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UNIQUENESS AND ASYMPTOTIC BEHAVIOR OF POSITIVE
SOLUTIONS FOR A FRACTIONAL-ORDER INTEGRAL

BOUNDARY-VALUE PROBLEM

XIANGBING ZHOU, WENQUAN WU

Abstract. In this note, we extend the results by Jia et al [3] to a more
general case. By refining the conditions imposed on f and finding more suitable

upper and lower solution, we remove some key conditions used in [3], and still

establish their results.

1. Introduction

In the recent years, there has been a significant development in ordinary and
partial differential equations involving fractional derivatives, see [1, 2, 3, 4, 5, 10,
11, 12, 13]. Yuan [1] studied the (n− 1, 1)-type conjugate boundary-value problem

Dα
t u(t) + f(t, u(t)) = 0, 0 < t < 1, n− 1 < α ≤ n, n ≥ 3,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0,
. (1.1)

where f is continuous and semipositone, Dα
t is the standard Riemann-Liouville de-

rivative. By giving properties of Green’s function and using the Guo-Krasnosel’skii
fixed point theorem on cones, the existence of multiple positive solutions of (1.1)
were obtained. Zhang [2] considered the existence and uniqueness of higher-order
fractional differential equation

Dα
t x(t) + q(t)f(x, x′, . . . , x(n−2)) = 0, 0 < t < 1, n− 1 < α ≤ n,

x(0) = x′(0) = · · · = x(n−2)(0) = x(n−2)(1) = 0,
(1.2)

where Dα
t is the standard Riemann-Liouville fractional derivative of order α, q may

be singular at t = 0 and f may be singular at x = 0, x′ = 0, . . . , x(n−2) = 0. By
using fixed point theorem of the mixed monotone operator, the author established
the existence and uniqueness result of positive solution for the above problem (1.2).
Recently, Jia et al [3], considered the existence, uniqueness and asymptotic behavior
of positive solutions for the following higher nonlocal fractional differential equation
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with Riemann-Stieltjes integral condition

−Dα
t x(t) = f(t, x(t), x′(t), x′′(t), . . . , x(n−2)(t)), 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(n−2)(1) =
∫ 1

0

x(n−2)(s)dA(s),
(1.3)

where n − 1 < α ≤ n, n ∈ N and n ≥ 2, Dα
t is the standard Riemann-Liouville

derivative,
∫ 1

0
x(n−2)(s)dA(s) is linear functionals given by Riemann-Stieltjes inte-

grals, A is a function of bounded variation and dA can be a changing-sign measure,
and f : (0, 1)× (0,+∞)n−1 → [0,+∞) is continuous, f may be singular at xi = 0
and t = 0, 1. By using upper and lower solution method and Schauder’s fixed point
theorem, the existence, uniqueness and asymptotic behavior of positive solutions of
(1.3) are obtained provided that f satisfies suitable growth condition and integral
conditions.

Motivated by the results mentioned above, in this paper, we study the exis-
tence, uniqueness and asymptotic behavior of positive solutions for the fractional
differential equation with Riemann-Stieltjes integral condition

−Dµ
t x(t) = f(t, x(t),Dµ1

t x(t),Dµ2
t x(t), . . . ,Dµn−2

t x(t)), 0 < t < 1,

x(0) = Dµ1
t x(0) = · · · = D

µn−2
t x(0) = 0, D

µn−2
t x(1) =

∫ 1

0

D
µn−2
t x(s)dA(s),

(1.4)
where n − 1 < µ ≤ n, n ∈ N and n ≥ 2 with 0 < µ1 < µ2 < · · · < µn−2 and
n − 2 < µn−2 < µ − 1, Dµ

t is the standard Riemann-Liouville derivative, and
f : (0, 1)× (0,+∞)n−1 → [0,+∞) is continuous, f may be singular at xi = 0 and
t = 0, 1. By refining the conditions imposed on f and finding more suitable upper
and lower solution, we remove some key conditions which are required in the works
of Jia et al [3], but a similar result is still established for the more general form
(1.4).

2. Preliminaries

In this section, we present the necessary definitions from fractional calculus the-
ory.

