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EXISTENCE OF POSITIVE SOLUTIONS FOR EVEN-ORDER
m-POINT BOUNDARY-VALUE PROBLEMS ON TIME SCALES

İSMAİL YASLAN

Abstract. In this article, we consider a nonlinear even-order m-point bound-
ary-value problems on time scales. We establish the criteria for the existence of

at least one, two and three positive solutions for higher order nonlinear m-point

boundary-value problems on time scales by using the four functionals fixed
point theorem, Avery-Henderson fixed point theorem and the five functionals

fixed point theorem, respectively.

1. Introduction

Higher order multi-point boundary value problems on time scales have attracted
the attention of many researchers in recent years; see for example [1, 2, 3, 9, 10, 11,
12, 13, 14, 15, 16, 17] and the references therein.

In this article, we are concerned with the existence of single and multiple positive
solutions to the following nonlinear higher order m-point boundary value problem
(BVP) on time scales:

(−1)ny∆2n

(t) = f(t, y(t)), t ∈ [t1, tm] ⊂ T, n ∈ N

y∆2i+1
(tm) = 0, αy∆2i

(t1)− βy∆2i+1
(t1) =

m−1∑
k=2

y∆2i+1
(tk),

(1.1)

where α > 0 and β > 0 are given constants, t1 < t2 < . . . < tm−1 < tm, m ≥ 3 and
0 ≤ i ≤ n− 1. We assume that f : [t1, tm]× [0,∞)→ [0,∞) is continuous.

Throughout this article we assume T is any time scale and [t1, tm] is a subset of
T such that [t1, tm] = {t ∈ T : t1 ≤ t ≤ tm}. Some basic definitions and theorems
on time scales can be found in the books [7, 8], which are excellent references for
calculus of time scales.

In this article, existence results of at least one positive solution of (1.1) are first
established as a result of the four functional fixed point theorem. Second, we apply
the Avery-Henderson fixed-point theorem to prove the existence of at least two
positive solutions to (1.1). Finally, we use the five functional fixed-point theorem
to show that the existence of at least three positive solutions to (1.1). The results
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are even new for the difference equations and differential equations as well as for
dynamic equations on general time scales.

2. Preliminaries

To state the main results of this paper, we will need the following lemmas.

Lemma 2.1. If α 6= 0, then Green’s function for the boundary value problem

−y∆2
(t) = 0, t ∈ [t1, tm],

y∆(tm) = 0, αy(t1)− βy∆(t1) =
m−1∑
k=2

y∆(tk), m ≥ 3

is given by

G(t, s) =



H1(t, s), t1 ≤ s ≤ σ(s) ≤ t2,
H2(t, s), t2 ≤ s ≤ σ(s) ≤ t3,
. . .

Hm−2(t, s), tm−2 ≤ s ≤ σ(s) ≤ tm−1,

Hm−1(t, s), tm−1 ≤ s ≤ σ(s) ≤ tm,

(2.1)

where

Hj(t, s) =

{
t+ β+j−1

α − t1, t ≤ s,
s+ β+j−1

α − t1, s ≤ t,

for all j = 1, 2, . . . ,m− 1.

Proof. A direct calculation gives that if h ∈ C[t1, tm], then the boundary-value
problem

−y∆2
(t) = h(t), t ∈ [t1, tm],

y∆(tm) = 0, αy(t1)− βy∆(t1) =
m−1∑
k=2

y∆(tk), m ≥ 3

has the unique solution

y(t) =
∫ tm

t1

(
β

α
+ s− t1)h(s)∆s+ 1

α

m−1∑
k=2

∫ tm

tk

h(s)∆s+
∫ tm

t

(t− s)h(s)∆s

=
∫ tm

t1

(
β

α
+ s− t1)h(s)∆s−

m−1∑
j=2

j − 1
α

∫ tj+1

tj

h(s)∆s+
∫ tm

t

(t− s)h(s)∆s.

