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OSCILLATION OF FIXED POINTS OF SOLUTIONS TO
COMPLEX LINEAR DIFFERENTIAL EQUATIONS

ABDALLAH EL FARISSI, MAAMAR BENBACHIR

Abstract. In this article, we study the relationship between the derivatives
of the solutions to the differential equation f (k) +Ak−1f (k−1) + · · ·+A0f = 0

and entire functions of finite order.

1. Introduction and statement of results

Throughout this article, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory [13, 12]. In addition, we will use λ(f) and λ(1/f) to denote respectively
the exponents of convergence of the zero-sequence and the pole-sequence of a mero-
morphic function f , ρ(f) to denote the order of growth of f , λ(f) and λ(1/f) to
denote respectively the exponents of convergence of the sequence of distinct zeros
and distinct poles of f . A meromorphic function ϕ(z) is called a small function of
a meromorphic function f(z) if T (r, ϕ) = o(T (r, f)) as r → +∞, where T (r, f) is
the Nevanlinna characteristic function of f . In order to express the rate of growth
of meromorphic solutions of infinite order, we recall the following definitions.

Definition 1.1 ([11],[13]). Let f be a meromorphic function and let z1, z2, . . . such
that (|zj | = rj , 0 < r1 ≤ r2 ≤ . . . ) be the sequence of the fixed points of f , each
point being repeated only once. The exponent of convergence of the sequence of
distinct fixed points of f is defined by

τ(f) = inf
{
τ > 0 :

+∞∑
j=1

|zj |−τ < +∞
}
.

Clearly,

τ(f) = lim sup
r→+∞

logN(r, 1
f−z )

log r
, (1.1)

where N(r, 1
f−z ) is the counting function of distinct fixed points of f(z) in {|z| < r}.

2000 Mathematics Subject Classification. 34M10, 30D35.
Key words and phrases. Linear differential equation; entire solution; hyper order;

exponent of convergence; hyper exponent of convergence.
c©2013 Texas State University - San Marcos.

Submitted June 13, 2012. Published February 6, 2013.

1



2 A. EL FARISSI, M. BENBACHIR EJDE-2013/41

Definition 1.2 ([4, 6, 12]). Let f be a meromorphic function. Then the hyper-order
ρ2(f) of f(z) is defined by

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

. (1.2)

Definition 1.3 ([4, 6]). Let f be a meromorphic function. Then the hyper exponent
of convergence of the sequence of distinct zeros of f(z) is defined by

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r
, (1.3)

where N(r, 1
f ) is the counting function of distinct zeros of f(z) in {|z| < r}.

For k ≥ 2, we consider the linear differential equation

f (k) +Af = 0 (1.4)

where A(z) is a transcendental meromorphic function of finite order ρ(A) = ρ > 0.
Many important results have been obtained on the fixed points of general transcen-
dental meromorphic functions for almost four decades (see [15]). However, there are
a few studies on the fixed points of solutions of differential equations. In [13], Wang
and Lü investigated the fixed points and hyper-order of solutions of second order
linear differential equations with meromorphic coefficients and their derivatives,
they obtained the following result.

Theorem 1.4 ([13]). Suppose that A(z) is a transcendental meromorphic function
satisfying δ(∞, A) = lim infr→+∞

m(r,A)
T (r,A) = δ > 0, ρ(A) = ρ < +∞. Then every

meromorphic solution f 6≡ 0 of the equation

f ′′ +A(z)f = 0, (1.5)

satisfies that f, f ′, f ′′ all have infinitely many fixed points and

τ(f) = τ(f ′) = τ(f ′′) = ρ(f) = +∞, (1.6)

τ2(f) = τ2(f ′) = τ2(f ′′) = ρ2(f) = ρ. (1.7)

The above theorem has been generalized to higher order differential equations
by Liu Ming-Sheng and Zhang Xiao-Mei as follows.