Definition 2.1 ([6, 7]). The Riemann-Liouville fractional integral of order α > 0
of a function x : (0,+∞)→ R is given by

Iαx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 ([6, 7]). The Riemann-Liouville fractional derivative of order α > 0
of a function x : (0,+∞)→ R is given by

Dα
t x(t) =

1
Γ(n− α)

(
d

dt
)n
∫ t

0

(t− s)n−α−1x(s)ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the
right-hand side is pointwise defined on (0,+∞).



EJDE-2013/37 UNIQUENESS AND ASYMPTOTIC BEHAVIOR 3

Proposition 2.3 ([6, 7]). (1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dσ
t I

νx(t) = Iν−σx(t), Dσ
t I

σx(t) = x(t).

(2) If α > 0, σ > 0, then

Dα
t t
σ−1 =

Γ(σ)
Γ(σ − α)

tσ−α−1.

Proposition 2.4 ([6, 7]). Let α > 0, and f(x) be integrable, then

IαDα
t f(x) = f(x) + c1x

α−1 + c2x
α−2 + · · ·+ cnx

α−n,

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Let
x(t) = Iµn−2y(t), y(t) ∈ C[0, 1],

by Propositions 2.3-2.4 and a discussion similar to [3], we easily reduce the order
of (1.4) to the equivalent problem

−D
µ−µn−2
t y(t) = f(t, Iµn−2y(t), Iµn−2−µ1y(t), . . . , Iµn−2−µn−3y(t), y(t)),

y(0) = 0, y(1) =
∫ 1

0

y(s)dA(s).
(2.1)

Lemma 2.5 ([13]). Given h ∈ L1(0, 1), then the problem

D
µ−µn−2
t y(t) + h(t) = 0, 0 < t < 1,

y(0) = 0, y(1) = 0,
(2.2)

has the unique solution

y(t) =
∫ 1

0

G(t, s)h(s)ds,

where G(t, s) is the Green function of (2.2), given by

G(t, s) =


tµ−µn−2−1(1−s)µ−µn−2−1−(t−s)µ−µn−2−1

Γ(µ−µn−2) , 0 ≤ s ≤ t ≤ 1,
tµ−µn−2−1(1−s)µ−µn−2−1

Γ(µ−µn−2) , 0 ≤ t ≤ s ≤ 1.
(2.3)

By Proposition 2.4, the unique solution of the problem

D
µ−µn−2
t y(t) = 0, 0 < t < 1,

y(0) = 0, y(1) = 1,
(2.4)

is tµ−µn−2−1. Let

C =
∫ 1

0

tµ−µn−2−1dA(t), (2.5)

and define

GA(s) =
∫ 1

0

G(t, s)dA(t).

Then the Green function for the nonlocal BVP (2.1) is (for details see [8] or [9])

K(t, s) =
tµ−µn−2−1

1− C
GA(s) +G(t, s). (2.6)

In this article we use the following assumption
(H0) A is a function of bounded variation such that GA(s) ≥ 0 for s ∈ [0, 1] and

0 ≤ C < 1, where C is defined by (2.5).
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The following Lemma follows from (2.3) and (2.6).

Lemma 2.6. Suppose (H0) holds. Then the Green function defined by (2.6) satis-
fies:

(1) K(t, s) > 0, for all t, s ∈ (0, 1).
(2)

tµ−µn−2−1

1− C
GA(s) ≤ K(t, s) ≤ H(s)tµ−µn−2−1, (2.7)

where

H(s) =
(1− s)µ−µn−2−1

Γ(µ− µn−2)
+
GA(s)
1− C

.

Definition 2.7. A continuous function Ψ(t) is called a lower solution of (2.1), if
it satisfies

−D
µ−µn−2
t Ψ(t)(t) ≤ f(t, Iµn−2Ψ(t), Iµn−2−µ1Ψ(t), . . . , Iµn−2−µn−3Ψ(t),Ψ(t)),

Ψ(0) ≥ 0, Ψ(1) ≥
∫ 1

0

Ψ(s)dA(s).

Definition 2.8. A continuous function Φ(t) is called a upper solution of (2.1), if
it satisfies

−D
µ−µn−2
t Φ(t)(t) ≥ f(t, Iµn−2Φ(t), Iµn−2−µ1Φ(t), . . . , Iµn−2−µn−3Φ(t),Φ(t)),

Φ(0) ≤ 0, Φ(1) ≤
∫ 1

0

Φ(s)dA(s).

