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A HYPERBOLIC-PARABOLIC SYSTEM ARISING IN PULSE
COMBUSTION: EXISTENCE OF SOLUTIONS FOR THE

LINEARIZED PROBLEM

OLGA TERLYGA, HAMID BELLOUT, FREDERICK BLOOM

Abstract. A mixed hyperbolic-parabolic system is derived for a lumped pa-
rameter continuum model of pulse combustion. For a regularized version of

the initial-boundary value problem for an associated linear system, with time-

dependent boundary conditions, Galerkin approximations are used to establish
the existence of a suitable class of unique solutions. Standard parabolic theory

is then employed to established higher regularity for the solutions of the regu-

larized problem. Finally, a priori estimates are derived which allow for letting
the artificial viscosity, in the regularized system, approach zero so as to obtain

the existence of a unique solution for the original mixed hyperbolic-parabolic

problem.

1. Introduction

Pulse combustion is a process in which pressure, velocity, and temperature, vary
periodically with time; it was first observed by Rayleigh [52]. A basic pulse com-
bustor consists of a set of intake valves for air and fuel, a combustion chamber, and
a tailpipe from which the combustion products are expelled as a consequence of the
oscillating pressure field in the chamber. As air and gas enter the chamber, combus-
tion raises the temperature and pressure; when the pressure rises above atmospheric
pressure, the valves begin to close, the air-fuel input is reduced or stopped and the
combustion products begin flowing through the tailpipe, leading to a decrease in
chamber pressure. Once the chamber pressure falls below atmospheric pressure the
valves open to admit another fuel-air charge. The gaseous products in the tailpipe
execute oscillations which are superimposed on a mean flow and which produce a
periodic jet that issues from the open end of the tailpipe; it is this periodic jet
which drives the resulting impingement heat transfer process (see figures 1, 2 and
3).

A variety of models have been constructed to simulate the behavior of pulse
combustors, e.g., [2, 3, 6, 16, 18, 19, 22, 24, 26, 27, 28, 36, 37, 38, 47, 51, 60, 62]
and some work has been done to examine factors influencing combustion in the
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combustion chamber and the tailpipe flow field in [20, 21, 39, 54]. For analysis of
the associated problem of acoustic oscillations in resonance tubes one may consult
[23, 32, 40, 41, 44, 56, 61].

A description of the complex processes occurring in a typical pulse combustor
may be found in [3, 26], e.g., when the chamber pressure is equal to atmospheric
pressure turbulence is present within a layer separating the fresh air-fuel mixture
and the residual gas from the preceding cycle; this layer contains ignition nuclei
and is broken up into vortices which are carried into the fresh mixture thus igniting
it and producing a flame which transits the length of the combustion chamber.
Analytical models of pulse combustor operation which take into account the full
range of physical processes present are not feasible. Most pulse combustion models
attack the problem by writing down a set of conservation laws for the ongoing
combustion process and presenting results, in graphical form, based on numerical
analysis of the governing system; such an approach is not illuminating if the goal is
the production of a combined model which would allow for making qualitative (as
well as quantitative) predictions of the effect of varying pulse combustor physical
and geometrical design characteristics. With the exception of the work in [26],
none of the literature has attempted to deal with the influence of value design
and operation on pulse combustor performance including the important issue of
the qualitative behavior of the jet which issues from the combustor tailpipe; a
notable exception is [2] where, however, the model (in its original form) assumes
an instantaneous opening and closing of the valves that is unrealistic and has the
effect of inducing a discontinuity in the mathematical model. Shortcomings in the
model presented in [2] have been addressed in [8]. Recently results were obtained
by applying the technique of averaging, to the dynamical system generated by the
lumped parameter pulse combustor model discussed in [8] and were presented in
[9].

The lumped parameter model of pulse combustion, which is found in [2], while
not dealing with all the chemical kinetics processes involved, incorporates a realistic
valve dynamics submodel and is capable of producing closed-form approximations
for pressure and temperature variations in the chamber and velocity oscillations
in the tailpipe. The work in [2] begins with a statement of energy balance and
assumes that there are two uniform regions in the combustion chamber, a ‘cool’
zone consisting of the reactants and a hot zone containing the combustion products;
these regions are separated by a moving flame front. The model assumes a spatially
uniform pressure p(t), ignores friction in the tailpipe, does not account for heat loss
from the chamber, and also assumes that the combustion products in the tailpipe
are incompressible. Balance of energy in [2] yields the equation(cvVB

R

)dp
dt

= hRṁR +
∆H
1 + r

ṁB − h0ρ̄Av(t) (1.1)

where cv/R is the (approximate) constant ratio of specific heat (at constant volume)
to the gas constant for the air and fuel, VB is the chamber volume, A is the cross-
sectional area of the cylindrical tailpipe, r is the air-fuel (mass) ratio, ∆H is the
heat of combustion per unit mass of fuel, hR is the enthalpy, per unit mass, of the
reactant mixture, h0 is the enthalpy, per unit mass of the combustion products, v(t)
is the velocity of the combustion products in the tailpipe, ρ̄ is the average density
of the combustion products in the tailpipe, and ṁR, ṁB are, respectively, the mass
flow rate of the reactants and the mass burning rate of the reactant mixture in
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the chamber. Coupled to (1.1), as a consequence of the continuity equation, is the
balance of momentum equation

ρ̄L
dv

dt
= p(t)− pa ≡ p̃(t) (1.2)