Theorem 1.5 ([11]). Suppose that k ≥ 2 and A(z) is a transcendental meromorphic
function satisfying

δ(∞, A) = lim inf
r→+∞

m(r,A)
T (r,A)

= δ > 0,

and ρ(A) = ρ < +∞. Then every meromorphic solution f 6≡ 0 of (1.4) satisfies
that f and f ′, f ′′, . . . , f (k) all have infinitely many fixed points and

τ(f) = τ(f ′) = τ(f ′′) = · · · = τ(f (k)) = ρ(f) = +∞, (1.8)

τ2(f) = τ2(f
′
) = τ2(f ′′) = · · · = τ2(f (k)) = ρ2(f) = ρ. (1.9)

In [2], El Farissi and Belaidi extended the result of Theorem 1.5 and gave the
following theorem.
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Theorem 1.6. Suppose that k ≥ 2 and A(z) is a transcendental meromorphic
function satisfying δ(∞, A) = lim infr→+∞

m(r,A)
T (r,A) = δ > 0, and 0 < ρ(A) = ρ <

+∞. If ϕ 6≡ 0 is a meromorphic function with finite order ρ(ϕ) < +∞, then every
meromorphic solution f 6≡ 0 of (1.4) satisfies

λ(f − ϕ) = λ(f ′ − ϕ) = · · · = λ(f (k) − ϕ) = ρ(f) = +∞, (1.10)

λ2(f − ϕ) = λ2(f ′ − ϕ) = · · · = λ2(f (k) − ϕ) = ρ2(f) = ρ. (1.11)

2. Our contribution

The main purpose of this article is to study the relationship between the deriva-
tives of the solutions to the differential equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0, k ≥ 2, (2.1)

and entire functions of finite order, where Aj are entire functions of finite order.
We prove the following result.

Theorem 2.1. Let k ≥ 2 and Aj be entire functions of finite order such that
max{ρ(Aj), j = 1, . . . , k − 1} < ρ(A0) < +∞. If ϕ 6≡ 0 is an entire function with
finite order, ρ(ϕ) < +∞, then every solution f 6≡ 0 of (2.1) satisfies

λ(f (i) − ϕ) = λ(f (i) − ϕ) = ρ(f) = +∞, i ∈ N (2.2)

and
λ2(f (i) − ϕ) = λ2(f (i) − ϕ) = ρ2(f) = ρ(A0) = ρ, i ∈ N. (2.3)

For ϕ(z) = z in Theorem 2.1, we obtain the following result.

Corollary 2.2. Let k ≥ 2 and Aj be entire functions of finite order such that
max{ρ(Aj), j = 1, . . . , k − 1} < ρ(A0) < +∞. Then every solution f 6≡ 0 of (2.1),
its derivatives f (i) (i ∈ N) have infinitely many fixed points and

τ(f (i)) = τ(f (i)) = ρ(f) = +∞, i ∈ N, (2.4)

τ2(f (i)) = τ2(f (i)) = ρ2(f) = ρ(A0) = ρ, i ∈ N. (2.5)

Corollary 2.3. Suppose that k ≥ 2 and A(z) is a transcendental entire function
such that 0 < ρ(A) = ρ < +∞. If ϕ 6≡ 0 is an entire function with finite order,
ρ(ϕ) < +∞, then every solution f 6≡ 0 of (1.4) satisfies (2.2) and (2.3).

3. Auxiliary Lemmas

The following lemmas will be used in the proof of Theorem 2.1.

Lemma 3.1 ([6]). Let f be a transcendental meromorphic function of finite order
ρ, let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct pairs of
integers that satisfy ki > ji ≥ 0 for i = 1, . . . ,m and let ε > 0 be a given constant.
Then the following estimations hold:

(i) There exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if
ψ ∈ [0, 2π) − E1, then there is a constant R1 = R1(ψ) > 1 such that for all z
satisfying arg z = ψ and |z| > R1 and for all (k, j) ∈ Γ, we have∣∣f (k)(z)

f (j)(z)

∣∣ 6 |z|(k−j)(ρ−1+ε). (3.1)
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(ii) There exists a set E2 ⊂ (1,∞) that has finite logarithmic measure lm(E2) =∫ +∞
1

χ
E2

(t)

t dt, where χ
E2

is the characteristic function of E2, such that for all z
satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ Γ, we have

|f
(k)(z)
f (j)(z)

| 6 |z|(k−j)(ρ−1+ε). (3.2)

To avoid some problems caused by the exceptional set we recall the following
Lemmas.

Lemma 3.2 ([1, p. 68]). Let g : [0,+∞) → R and h : [0,+∞) → R be monotone
non-decreasing functions such that g(r) ≤ h(r) outside of an exceptional set E of
finite linear measure. Then for any α > 1, there exists r0 > 0 such that g(r) ≤
h(αr) for all r > r0.

Lemma 3.3 ([4]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ(f) = +∞ of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F, (3.3)

then λ(f) = λ(f) = ρ(f) = +∞.

Lemma 3.4 ([2]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-
tions. If f is a meromorphic solution of the (3.3) with ρ(f) = +∞ and ρ2(f) = ρ,
then f satisfies λ2(f) = λ2(f) = ρ2(f) = ρ.