3. Main results

Let E = C[0, 1]. Define the following continuous functions on E:

κ0(t) = Iµn−2sµ−µn−2−1 =
∫ t

0

(t− s)µn−2−1sµ−µn−2−1

Γ(µn−2)
ds =

Γ(µ− µn−2)
Γ(µ)

sµ−1,

κ1(t) = Iµn−2−µ1sµ−µn−2−1 =
∫ t

0

(t− s)µn−2−µ1−1sµ−µn−2−1

Γ(µn−2 − µ1)
ds

=
Γ(µ− µn−2)

Γ(µ− µ1)
tµ−1−µ1 ,

. . .

κn−3(t) = Iµn−2−µn−3sµ−µn−2−1 =
∫ t

0

(t− s)µn−2−µn−3−1sµ−µn−2−1

Γ(µn−2 − µn−3)
ds

=
Γ(µ− µn−2)
Γ(µ− µn−3)

tµ−1−µn−3 ,

κn−2(t) = tµ−1−µn−2 .

Set

P =
{
y ∈ E : there exist positive numbers 0 < ly < 1, Ly > 1 such that

lyκn−2(t) ≤ y(t) ≤ Lyκn−2(t), t ∈ [0, 1
}
.

(3.1)
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Clearly, P is nonempty since κn−2(t) ∈ P . For any y ∈ P , define an operator T by

(Ty)(t) =
∫ 1

0

K(t, s)f(s, Iµn−2y(s), Iµn−2−µ1y(s), . . . , Iµn−2−µn−3y(s), y(s))ds.

(3.2)
In this note, we will use the following conditions:

(H1) f ∈ C((0, 1) × (0,∞)n−1, [0,+∞)), and f(t, x0, x1, x2, . . . , xn−2) is nonin-
creasing in xi > 0 for i = 0, 1, 2, . . . , n− 2;

(H2) For any λi > 0,

0 <
∫ 1

0

H(s)f(s, λ0κ0(s), λ1κ1(s), λ2κ2(s), . . . , λn−2κn−2(s))ds < +∞.

Lemma 3.1. Suppose (H0)–(H2) hold. Then T is well defined, T (P ) ⊂ P , and T
is nonincreasing relative to y.

Proof. For any y ∈ P , by the definition of P , there exist two positive numbers
0 < ly < 1, Ly > 1 such that

lyκn−2(s) ≤ y(t) ≤ Lyκn−2(s) (3.3)

for any s ∈ [0, 1]. It follows from (2.7) and (H1)–(H2) that

(Ty)(t)

=
∫ 1

0

K(t, s)f(s, Iµn−2y(s), Iµn−2−µ1y(s), . . . , Iµn−2−µn−3y(s), y(s))ds

≤ κn−2(s)
∫ 1

0

H(s)f(s, lyκ0(s), lyκ1(s), . . . , lyκn−3(s), lyκn−2(s))ds

< +∞.

(3.4)

By (2.7), (3.3) and (3.4), we have

(Ty)(t)

=
∫ 1

0

K(t, s)f(s, Iµn−2y(s), Iµn−2−µ1y(s), . . . , Iµn−2−µn−3y(s), y(s))ds

≥ tµ−µn−2−1

1− C

∫ 1

0

GA(s)f(s, Lyκ0(s), Lyκ1(s), . . . , Lyκn−3(s), Lyκn−2(s))ds.

(3.5)
Take

l′y = min
{

1,
1

1− C

∫ 1

0

GA(s)f(s, Lyκ0(s), Lyκ1(s), . . . , Lyκn−3(s), Lyκn−2(s))ds
}
,

L′y = max
{

1,
∫ 1

0

H(s)f(s, lyκ0(s), lyκ1(s), . . . , lyκn−2(s))ds
}
.