Hence, we obtain (2.1). �

Lemma 2.2. If α > 0 and β > 0, then the Green’s function G(t, s) in (2.1) satisfies
the inequality

G(t, s) ≥ t− t1
tm − t1

G(tm, s)

for (t, s) ∈ [t1, tm]× [t1, tm].
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Proof. (i) Let s ∈ [t1, tm] and t ≤ s. Then we obtain

G(t, s)
G(tm, s)

=
t+ β+j−1

α − t1
tm + β+j−1

α − t1
>

t− t1
tm − t1

.

(ii) For s ∈ [t1, tm] and s ≤ t, we have

G(t, s)
G(tm, s)

= 1 ≥ t− t1
tm − t1

.

�

Lemma 2.3. If α > 0 and β > 0, then the Green’s function G(t, s) in (2.1) satisfies

0 < G(t, s) ≤ G(s, s)

for (t, s) ∈ [t1, tm]× [t1, tm].

Proof. Since α > 0 and β > 0, Hj(t, s) > 0 for all j = 1, 2, . . . ,m − 1. Then we
obtain G(t, s) > 0 from (2.1).

Now, we will show that G(t, s) ≤ G(s, s). (i) Let s ∈ [t1, tm] and t ≤ s. Since
G(t, s) is nondecreasing in t, G(t, s) ≤ G(s, s).

(ii) For s ∈ [t1, tm] and s ≤ t, it is clear that G(t, s) = G(s, s). �

Lemma 2.4. If α > 0, β > 0 and s ∈ [t1, tm], then the Green’s function G(t, s) in
(2.1) satisfies

min
t∈[tm−1,tm]

G(t, s) ≥ K‖G(., s)‖,

where

K =
β + α(tm−1 − t1)

β +m− 2 + α(tm − t1)
(2.2)

and ‖x‖ = maxt∈[t1,tm] |x(t)|.

Proof. Since the Green’s function G(t, s) in (2.1) is nondecreasing in t, We have
mint∈[tm−1,tm]G(t, s) = G(tm−1, s) In addition, it is obvious that ‖G(., s)‖ = G(s, s)
for s ∈ [t1, tm] by Lemma 2.3. Then we have

G(tm−1, s) ≥ KG(s, s)

from the branches of the Green’s function G(t, s). �

If we let G1(t, s) := G(t, s) for G as in (2.1), then we can recursively define

Gj(t, s) =
∫ tm

t1

Gj−1(t, r)G(r, s)∆r

for 2 ≤ j ≤ n and Gn(t, s) is Green’s function for the homogeneous problem

(−1)ny∆2n

(t) = 0, t ∈ [t1, tm],

y∆2i+1
(tm) = 0, αy∆2i

(t1)− βy∆2i+1
(t1) =

m−1∑
k=2

y∆2i+1
(tk),

where m ≥ 3 and 0 ≤ i ≤ n− 1.
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Lemma 2.5. Let α > 0, β > 0. The Green’s function Gn(t, s) satisfies the following
inequalities

0 ≤ Gn(t, s) ≤ Ln−1‖G(., s)‖, (t, s) ∈ [t1, tm]× [t1, tm],

Gn(t, s) ≥ KnMn−1‖G(., s)‖, (t, s) ∈ [tm−1, tm]× [t1, tm]

where K is given in (2.2), and

L =
∫ tm

t1

‖G(., s)‖∆s > 0, (2.3)

M =
∫ tm

tm−1

‖G(., s)‖∆s > 0. (2.4)

The proof of the above lemma is done using induction on n and Lemma 2.4.
Let B denote the Banach space C[t1, tm] with the norm ‖y‖ = maxt∈[t1,tm] |y(t)|.