Lemma 3.5 ([5]). Let Aj be entire functions of finite order such that

max{ρ(Aj), j = 1, . . . , k − 1} < ρ(A0) = ρ < +∞,
then every solution f 6≡ 0, of (2.1), satisfies ρ2(f) = ρ.

Let Aj (j = 0, 1, . . . , k−1) be entire functions. We define a sequences of functions
as follows:

A0
j = Aj j = 0, 1, . . . , k − 1

Aik−1 = Ai−1
k−1 −

(Ai−1
0 )′

Ai−1
0

i ∈ N

Aij = Ai−1
j +Ai−1

j+1

(Ψi−1
j+1)′

Ψi−1
j+1

j = 0, 1, . . . , k − 2; i ∈ N,

(3.4)

where Ψi−1
j+1 =

Ai−1
j+1

Ai−1
0

.

Lemma 3.6. Let Aj be entire functions of finite order such that

β = max{ρ(Aj), j = 1, . . . , k − 1} < ρ(A0) = α < +∞.
Then (1) There exists a set Ei ⊂ (1,∞) that has finite logarithmic measure such
that for all z satisfying |z| /∈ Ei ∪ [0, 1], we have

|Aij | 6Mir
µi exp{γirβ}, for j = 1, . . . , k − 1,

where Mi, µi, γi are positive real numbers.
(2) There exists a set Ei ⊂ (1,∞) that has finite logarithmic measure such that

for all z satisfying |z| /∈ Ei ∪ [0, 1], we have

|Ai0 −A0| 6Mir
µi exp{γirβ} for i ∈ N,
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where Mi, µi, γi are positive numbers
(3) For all i ∈ N, Ai0 6≡ 0.

Proof. We use the induction on i: If i = 1, then by (3.4), we have

|A1
j | = |A0

j +A0
j+1

(Ψ0
j+1)′

Ψ0
j+1

| 6 |A0
j |+ |A0

j+1

(Ψ0
j+1)′

Ψ0
j+1

|. (3.5)

By Lemma 3.1 (ii), there exists a set E1 ⊂ (1,∞) that has finite logarithmic measure
such that for all z satisfying |z| /∈ E1 ∪ [0, 1], we have

|
(Ψ0

j+1)′

Ψ0
j+1

| 6 rµ1 , (3.6)

|A0
j | 6 exp{γrβ}, j = 0, . . . , k − 2; (3.7)

|A0
j+1| 6 exp{γrβ}, j = 0, . . . , k − 2. (3.8)

Combining (3.5), (3.6), (3.7) and (3.8), yields

|A1
j | 6M1r

µ1 exp{γ1r
β}. (3.9)

Then (1) is true for i = 1.
Now suppose that the assertion (1) is true for the values which are strictly smaller

than a certain i. Let

|Aij | =
∣∣Ai−1

j +Ai−1
j+1

(Ψi−1
j+1)′

Ψi−1
j+1

∣∣ 6 |Ai−1
j |+

∣∣Ai−1
j+1

(Ψi−1
j+1)′

Ψi−1
j+1

∣∣. (3.10)

By the induction hypothesis, there exists a set Ei−1 ⊂ (1,∞) that has finite loga-
rithmic measure such that for all z satisfying |z| /∈ Ei−1 ∪ [0, 1] we have

|Ai−1
k | 6Mi−1r

µi−1 exp{γi−1r
β}, (k = j, j + 1) (3.11)

and by Lemma 3.1 there exist a set E′i−1 ⊂ (1,∞) that has finite logarithmic
measure such that for all z satisfying |z| /∈ E′i−1 ∪ [0, 1] and we have

|
(Ψi−1

j+1)′

Ψi−1
j+1

| 6 rµi−1 . (3.12)

Hence, thanks to (3.10),(3.11) and (3.12), there exist a set Ei = Ei−1 ∪ E′i−1 ⊂
(1,∞) that has finite logarithmic measure such that for all z satisfying |z| /∈ Ei ∪
[0, 1] and we have

|Aij | 6Mir
µi exp{γirβ}. (3.13)

Where Mi, µi, γi are positive numbers; the proof of part (1) is complete.
(2) We use the same arguments as before. For i = 1 by (3.4) we have

|A1
0 −A0| =

∣∣∣A0
0 +A0

1

(Ψ0
1)′

Ψ0
1

−A0

∣∣∣ = |A0
1

(Ψ0
1)′

Ψ0
1

|

Using Lemma 3.1 (ii), we can state that there exists a set E1 ⊂ (1,∞) that has
finite logarithmic measure such that for all z satisfying z| /∈ E1 ∪ [0, 1] and we have∣∣ (Ψ0