(3.6)
It follows from (3.3)-(3.6) that T is well defined and T (P ) ⊂ P . Moreover, by (H1),
T is nonincreasing relative to y. �

Theorem 3.2 (Existence). Suppose rm(H0)–(H2) hold. Then (1.4) has at least
one positive solution x(t).
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Proof. From (3.2) and simple computation, we have

−D
µ−µn−2
t (Ty)(t) = f(t, Iµn−2y(t), Iµn−2−µ1y(t), . . . , Iµn−2−µn−3y(t), y(t)),

(Ty)(0) = 0, (Ty)(1) =
∫ 1

0

(Ty)(s)dA(s).
(3.7)

Let

α(t) = min{κn−2(t), (Tκn−2)(t)}, β(t) = max{κn−2(t), (Tκn−2)(t)}, (3.8)

then, if κn−2(t) = (Tκn−2)(t), the conclusion of Theorem 3.2 holds. If κn−2(t) 6=
(Tκn−2)(t), clearly, α(t), β(t) ∈ P and

α(t) ≤ κn−2(t) ≤ β(t). (3.9)

Set
Φ(t) = (Tβ)(t),Ψ(t) = (Tα)(t),

then by (3.8)-(3.9) and Lemma 3.1, one has

Φ(t) = (Tβ)(t) ≤ (Tκn−2)(t) ≤ T (α)(t) = Ψ(t),

Φ(t) ≤ (Tκn−2)(t) ≤ β(t), Ψ(t) ≥ (Tκn−2)(t) ≥ α(t),
(3.10)

and Φ(t),Ψ(t) ∈ P .
On the other hand, by (3.7), (3.10) and Lemma 3.1, we have

D
µ−µn−2
t Φ(t) + f(t, Iµn−2Φ(t), Iµn−2−µ1Φ(t), . . . , Iµn−2−µn−3Φ(t),Φ(t))

≥ D
µ−µn−2
t (Tβ)(t) + f(t, Iµn−2β(t), Iµn−2−µ1β(t), . . . , Iµn−2−µn−3β(t), β(t))

= −f(t, Iµn−2β(t), Iµn−2−µ1β(t), . . . , Iµn−2−µn−3β(t), β(t))

+ f(t, Iµn−2β(t), Iµn−2−µ1β(t), . . . , Iµn−2−µn−3β(t), β(t)) = 0,

(TΦ)(0) = 0, (TΦ)(1) =
∫ 1

0

(TΦ)(s)dA(s).

(3.11)
and

D
µ−µn−2
t Ψ(t) + f(t, Iµn−2Ψ(t), Iµn−2−µ1Ψ(t), . . . , Iµn−2−µn−3Ψ(t),Ψ(t))

≤ D
µ−µn−2
t (Tα)(t) + f(t, Iµn−2α(t), Iµn−2−µ1α(t), . . . , Iµn−2−µn−3α(t), α(t))

= −f(t, Iµn−2α(t), Iµn−2−µ1α(t), . . . , Iµn−2−µn−3α(t)

+ f(t, Iµn−2α(t), Iµn−2−µ1α(t), . . . , Iµn−2−µn−3α(t) = 0,

(TΨ)(0) = 0, (TΨ)(1) =
∫ 1

0

(TΨ)(s)dA(s).

(3.12)
Inequalities (3.10)-(3.12) imply that Φ(t),Ψ(t) are lower and upper solution of (2.1),
respectively.

Define the function F and the operator A in E by

F (t, y)

=


f(t, Iµn−2Φ(t), Iµn−2−µ1Φ(t), . . . , Iµn−2−µn−3Φ(t),Φ(t)), y < Φ(t),
f(t, Iµn−2y(t), Iµn−2−µ1y(t), . . . , Iµn−2−µn−3y(t), y(t)), Φ(t) ≤ y ≤ Ψ(t),
f(t, Iµn−2Ψ(t), Iµn−2−µ1Ψ(t), . . . , Iµn−2−µn−3Ψ(t),Ψ(t)), y > Ψ(t),

(3.13)
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and

(Ay)(t) =
∫ 1

0

K(t, s)F (s, y(s))ds, ∀y ∈ E.

Clearly, F : [0, 1] × [0,+∞) → [0,+∞) is continuous by (3.13). Consider the
following boundary value problem

−D
µ−µn−2
t y(t) = F (t, y), 0 < t < 1,

y(0) = 0, y(1) =
∫ 1

0

y(s)dA(s).
(3.14)

Obviously, a fixed point of the operator A is a solution of (3.14). As in [3], A has
at least a fixed point y such that y = Ay.

