1

∫ 1

0

k1(t, s)

×
[ n−1∑
i=1

((Biup∗)(s) + 2(n− i)((Biup∗)(s))′)
]

ds

+ 2p∗−1a
p∗

p−1
1

∫ 1

0

k1(t, s)up∗(s) ds− c
p∗

p−1

2
.

(3.3)
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Multiply both sides of the above expression by ψ(t) and integrate over [0,1] and use
(2.3) and (2.5) to obtain∫ 1

0

ψ(t)up∗(t) dt

≥
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

a
p∗

p−1
1 κ

∫ 1

0

ψ(t)
[ n−1∑
i=1

(
(Biup∗)(t)

+ 2(n− i)((Biup∗)(t))′
)]

dt+ 2p∗−1a
p∗

p−1
1 κ

∫ 1

0

ψ(t)up∗(t) dt− c
p∗

p−1

2

= 2p∗−1a
p∗

p−1
1 κ

[
(n− 1)

( n−1∑
i=1

(Ki + Hi)
)p∗−1

+ 1
] ∫ 1

0

ψ(t)up∗(t) dt− c
p∗

p−1

2
.

(3.4)

Therefore,∫ 1

0

ψ(t)up∗(t) dt ≤ c
p∗

p−1

2p∗a
p∗

p−1
1 κ

[
(n− 1)

(∑n−1
i=1 (Ki + Hi)

)p∗−1

+ 1
]
− 2

:= N1.

Recall that every u ∈ M1 is concave and increasing on [0, 1]. So is up∗ with
p∗ ∈ (0, 1]. Now Lemma 2.2 yields

‖u‖0 ≤ (κe)−1/p∗N
1/p∗

1 (3.5)

for all u ∈ M1, which implies the a priori bound of ‖u‖0 for M1, as claimed. It
follows, from the boundedness of ‖u‖0 for M1, that there is λ0 > 0 such that λ ≤ λ0

for all λ ∈ Λ, where

Λ := {λ ≥ 0 : there exists u ∈M1 such that u = Au+ λϕ}.

If u ∈M1, then

u′(t) =
(∫ 1

t

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
+ λ(1− t)e−t

for some λ ≥ 0, and by (H3),

(u′)p−1(t) ≤ γp
∫ 1

t

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ + γpλ
p−1
0

≤ γp
∫ 1

t

ΦM0((u′)p−1(τ)) dτ + γpλ
p−1
0 .

Let v(t) := (u′)p−1(t). Then v(t) ∈ C([0, 1],R+) and v(1) = 0. Moreover,

v(t) ≤ γp
∫ 1

t

ΦM0(v(τ)) dτ + γpλ
p−1
0 .

Let F (t) :=
∫ 1

t
ΦM0(v(τ)) dτ . Then

−F ′(t) = ΦM0(v(t)) ≤ ΦM0(γpF (t) + γpλ
p−1
0 ).

Therefore, ∫ v(t)

γpλ
p−1
0

dξ
ΦM0(ξ)

≤
∫ γpF (t)+γpλ

p−1
0

γpλ
p−1
0

dξ
ΦM0(ξ)

≤ γp(1− t).
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Hence there is N2 > 0 such that

‖(u′)p−1‖0 = ‖v‖0 = v(0) ≤ N2.

Let N3 := max{(κe)−1/p∗N
1/p∗

1 ,N
1/p−1

2 }. Then

‖u‖ ≤ N3, ∀u ∈M1.

This proves the boundedness of M1. As a result of this, for every R > N3, we have

u−Au 6= λψ, ∀u ∈ ∂BR ∩ P, λ ≥ 0.

Now by Lemma 2.4, we obtain

i(A,BR ∩ P, P ) = 0. (3.6)

Let

M2 := {u ∈ Br ∩ P : u = λAu for some λ ∈ [0, 1]}.