1)′

Ψ0
1

∣∣ 6 rµ1 , (3.14)

|A0
1| 6 exp{γ1r

β}. (3.15)
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From these two inequalities, we find that

|A1
0 −A0| 6M1r

µ1 exp{γ1r
β}. (3.16)

Consequently (2) is true for i = 1. Now suppose that the assertion is true for the
values which are strictly smaller than a certain i, then using (3.4) we obtain

|Ai0 −A0| =
∣∣Ai−1

0 +Ai−1
1

(Ψi−1
1 )′

Ψi−1
1

−A0

∣∣ 6 |Ai−1
0 −A0|+

∣∣Ai−1
1

(Ψi−1
1 )′

Ψi−1
1

∣∣ (3.17)

By induction hypothesis, there exists a set Ei−1 ⊂ (1,∞) that has finite logarithmic
measure such that for all z satisfying |z| /∈ Ei−1 ∪ [0, 1] and we have

|Ai−1
0 −A0| 6Mi−1r

µi−1 exp{γi−1r
β}. (3.18)

Using Lemma 3.1, we deduce that there exist a set E′i−1 ⊂ (1,∞) that has finite
logarithmic measure such that for all z satisfying |z| /∈ E′i−1 ∪ [0, 1] and we can
write ∣∣ (Ψi−1

1 )′

Ψi−1
1

∣∣ 6 rµi−1 . (3.19)

Using assertion (1), we obtain

|Ai−1
k | 6Mi−1r

µi−1 exp{γi−1r
β}. (3.20)

By (3.17), (3.18), (3.19) and (3.20) there exists a set Ei = Ei−1 ∪ E′i−1 ⊂ (1,∞)
that has finite logarithmic measure such that for all z satisfying |z| /∈ Ei ∪ [0, 1] we
have

|Ai0 −A0| 6Mir
µi exp{γirβ}, (3.21)

where Mi, µi, γi are positive real numbers. The proof of part (2) is complete.
Now we prove part (3) Suppose that there exists i0 ∈ N, such that. Ai00 ≡ 0,

this implies that −A0 = Ai00 −A0. By (2), there exists a set Ei0 ⊂ (1,∞) that has
finite logarithmic measure such that for all z satisfying |z| /∈ Ei0 ∪ [0, 1], we have

|A0| = |Ai00 −A0| 6Mi0r
µi0 exp{γi0rβ},

which contradicts ρ(A0) > β. �

Lemma 3.7. Let Aj be entire functions of finite order such that max{ρ(Aj), j =
1, . . . , k−1} = β < ρ(A0) = α < +∞. Then every non trivial meromorphic solution
of the equation

g(k) +Aik−1g
(k−1) + · · ·+Ai0g = 0, k ≥ 2 (3.22)

has infinite order, where Aij, j = 0, 1, . . . , k − 1 are defined as in (3.4).

Proof. Assume that (3.22) has a meromorphic solution g with ρ(g) < ∞. We
rewrite (3.22) as

g(k)

g
+Aik−1

g(k−1)

g
+ · · ·+Ai0 −A0 = −A0, k ≥ 2. (3.23)

By Lemma 3.1 (ii), there exists a set E ⊂ (1,∞) of finite logarithmic measure such
that for all z, |z| /∈ E ∪ [0, 1], we have

|g
(j)

g
| 6 rα, j = k, k − 1, . . . , 1. (3.24)
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On the other hand, Lemma 3.6 (1) implies that there exists a set Ei ⊂ (1,∞) of
finite logarithmic measure such that for all z, |z| /∈ Ei ∪ [0, 1], we have

|Aij | 6Mir
µi exp{γirβ}. (3.25)

And by 3.6 (2) there exists a set E′i ⊂ (1,∞) of finite logarithmic measure such
that for all z, |z| /∈ E′i ∪ [0, 1], we have

|Ai0 −A0| 6Mir
µi exp{γirβ}. (3.26)

By (3.23), (3.24), (3.25), and (3.26), we can find a set E′ := E ∪ E′i ∪ E′i of finite
logarithmic measure such that for all z, |z| /∈ E′i ∪ [0, 1], we have

|A0| 6 |
g(k)

g
|+ |Aik−1||

g(k−1)

g
|+ · · ·+ |Ai0 −A0|

6 rα +Mir
µi exp{γirβ}rα +Mir

µi exp{γirβ}rα

6Mrµ exp{γrβ}rα,
where M,µ, γ are positive real numbers. This leads to a contradiction with β <
ρ(A0), hence ρ(g) =∞. �

Lemma 3.8. Let Aj (j = 0, 1, . . . , k − 1) be entire functions. If f is a solution
of an equation of the form (2.1) then gi = f (i) (i ∈ N) is an entire solution of the
equation

g
(k)
i +Aik−1g

(k−1)
i + · · ·+Ai0gi = 0, (3.27)

where Aij, j = 0, 1, . . . , k − 1 are defined in (3.4).