Define the cone P ⊂ B by

P = {y ∈ B : y(t) ≥ 0, min
t∈[tm−1,tm]

y(t) ≥ KnMn−1

Ln−1
‖y‖} (2.5)

where K,L,M are given in (2.2), (2.3), (2.4), respectively.
Note that (1.1) is equivalent to the nonlinear integral equation

y(t) =
∫ tm

t1

Gn(t, s)f(s, y(s))∆s. (2.6)

We can define the operator A : P → B by

Ay(t) =
∫ tm

t1

Gn(t, s)f(s, y(s))∆s, (2.7)

where y ∈ P . Therefore, solving (2.6) in P is equivalent to finding fixed points of
the operator A.

It is clear that AP ⊂ P and A : P → P is a completely continuous operator by
a standard application of the Arzela-Ascoli theorem.

Now we state the fixed point theorems which will be applied to prove main
theorems. We are now in a position to present the four functionals fixed point
theorem. Let ϕ and Ψ be nonnegative continuous concave functionals on the cone
P , and let η and θ be nonnegative continuous convex functionals on the cone P .
Then for positive numbers r, τ, µ and R, define the sets

Q(ϕ, η, r, R) = {x ∈ P : r ≤ ϕ(x), η(x) ≤ R},
U(Ψ, τ) = {x ∈ Q(ϕ, η, r, R) : τ ≤ Ψ(x)},
V (θ, µ) = {x ∈ Q(ϕ, η, r, R) : θ(x) ≤ µ}.

The following theorem can be found in [6].

Theorem 2.6 (Four Functionals Fixed Point Theorem). Suppose P is a cone in
a real Banach space E, ϕ and Ψ are nonnegative continuous concave functionals
on P , η and θ are nonnegative continuous convex functionals on P , and there exist
nonnegative positive numbers r, τ, µ and R, such that A : Q(ϕ, η, r, R) → P is a
completely continuous operator, and Q(ϕ, η, r, R) is a bounded set. If

(i) {x ∈ U(Ψ, τ) : η(x) < R} ∩ {x ∈ V (θ, µ) : r < ϕ(x)} 6= ∅
(ii) ϕ(Ax) ≥ r, for all x ∈ Q(ϕ, η, r, R), with ϕ(x) = r and µ < θ(Ax),

(iii) ϕ(Ax) ≥ r, for all x ∈ V (θ, µ), with ϕ(x) = r,
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(iv) η(Ax) ≤ R, for all x ∈ Q(ϕ, η, r, R), with η(x) = R and Ψ(Ax) < τ ,
(v) η(Ax) ≤ R, for all x ∈ U(Ψ, τ), with η(x) = R,

then A has a fixed point x in Q(ϕ, η, r, R).

Theorem 2.7 (Avery-Henderson Fixed Point Theorem [5]). Let P be a cone in a
real Banach space E. Set

P (φ, r) = {u ∈ P : φ(u) < r}.
Assume there exist positive numbers r and M , nonnegative increasing continuous
functionals η, φ on P , and a nonnegative continuous functional θ on P with θ(0) = 0
such that

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤Mφ(u)

for all u ∈ P (φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, q).

If A : P (φ, r)→ P is a completely continuous operator satisfying
(i) φ(Au) > r for all u ∈ ∂P (φ, r),
(ii) θ(Au) < q for all u ∈ ∂P (θ, q),

(iii) P (η, p) 6= ∅ and η(Au) > p for all u ∈ ∂P (η, p),
then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Now, we will present the five functionals fixed point theorem. Let ϕ, η, θ be
nonnegative continuous convex functionals on the cone P , and γ,Ψ nonnegative
continuous concave functionals on the cone P. For nonnegative numbers h, a, b, d
and c, define the following convex sets:

P (ϕ, c) = {x ∈ P : ϕ(x) < c},
P (ϕ, γ, a, c) = {x ∈ P : a ≤ γ(x), ϕ(x) ≤ c},
Q(ϕ, η, d, c) = {x ∈ P : η(x) ≤ d, ϕ(x) ≤ c},

P (ϕ, θ, γ, a, b, c) = {x ∈ P : a ≤ γ(x), θ(x) ≤ b, ϕ(x) ≤ c},
Q(ϕ, η,Ψ, h, d, c) = {x ∈ P : h ≤ Ψ(x), η(x) ≤ d, ϕ(x) ≤ c}.