We shall prove M2 = {0}. Indeed, if u ∈M2, we have for any u ∈ Br ∩ P

u(t) ≤
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds. (3.7)

Notice that p∗, p∗/p−1 ≥ 1. Now, similar to (3.3), by Jensen’s inequality and (H4),
we obtain

up
∗
(t)

≤
[ ∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds
]p∗

≤
∫ 1

0

k1(t, s)fp
∗/(p−1)(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds

≤ bp
∗/(p−1)

1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

(
(Biu)(s) + 2(n− i)((Biu)(s))′

)
+ u(s)

]p∗
ds

≤ 2p
∗−1b

p∗/(p−1)
1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

∫ 1

0

(ki(s, τ) + 2(n− i)hi(s, τ))u(τ) dτ
]p∗

ds

+ 2p
∗−1b

p∗/(p−1)
1

∫ 1

0

k1(t, s)up
∗
(s) ds

= 2p
∗−1b

p∗/(p−1)
1

∫ 1

0

k1(t, s)
[ ∫ 1

0

∑n−1
i=1 (ki(s, τ) + 2(n− i)hi(s, τ))∑n−1

i=1 (Ki + Hi)

×
n−1∑
i=1

(Ki + Hi)u(τ) dτ
]p∗

ds+ 2p
∗−1b

p∗/(p−1)
1

∫ 1

0

k1(t, s)up
∗
(s) ds

≤
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

b
p∗/(p−1)
1

∫ 1

0

k1(t, s)
[ n−1∑
i=1

((Biup
∗
)(s)

+ 2(n− i)((Biup
∗
)(s))′)

]
ds+ 2p

∗−1b
p∗/(p−1)
1

∫ 1

0

k1(t, s)up
∗
(s) ds.

(3.8)
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Multiply both sides of the above expression by ψ(t) and integrate over [0, 1] and
use (2.3) and (2.5) to obtain∫ 1

0

ψ(t)up
∗
(t) dt

≤
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

b
p∗/(p−1)
1

∫ 1

0

ψ(t)
[ n−1∑
i=1

(
(Biup

∗
)(t)

+ 2(n− i)((Biup
∗
)(t))′

)]
dt+ 2p

∗−1b
p∗/(p−1)
1

∫ 1

0

ψ(t)up
∗
(t) dt

= 2p
∗−1b

p∗/(p−1)
1

[
(n− 1)

( n−1∑
i=1

(Ki + Hi)
)p∗−1

+ 1
] ∫ 1

0

ψ(t)up
∗
(t) dt.

(3.9)

Therefore,
∫ 1

0
ψ(t)up

∗
(t) dt = 0, whence u(t) ≡ 0,∀u ∈M2. As a result, M2 = {0},

as claimed. Consequently,

u 6= λAu, ∀u ∈ ∂Br ∩ P, λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A,Br ∩ P, P ) = 1. (3.10)

Combining this with (3.6) gives

i(A, (BR\Br) ∩ P, P ) = 0− 1 = −1.

Hence the operator A has at least one fixed point on (BR \ Br) ∩ P and therefore
(1.1) has at least one positive solution. This completes the proof. �

Theorem 3.3. If (H1), (H5), (H6) are satisfied, then (1.1) has at least one positive
solution.

Proof. Let
M3 := {u ∈ Br ∩ P : u = Au+ λψ for some λ ≥ 0}.

We claim M3 ⊂ {0}. Indeed, if u ∈M3, then we have u ≥ Au by definition. That
is,

u(t) ≥
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds. (3.11)

Similar to M2 = {0}, we can also obtain M3 ⊂ {0}. As a result of this, we have

u−Au 6= λψ,∀u ∈ ∂Br ∩ P, λ ≥ 0.

Now Lemma 2.4 gives
i(A,Br ∩ P, P ) = 0. (3.12)

Let
M4 := {u ∈ P : u = λAu for some λ ∈ [0, 1]}.