In the end, we claim

Φ(t) ≤ y(t) ≤ Ψ(t), t ∈ [0, 1].

In fact, since y is fixed point of A and (3.12), we obtain

y(0) = 0, y(1) =
∫ 1

0

y(s)dA(s), Ψ(0) = 0, Ψ(1) =
∫ 1

0

Ψ(s)dA(s). (3.15)

We firstly claim y(t) ≤ Ψ(t). Otherwise, suppose x(t) > Ψ(t). According to the
definition of F , we have

−D
µ−µn−2
t y(t) = F (t, y(t))

= f(t, Iµn−2Ψ(t), Iµn−2−µ1Ψ(t), . . . , Iµn−2−µn−3Ψ(t),Ψ(t)).
(3.16)

On the other hand, it follows from ψ is an upper solution to (2.1) that

−D
µ−µn−2
t Ψ(t) ≥ f(t, Iµn−2Ψ(t), Iµn−2−µ1Ψ(t), . . . , Iµn−2−µn−3Ψ(t),Ψ(t)). (3.17)

Let z(t) = Ψ(t)− y(t), (3.15)-(3.17) imply that

D
µ−µn−2
t z(t) = D

µ−µn−2
t Ψ(t)−D

µ−µn−2
t y(t) ≤ 0,

and

z(0) = 0, z(1) =
∫ 1

0

z(s)dA(s).

It follows from (2.6) that
z(t) ≥ 0,

i.e., y(t) ≤ Ψ(t) on [0, 1], which contradicts y(t) > Ψ(t). Hence, y(t) > Ψ(t) is
impossible.

By the same way, we also have y(t) ≥ Φ(t) on [0, 1]. So

Φ(t) ≤ y(t) ≤ Ψ(t), t ∈ [0, 1]. (3.18)

Consequently, F (t, y(t)) = f(t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)), t ∈ [0, 1]. Then
y(t) is a positive solution of the problem (2.1). It follows from (2.1) that x(t) =
Iµn−2y(t) is positive solution of (1.4). �

Remark 3.3. In this work, we not only extend the main result of [3] to more
general form with fractional derivatives in nonlinearity and boundary condition,
but also by finding more suitable upper and lower solution, we omit the following
key conditions of [3]:

(i) For any λi > 0, f(t, λ0t
n−2, λ1t

n−3, . . . , λn−3t, λn−2) 6≡ 0, t ∈ (0, 1).
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(ii)∫ 1

0

GA(s)f
(
s,
L

l
κ0(s),

L

l
κ1(s), . . . ,

L

l
κn−3(s),

L

l
κn−2(s)

)
ds ≥ 1− C.

This implies our result essentially improves those of [3].

Theorem 3.4 (Asymptotic Behavior). Suppose Suppose (H0)–(H2) hold. Then
there exist two constants B1,B2 such that the positive solution x(t) of (1.4) satisfies

B1κn−2(t) ≤ x(t) ≤ B2κn−2(t). (3.19)

Proof. By (3.18), and Φ,Ψ ∈ P , we know that there exist two positive constants
0 < lΦ < 1, LΨ > 1 such that

lΦκn−2(t) ≤ Φ(t) ≤ y(t) ≤ Ψ(t) ≤ LΨκn−2(t).

Notice that x(t) = Iµn−2y(t), we have

lΦΓ(µ− µn−2)
Γ(µ)

tµ−1 = lΦI
µn−2κn−2(s) ≤ x(t)

≤ LΨI
µn−2κn−2(s) =

LΨΓ(µ− µn−2)
Γ(µ)

tµ−1.

Let

B1 =
lΦΓ(µ− µn−2)

Γ(µ)
, B2 =

LΨΓ(µ− µn−2)
Γ(µ)

,

then (3.19) holds. �

If µ > 1 is a integer, then we also have the following uniqueness result similar to
[3].

Theorem 3.5 (Uniqueness). Suppose Suppose (H0)–(H2) hold, and µ = n > 1.
Then the positive solution x(t) of (1.4) is unique.