(2.8)

The following theorem can be found in [4].

Theorem 2.8 (Five Functionals Fixed Point Theorem). Let P be a cone in a real
Banach space E. Suppose that there exist nonnegative numbers c and M , nonneg-
ative continuous concave functionals γ and Ψ on P , and nonnegative continuous
convex functionals ϕ, η and θ on P, with

γ(x) ≤ η(x), ‖x‖ ≤Mϕ(x),∀x ∈ P (ϕ, c).

Suppose that A : P (ϕ, c) → P (ϕ, c) is a completely continuous and there exist
nonnegative numbers h, a, k, b, with 0 < a < b such that

(i) {x ∈ P (ϕ, θ, γ, b, k, c) : γ(x) > b} 6= ∅ and γ(Ax) > b
for x ∈ P (ϕ, θ, γ, b, k, c),

(ii) {x ∈ Q(ϕ, η,Ψ, h, a, c) : η(x) < a} 6= ∅ and η(Ax) < a
for x ∈ Q(ϕ, η,Ψ, h, a, c),

(iii) γ(Ax) > b, for x ∈ P (ϕ, γ, b, c), with θ(Ax) > k,
(iv) η(Ax) < a, for x ∈ Q(ϕ, η, a, c), with Ψ(Ax) < h,
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then A has at least three fixed points x1, x2, x3 ∈ P (ϕ, c) such that

η(x1) < a, γ(x2) > b, η(x3) > a with γ(x3) < b.

3. Main Results

Now, we will give the sufficient conditions to have at least one positive solution
for (1.1). The four functionals fixed point theorem will be used to prove the next
theorem.

Theorem 3.1. Let α > 0 and β > 0. Suppose that there exist constants r,R, µ, τ
with 0 < r < τ ≤ µ < R, r = KnMn−1

Ln−1 µ and R = τLn−1

KnMn−1 . If the function f
satisfies the following conditions:

(i) f(t, y) ≥ r
KnMn for all (t, y) ∈ [tm−1, tm]× [r, µ],

(ii) f(t, y) ≤ R
Ln for all (t, y) ∈ [t1, tm]× [0, R],

then (1.1) has at least one positive solution y such that r ≤ y(t) ≤ R for t ∈ [t1, tm].

Proof. Define the maps

ϕ(y) = Ψ(y) = min
t∈[tm−1,tm]

y(t),

θ(y) = max
t∈[tm−1,tm]

y(t),

η(y) = max
t∈[t1,tm]

y(t).

Then ϕ and Ψ are nonnegative continuous concave functionals on P , and η and θ
are nonnegative continuous convex functionals on P . Since

‖y‖ = max
t∈[t1,tm]

|y(t)| = η(y) ≤ R

for all y ∈ Q(ϕ, η, r, R), Q(ϕ, η, r, R) is a bounded set. Note that the operator
A : Q(ϕ, η, r, R) → P is completely continuous by a standard application of the
Arzela-Ascoli theorem.

Now, we verify that the remaining conditions of Theorem 2.6. We obtain

Ψ(
µ

2
) = µ ≥ τ, η(

µ

2
) = µ < R,

θ(
µ

2
) = µ, ϕ(

µ

2
) = µ > r.

Then, we have µ
2 ∈ {y ∈ U(Ψ, τ) : η(y) < R} ∩ {y ∈ V (θ, µ) : ϕ(y) > r}, which

means that (i) in Theorem 2.6 is fulfilled.
Now, we shall verify that condition (ii) of Theorem 2.6 is satisfied. By Lemma

2.5, we obtain

θ(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s.