Proof. Assume that f is a solution of (2.1) and let gi := f (i) (i ∈ N). We shall
prove that gi is an entire solution of (3.27). To do this, we use induction. For i = 1,
differentiating both sides of (2.1), we write

f (k+1) +Ak−1f
(k) + (A′k−1 +Ak−2)f (k−1) + · · ·+ (A′1 +A0)f ′ +A′0f = 0.

Taking

f = − (f (k) +Ak−1f
(k−1) + · · ·+A1f

′)
A0

,

we obtain

f (k+1) + (Ak−1 −
A′0
A0

)f (k) + (A′k−1 +Ak−2 −Ak−1
A′0
A0

)f (k−1)

+ · · ·+ (A′1 +A0 −A1
A′0
A0

)f ′ = 0;

that is,
g
(k)
1 +A1

k−1g
(k−1)
1 +A1

k−2g
(k−2)
1 · · ·+A1

0g1 = 0.
Hence (3.27) is true for i = 1.

Now suppose that (3.27) is true for the values which are strictly smaller than a
certain i. If gi−1 is a solution of the equation

g
(k)
i−1 +Ai−1

k−1g
(k−1)
i−1 +Ai−1

k−2g
(k−2)
i−1 · · ·+Ai−1

0 gi−1 = 0, (3.28)

then by differentiation both sides of (3.28), we obtain

g
(k+1)
i−1 +Ai−1

k−1g
(k)
i−1 + ((Ai−1

k−1)′ +Ai−1
k−2)g(k−1)

i−1 + . . .

+ ((Ai−1
1 )′ +Ai−1

0 )g′i−1 +A′0gi−1 = 0.
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Taking

gi−1 = −
(g(k)
i−1 +Ai−1

k−1g
(k−1)
i−1 +Ai−1

k−2g
(k−2)
i−1 · · ·+A(gi−1)′)

Ai−1
0

,

we obtain

g
(k+1)
i−1 +

(
Ai−1
k−1 −

(Ai−1
0 )′

Ai−1
0

)
g
(k)
i−1 +

(
(Ai−1

k−1)′ +Ai−1
k−2 −A

i−1
k−1

(Ai−1
0 )′

Ai−1
0

)
g
(k−1)
i−1

+ · · ·+
(

(Ai−1
1 )′ +Ai−1

0 −Ai−1
1

(Ai−1
0 )′

Ai−1
0

)
g′i−1 = 0;

that is,
g
(k)
i +Ai−1

k−1g
(k−1)
i +Ai−1

k−2g
(k−2)
i · · ·+Ai−1

0 gi = 0.
Lemma 3.8 is thus proved. �

3.1. Proof of Theorem 2.1. Assume that f is a solution of (2.1). By Lemma
3.5, we have ρ2(f) = ρ(A0). Using Lemma 3.8, we can state that gi := f (i) (i ∈ N)
is a solution of (3.27). Let w(z) := gi(z)−ϕ(z); ϕ is an entire finite order function.
Then ρ(w) = ρ(gi) = ρ(f) =∞ and ρ2(w) = ρ2(gi) = ρ2(f) = ρ(A0).

To prove λ(gi − ϕ) = λ(gi − ϕ) = ∞ and λ2(gi − ϕ) = λ2(gi − ϕ) = ρ(A0),
we need to prove only that λ(w) = ∞ and λ2(w) = ρ(A0). Using the fact that
gi = w + ϕ, and by Lemma 3.8, we can write

w(k) +Aik−1w
(k−1) + · · ·+Ai0w = −

(
ϕ(k) +Aik−1ϕ

(k−1) + · · ·+Ai0ϕ
)

= F. (3.29)

By ρ(ϕ) < ∞ and Lemma 3.7, we obtain F 6≡ 0 and ρ(F ) < ∞. By Lemma 3.4
λ(w) = λ(w) = ρ(w) = ∞ and λ2(w) = λ2(w) = ρ2(w) = ρ(A0). The proof of
Theorem 2.1 is complete.
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