We assert M4 is bounded. We first establish the a priori bound of ‖u‖0 for M4.
Indeed, if u ∈M4, then u is concave and u ≤ Au, which can be written in the form

u(t) ≤
∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds, (3.13)
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for all u ∈M4. Note that p∗, p∗/p − 1 ≥ 1. Now by (H6) and Jensen’s inequality,
we obtain

up
∗
(t) ≤

[ ∫ t

0

(∫ 1

s

f(τ, (Bn−1u)(τ), ((Bn−1u)(τ))′, . . . , u(τ), u′(τ)) dτ
) 1

p−1
ds
]p∗

≤
∫ 1

0

k1(t, s)fp
∗/(p−1)(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds

≤
∫ 1

0

k1(t, s)
{
b2

[ n−1∑
i=1

(
(Biu)(s) + 2(n− i)((Biu)(s))′

)
+ u(s)

]p−1

+ c
}p∗/(p−1)

ds

≤ bp
∗/(p−1)

3

∫ 1

0

k1(t, s)
[ n−1∑
i=1

((Biu)(s) + 2(n− i)((Biu)(s))′) + u(s)
]p∗

ds

+
c
p∗/(p−1)
1

2

≤ 2p
∗−1b

p∗/(p−1)
3

∫ 1

0

k1(t, s)
[ n−1∑
i=1

((Biu)(s) + 2(n− i)((Biu)(s))′)
]p∗

ds

+ 2p
∗−1b

p∗/(p−1)
3

∫ 1

0

k1(t, s)up
∗
(s) ds+

c
p∗/(p−1)
1

2

= 2p
∗−1b

p∗/(p−1)
3

∫ 1

0

k1(t, s)
[ ∫ 1

0

∑n−1
i=1 (ki(s, τ) + 2(n− i)hi(s, τ))∑n−1

i=1 (Ki + Hi)

×
n−1∑
i=1

(Ki + Hi)u(τ) dτ
]p∗

ds+ 2p
∗−1b

p∗/(p−1)
3

∫ 1

0

k1(t, s)up
∗
(s) ds

+
c
p∗/(p−1)
1

2

≤
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

b
p∗/(p−1)
3

∫ 1

0

k1(t, s)
[ n−1∑
i=1

((Biup
∗
)(s)

+ 2(n− i)((Biup
∗
)(s))′)

]
ds+ 2p

∗−1b
p∗/(p−1)
3

∫ 1

0

k1(t, s)up∗(s) ds

+
c
p∗/(p−1)
1

2
,

(3.14)
for all u ∈M4, b3 ∈ (b2, αp) and c1 > 0 being chosen so that

(b2z + c)p
∗/(p−1) ≤ bp

∗/(p−1)
3 zp

∗/(p−1) + c
p∗/(p−1)
1 ,∀z ≥ 0.
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Multiply both sides of (3.14) by ψ(t) and integrate over [0, 1] and use (2.3) and
(2.5) to obtain∫ 1

0

ψ(t)up
∗
(t) dt

≤
(

2
n−1∑
i=1

(Ki + Hi)
)p∗−1

b
p∗/(p−1)
3

∫ 1

0

ψ(t)
[ n−1∑
i=1

(
(Biup

∗
)(t)

+ 2(n− i)((Biup
∗
)(t))′

)]
dt+ 2p

∗−1b
p∗/(p−1)
3

∫ 1

0

ψ(t)up
∗
(t) dt+

c
p∗/(p−1)
1

2

= 2p
∗−1b

p∗/(p−1)
3

[
(n− 1)

( n−1∑
i=1

(Ki + Hi)
)p∗−1

+ 1
] ∫ 1

0

ψ(t)up
∗
(t) dt

+
c
p∗/(p−1)
1

2
.

(3.15)
Therefore,∫ 1

0

ψ(t)up
∗
(t) dt ≤ c

p∗/(p−1)
1

2− 2p∗bp
∗/(p−1)

3

[
(n− 1)

(∑n−1
i=1 (Ki + Hi)

)p∗−1 + 1
] := N4.