Since θ(Ay) > µ, we find that∫ tm

t1

‖G(., s)‖f(s, y(s))∆s >
µ

Ln−1
. (3.1)
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Then, we obtain

ϕ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s > r,

using Lemma 2.5 and (3.1).
Now, we shall show that condition (iii) of Theorem 2.6 holds. Since ϕ(y) = r

and y ∈ V (θ, µ), we find that r ≤ y(t) ≤ µ for t ∈ [tm−1, tm]. By Lemma 2.5 and
the hypothesis (i), we have

ϕ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

tm−1

‖G(., s)‖f(s, y(s))∆s ≥ r.

Now, we shall verify that condition (iv) of Theorem 2.6 is fulfilled. We get

Ψ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s

using Lemma 2.5. Since Ψ(Ay) < τ ,∫ tm

t1

‖G(., s)‖f(s, y(s))∆s <
τ

KnMn−1
. (3.2)

Then, by Lemma 2.5 and (3.2) we obtain

η(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s < R.

Finally, we shall show that condition (v) of Theorem 2.6 is satisfied. Since
η(y) = R, we find 0 ≤ y(t) ≤ R for t ∈ [t1, tm]. Using Lemma 2.5 and the
hypothesis (ii), we have

η(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s ≤ R.

Hence, by Theorem 2.6, the (1.1) has at least one positive solution y such that
r ≤ y(t) ≤ R for t ∈ [t1, tm]. This completes the proof. �

Now we will use the Avery-Henderson fixed point theorem to prove the next
theorem.

Theorem 3.2. Assume α > 0, β > 0. Suppose there exist numbers 0 < p < q < r
such that the function f satisfies the following conditions:

(i) f(t, y) > r
KnMn for (t, y) ∈ [tm−1, tm]× [r, rLn−1

KnMn−1 ];
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(ii) f(t, y) < q
Ln for (t, y) ∈ [t1, tm]× [0, qLn−1

KnMn−1 ];
(iii) f(t, y) > p

KnMn for t ∈ [tm−1, tm]× [K
nMn−1

Ln−1 p, p],
where K,L,M , are defined in (2.2), (2.3), (2.4), respectively. Then (1.1) has at
least two positive solutions y1 and y2 such that

p < max
t∈[t1,tm]

y1(t) with max
t∈[tm−1,tm]

y1(t) < q

q < max
t∈[tm−1,tm]

y2(t) with min
t∈[tm−1,tm]

y2(t) < r.

Proof. Define the cone P as in (2.5). From Lemma 2.5, AP ⊂ P and A is completely
continuous. Let the nonnegative increasing continuous functionals φ, θ and η be
defined on the cone P by

φ(y) := min
t∈[tm−1,tm]

y(t), θ(y) := max
t∈[tm−1,tm]

y(t), η(y) := max
t∈[t1,tm]

y(t).

For each y ∈ P , we have φ(y) ≤ θ(y) ≤ η(y), and from (2.5)

‖y‖ ≤ Ln−1

KnMn−1
φ(y).

Moreover, θ(0) = 0 and for all y ∈ P , λ ∈ [0, 1] we obtain θ(λy) = λθ(y).
We now verify that the remaining conditions of Theorem 2.7 hold.

Claim 1: If y ∈ ∂P (φ, r), then φ(Ay) > r : Since y ∈ ∂P (φ, r) and ‖y‖ ≤
Ln−1

KnMn−1φ(y), we have r ≤ y(t) ≤ rLn−1

KnMn−1 for t ∈ [tm−1, tm]. Then, by hypothesis
(i) and Lemma 2.5 we find that

φ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

tm−1

‖G(., s)‖f(s, y(s))∆s > r.

Claim 2: If y ∈ ∂P (θ, q), then θ(Ay) < q : Since y ∈ ∂P (θ, q) and ‖y‖ ≤
Ln−1

KnMn−1φ(y), 0 ≤ y(t) ≤ qLn−1

KnMn−1 for t ∈ [t1, tm]. Thus, using hypothesis (ii) and
Lemma 2.5, we obtain

θ(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s < q.