Proof. Notice that

f(t, Iµn−2w2(t), Iµn−2−µ1w2(t), . . . , Iµn−2−µn−3w2(t), w2(t))

≤ f(t, Iµn−2w1(t), Iµn−2−µ1w1(t), . . . , Iµn−2−µn−3w1(t), w2(t)),

for
w2(t) ≥ w1(t), t ∈ [a, b].

Thus similar to [3], the proof is completed. �

Example 3.6. Consider the existence of positive solutions for the nonlinear frac-
tional differential equation

−D
11/3
t x(t) = t2/3

[
x−1/2 + (D2/3

t x)−1/3 + (D7/3
t x)−2/3

]
, 0 < t < 1,

x(0) = D
2/3
t x(0) = D

7/3
t x(0) = 0, D

7/3
t x(1) =

∫ 1

0

D
7/3
t x(s)dA(s),

(3.20)

where

A(t) =


0, t ∈ [0, 1/2),
3/2, t ∈ [1/2, 3/4),
1, t ∈ [3/4, 1].

Therefore, (3.20) has at least a positive solution.
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Proof. Clearly, (3.20) is equivalent to the following 4-point BVP with coefficients
of both signs

−D
11/3
t x(t) = t2/3[x−1/2 + (D2/3

t x)−1/3 + (D7/3
t x)−2/3], 0 < t < 1,

x(0) = D
2/3
t x(0) = D

7/3
t x(0) = 0, D

7/3
t (1) =

3
2
D

7/3
t (

1
2

)− 1
2
D

7/3
t (

3
4

),

Thus f(t, x0, x1, x2) = t2/3[x−1/2
0 + x

−1/3
1 + x

−2/3
2 ], κ2(t) = t1/3, and

0 ≤ C =
∫ 1

0

t1/3dA(t) = 1−
[ ∫ 3/4

1/2

3
2
dt1/3 +

∫ 1

3/4

dt1/3
]
≈ 0.7363 < 1,

and

G(t, s) =

G1(t, s) = t1/3(1−s)1/3
Γ(4/3) , 0 ≤ t ≤ s ≤ 1,

G2(t, s) = t1/3(1−s)1/3−(t−s)1/3
Γ(4/3) , 0 ≤ s ≤ t ≤ 1.

Thus,

GA(s) =


3
2G2(1/2, s)− 1

2G2(3/4, s), 0 ≤ s < 1
2 ,

3
2G1(1/2, s)− 1

2G2(3/4, s), 1
2 ≤ s <

3
4 ,

3
2G1(1/2, s)− 1

2G1(3/4, s), 3
4 ≤ s ≤ 1,

=


( 3
2×( 1

2 )1/3− 1
2×( 3

4 )1/3)(1−s)1/3+ 1
2 ( 3

4−s)
1/3− 3

2 ( 1
2−s)

1/3

Γ(4/3) , 0 ≤ s < 1
2 ,

( 3
2×( 1

2 )1/3− 1
2×( 3

4 )1/3)(1−s)1/3+ 1
2 ( 3

4−s)
1/3

Γ(4/3) , 1
2 ≤ s <

3
4 ,

( 3
2×( 1

2 )1/3− 1
2×( 3

4 )1/3)(1−s)1/3

Γ(4/3) , 3
4 ≤ s ≤ 1,

and

H(s) =
(1− s)1/3

Γ(4/3)
+
GA(s)
0.2637

.

Clearly, (H0) and (H1) hold.
On the other hand, since

κ0(t) =
Γ(4/3)
Γ(11/3)

t
8
3 , κ1(t) =

Γ(4/3)
Γ(3)

t2, κ2(t) = t1/3,

for any λi > 0, i = 0, 1, 2, we have

0 <
∫ 1

0

H(s)f(s, λ0κ0(s), λ1κ1(s), λ2κ2(s))ds

=
∫ 1

0

[ (1− s)1/3

Γ(4/3)
+
GA(s)
0.2637

]
s2/3

[
(

Γ(4/3)
Γ(11/3)

λ0)−1/2s−
4
3

+ (
Γ(4/3)
Γ(3)

λ1)−1/3s−2/3 + λ
−2/3
2 s−

2
9

]
ds

< +∞.

Thus (H2) is satisfied. Then by Theorem 3.2, the BVP (3.20) has at least a positive
solution. �
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