This, together with Jensen’s inequality and ψ(t)/e ∈ [0, 1] (Note that p∗ ≥ 1), leads
to

e

∫ 1

0

u(t)
ψ(t)
e

dt ≤ e
(∫ 1

0

up
∗
(t)
(ψ(t)
e

)p∗ dt
)1/p∗

≤ e
p∗−1

p∗ N
1/p∗

4 (3.16)

for all u ∈M4. From Lemma 2.2, we find

‖u‖0 ≤ κ−1e−1/p∗N
1/p∗

4 := N5,∀u ∈M4,

which implies the a priori bound of ‖u‖0 for M4, as claimed. Furthermore, for any
positive integer i ≥ 1, this estimate leads to

‖(Biu)‖0 = (Biu)(1) ≤ N5, ∀u ∈M4

and for each positive integer i ≥ 2, we see

‖(Biu)′‖0 = (Biu)′(0) =
∫ 1

0

(Bi−1u)(t) dt ≤ N5,∀u ∈M4.

Moreover, for i = 1, we have

‖(B1u)′‖0 = (B1u)′(0) =
∫ 1

0

u(t) dt ≤ N5,∀u ∈M4.

Combining these and (H6), we have

−((u′)p−1)′ ≤ f(t, (Bn−1u)(t), ((Bn−1u)(t))′, . . . , u, u′),

u(0) = u′(1) = 0.

Let (u′)p−1(t) := w′(t). Then w ∈ C([0, 1],R+) and u′(1) = 0 implies w′(1) = 0.
Therefore,

−w′′(t) ≤ n2N5,∀u ∈M4,

so that
‖w′‖0 = w′(0) ≤ n2N5.
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Consequently,

‖u′‖0 = ‖w′‖1/p−1
0 ≤ (n2N5)1/p−1, ∀u ∈M4.

Let N6 := max{N5, (n2N5)1/p−1}. Then

‖u‖ ≤ N6, ∀u ∈M4.

This proves the boundedness of M4. As a result of this, for every R > N6, we have

u 6= λAu, ∀u ∈ ∂BR ∩ P, λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A,BR ∩ P, P ) = 1. (3.17)

Combining this with (3.12) gives

i(A, (BR\Br) ∩ P, P ) = 1− 0 = 1.

Hence the operator A has at least one fixed point on (BR \ Br) ∩ P and therefore
(1.1) has at least one positive solution. This completes the proof. �

Theorem 3.4. If (H1)–(H3), (H6), (H7) are satisfied. Then (1.1) has at least two
positive solutions.

Proof. By (H2), (H3), and (H6), we know that (3.6) and (3.12) hold. Note we may
choose R > ω > r in (3.6) and (3.12) (see the proofs of Theorems 3.2 and 3.3). By
(H7) and Jensen’s inequality, we have that for all u ∈ ∂Bω ∩ P ,

[(Au)(t)]p
∗

≤
∫ 1

0

k1(t, s)fp
∗/(p−1)(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds

≤
∫ 1

0

fp
∗/(p−1)(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds < ω

(3.18)

and
[((Au)(t))′]p

∗

=
(∫ 1

t

f(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds
)p∗/(p−1)

≤
∫ 1

0

fp
∗/(p−1)(s, (Bn−1u)(s), ((Bn−1u)(s))′, . . . , u(s), u′(s)) ds < ω.

(3.19)

Thus we obtain
‖Au‖ < ω = ‖u‖, ∀u ∈ ∂Bω ∩ P,

This implies
u 6= λAu, ∀u ∈ ∂Bω ∩ P, λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A,Bω ∩ P, P ) = 1. (3.20)

Combining this with (3.6) and (3.12) gives

i(A, (BR\Bω) ∩ P, P ) = 0− 1 = −1, i(A, (Bω\Br) ∩ P, P ) = 1− 0 = 1.

Hence the operator A has at least two fixed points, with one on (BR \Bω)∩P and
the other on (Bω \ Br) ∩ P . Therefore, (1.1) has at least two positive solutions.
This completes the proof. �
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