Claim 3: P (η, p) 6= ∅ and η(Ay) > p for all y ∈ ∂P (η, p): Since p
2 ∈ P and p > 0,

p
2 ∈ P (η, p). If y ∈ ∂P (η, p) and η(y) ≥ KnMn−1

Ln−1 ‖y‖, we obtain KnMn−1

Ln−1 p ≤ y(t) ≤
‖y‖ = p for t ∈ [tm−1, tm]. Hence, by hypothesis (iii) and Lemma 2.5 we have

η(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

tm−1

‖G(., s)‖f(s, y(s))∆s > p.

Since the conditions of Theorem 2.7 are satisfied, BVP (1.1) has at least two positive
solutions y1 and y2 such that

p < max
t∈[t1,tm]

y1(t) with max
t∈[tm−1,tm]

y1(t) < q
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q < max
t∈[tm−1,tm]

y2(t) with min
t∈[tm−1,tm]

y2(t) < r. �

Now, we will apply the five functionals fixed point theorem to investigate the
existence of at least three positive solutions for (1.1).

Theorem 3.3. Let α > 0 and β > 0. Suppose that there exist constants a, b, c with
0 < a < b < bLn−1

KnMn−1 < c such that the function f satisfies the following conditions:
(i) f(t, y) ≤ c

Ln for (t, y) ∈ [t1, tm]× [0, c],
(ii) f(t, y) > b

KnMn for (t, y) ∈ [tm−1, tm]× [b, bLn−1

KnMn−1 ],
(iii) f(t, y) < a

Ln for (t, y) ∈ [t1, tm]× [0, a],
where K,L,M are as defined in (2.2), (2.3), (2.4), respectively. Then (1.1) has at
least three positive solutions y1, y2 and y3 such that

max
t∈[t1,tm]

y1(t) < a < max
t∈[t1,tm]

y3(t),

min
t∈[tm−1,tm]

y3(t) < b < min
t∈[tm−1,tm]

y2(t).

Proof. Define the cone P as in (2.5) and define these maps

γ(y) = Ψ(y) = min
t∈[tm−1,tm]

y(t),

θ(y) = max
t∈[tm−1,tm]

y(t),

ϕ(y) = η(y) = max
t∈[t1,tm]

y(t).

Then γ and Ψ are nonnegative continuous concave functionals on P , and ϕ, η and
θ are nonnegative continuous convex functionals on P . Let P (ϕ, c), P (ϕ, γ, a, c),
Q(ϕ, η, d, c), P (ϕ, θ, γ, a, b, c) and Q(ϕ, η,Ψ, h, d, c) be defined by (2.8). It is clear
that

γ(y) ≤ η(y), ‖y‖ = ϕ(y), ∀y ∈ P (ϕ, c).

If y ∈ P (ϕ, c), then we have y(t) ∈ [0, c] for all t ∈ [t1, tm]. By Lemma 2.5 and
the hypothesis (i), we obtain

ϕ(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s ≤ c.

This proves that A : P (ϕ, c)→ P (ϕ, c).
Now we verify that the remaining conditions of Theorem 2.8. Let y1 = b+ε1

2 such
that 0 < ε1 < ( Ln−1

KnMn−1 − 1)b. Since

γ(y1) = b+ ε1 > b,

θ(y1) = b+ ε1 <
bLn−1

KnMn−1
,

ϕ(y1) = b+ ε1 <
bLn−1

KnMn−1
< c,

we obtain

{y ∈ P (ϕ, θ, γ, b,
bLn−1

KnMn−1
, c) : γ(y) > b} 6= ∅.
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If y ∈ P (ϕ, θ, γ, b, bLn−1

KnMn−1 , c), then we have b ≤ y(t) ≤ bLn−1

KnMn−1 for all t ∈
[tm−1, tm]. By using Lemma 2.5 and the hypothesis (ii), we obtain

γ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

tm−1

‖G(., s)‖f(s, y(s))∆s > b.

Thus, the condition (i) of Theorem 2.8 holds.
Let y2 = a−ε2

2 such that 0 < ε2 < (1− KnMn−1

Ln−1 )a. Since

η(y2) = a− ε2 < a,

Ψ(y2) = a− ε2 >
KnMn−1

Ln−1
a,

ϕ(y2) = a− ε2 < c,

we find that

{y ∈ Q(ϕ, η,Ψ,
KnMn−1

Ln−1
a, a, c) : η(y) < a} 6= ∅.

If y ∈ Q(ϕ, η,Ψ, K
nMn−1

Ln−1 a, a, c), then we obtain 0 ≤ y(t) ≤ a, for t ∈ [t1, tm].
Hence,

η(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s < a

by Lemma 2.5 and the hypothesis (iii). It follows that condition (ii) of Theorem
2.8 is fulfilled.

Now, we shall show that the condition (iii) of Theorem 2.8 is satisfied. We have

θ(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s

using Lemma 2.5. Since θ(Ay) > bLn−1

KnMn−1 , we obtain∫ tm

t1

‖G(., s)‖f(s, y(s))∆s >
b

KnMn−1
. (3.3)

Then, by Lemma 2.5 and (3.3) we find that

γ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s

≥ KnMn−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s > b.

Finally, we shall verify that the condition (iv) of Theorem 2.8 holds. By Lemma
2.5, we obtain

Ψ(Ay) =
∫ tm

t1

Gn(tm−1, s)f(s, y(s))∆s
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≥ KnMn−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s.

Since Ψ(Ay) < KnMn−1

Ln−1 a, we have∫ tm

t1

‖G(., s)‖f(s, y(s))∆s <
a

Ln−1
. (3.4)

Then, we find that

η(Ay) =
∫ tm

t1

Gn(tm, s)f(s, y(s))∆s

≤ Ln−1

∫ tm

t1

‖G(., s)‖f(s, y(s))∆s < a.

using Lemma 2.5 and (3.4).
Since the conditions of Theorem 2.8 are satisfied, (1.1) has at least three positive

solutions y1, y2, y3 ∈ P (ϕ, c) such that

max
t∈[t1,tm]

y1(t) < a < max
t∈[t1,tm]

y3(t),

min
t∈[tm−1,tm]

y3(t) < b < min
t∈[tm−1,tm]

y2(t).

This completes the proof. �

Example 3.4. Let T = {(1/5)n : n ∈ N} ∪ {0} ∪ [3, 5]. We consider the boundary
value problem

−y∆4
(t) =

2013y2

y2 + 2013
, t ∈ [

1
5
, 5] ⊂ T

y∆(5) = 0,
1
2
y(

1
5

)− 2y∆(
1
5

) = y∆(3) + y∆(4),

y∆3
(5) = 0,

1
2
y∆2

(
1
5

)− 2y∆3
(
1
5

) = y∆3
(3) + y∆3

(4).

(3.5)

If we take r = 84500, τ = 187083, µ = 633177.9584 and R = 1401856, then
all the conditions in Theorem 3.1 are satisfied. Thus, BVP (3.5) has at least one
positive solution y such that 84500 ≤ y(t) ≤ 1401856 for t ∈ [ 1

5 , 5].
If we take p = 2×10−5, q = 26×10−6 and r = 24×10−3, then all the conditions

in Theorem 3.2 are fulfilled. Hence, BVP (3.5) has at least two positive solutions
y1 and y2 satisfying

2× 10−5 < max
t∈[ 15 ,5]

y1(t) with max
t∈[4,5]

y1(t) < 26× 10−6

26× 10−6 < max
t∈[4,5]

y2(t) with min
t∈[4,5]

y2(t) < 24× 10−3.

If we take a = 15.10−4, b = 1 and c = 1320000, then all the conditions in
Theorem 3.3 hold. Therefore, BVP (3.5) has at least three positive solutions y1, y2

and y3 such that

max
t∈[ 15 ,5]

y1(t) < 15× 10−4 < max
t∈[ 15 ,5]

y3(t),

min
t∈[4,5]

y3(t) < 1 < min
t∈[4,5]

y2(t).
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