In (1.2), L is the length of the tailpipe while pa is atmospheric pressure at the
open end of the tailpipe. To (1.1) and (1.2) we must append constitutive equations
relating the reactant mass flow rate ṁR and the mass burning rate ṁB to the
chamber pressure p. In [2] it was assumed that the valves are, at any time t, either
fully-open, or fully-closed, depending on whether or not there exists a pressure
induced driving force for flow into the chamber; these inflows of air and fuel (gas),
with respective mass flow rates ṁa and ṁg, were described by the orifice flow
equations

ṁa =

{√
2ρaCDaAa

√
pa − p, p < pa

0, p ≥ pa,
(1.3a)

ṁg =

{√
2ρgCDgAg

√
pg − p, p < pg

0, p ≥ pg,
(1.3b)

where CDa , CDg are the discharge coefficients of the air and gas valves, ρa and ρg
are the air and gas densities, and Aa and Ag are the effective flow areas of the air
and gas valves. If pg ' pa then

ṁR = (1 + r)ṁg =

{
(1 + r)Γg

√
pa − p, p < pa

0, p ≥ pa,
(1.4)

where r = Γa/Γg is the constant air-fuel ratio with Γg =
√

2ρgCDg
Ag and Γa =√

2ρaCDaAa. The relation (1.4) presents two difficulties: (i) it assumes an instanta-
neous opening (closing) of the valves at any time when the combustion pressure p(t)
falls below (rises above) pa and (ii) it yields an ṁR(p) which is not differentiable at
any t where p(t) = pa; to deal with these problems the authors in [2] replaced (1.4)
by ṁε

R = Γg(1 + r)Hε(p− pa)
√
p− pa where Hε, for ε > 0, represents a smoothing

of the usual Heaviside function. Using this approach, one can then either study the
resulting model for finite ε > 0, which leads to valve hysteresis, or, by imposing sta-
bility criteria associated with stable burner operation, extract explicit approximate
expressions for the frequency ω and period Tp, of combustor pressure oscillations,
as ε→ 0+; these stability criteria are equivalent to the statements

(i) there should be no net reactant accumulation or depletion over one cycle;
i.e.,

lim
ε→0+

∫ Tp

0

ṁε
Rdt =

∫ Tp

0

ṁBdt , (1.5a)

(ii) there should be no net pressure buildup or decay over successive cycles; i.e.,

lim
ε→0+

∫ Tp

0

(pε(t)− pa)dt = 0 . (1.5b)

In [2] the actual flame structure in the chamber was idealized to consist of an
equivalent plane flame sheet filling the combustion chamber cross-sectional area
AB ; the plane flame propagates with a ‘burning velocity’ Uf , which is pressure-
independent, relative to the unburned reactant mixture in the chamber. Under
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these assumptions ṁB = ρRABUf and, if the reactants (air and gas) are taken
to be at the same constant temperature θa, the perfect gas law yields ṁB =
(ABUf/Rθa)p.

In [8] it was shown that the model described above allows for the computation of
analytical expressions for p(t), v(t), Uf , Tp and the velocity v0 at the inception of the
first full stable chamber cycle, which display an explicit dependence on all relevant
combustor physical and geometrical parameters; for a range of air-fuel ratios r these
expressions yield a tailpipe velocity which exhibits flow reversal. In this model
Uf is not the actual flame velocity, which depends on the specific diffusion, heat
transfer, and chemical kinetics mechanisms at work during the burning process but
is, rather, a system parameter whose value is compatible with the achievement of
stable system oscillation.

Upon eliminating between (1.1) and (1.2) one obtains for p̃(t) the nonlinear
second order equation

d2p̃

dt2
− {λu + λd(p̃)}dp̃

dt
+ ω2

0 p̃ = 0 , (1.6)

where ω2
0 = RhθA/cvVBL and

λu =
∆H
1 + r

( ABUf
cvθaVB

)
, λd(p̃) =

(RhR
cvVB

) d
dp̃
ṁR(p̃) . (1.7)

In [8] an approximation to the solution of the initial-value problem for (1.6) was
constructed which is periodic with period

Tp =
π

ω∗
+

π√
2ω0

(
1 + exp[

−λuπ
2ω∗

]
)1/2

(1.8)

where ω∗ = ω0

√
1− 1

4ε
2 with ε = λu/ω0. For ε << 1 Tp ≈ 2π/ω∗.

Further results have been obtained recently by one of the authors and his col-
leagues, in [7, 9, 10, 11, 12, 13, 14], by applying perturbation theory and dynamical
systems analyses to study the behavior exhibited by spatially independent pulse
combustor models of the type presented in this section; these results relate, e.g., to
the effect of tailpipe friction on pressure and velocity oscillations, the influence of
convective and radiative heat transfer, and the optimization of reactant flow rates
and mass burning rates in lumped parameter pulse combustor models. For the
balance of this paper, as well as in the follow-up paper [5], the focus will be on the
pulse combustor models incorporating spatial dependence.

In the present paper we will formulate a one-dimensional model of pulse com-
bustion; the model will be contrasted with earlier efforts in this direction, and the
resulting set of governing equations will be shown to reduce, under an appropriate
set of hypotheses, to the zero-space dimensional case introduced in this section. The
initial-boundary value problem for the one-dimensional pulse combustor will also
be compared to other problems in the broad realm of gas dynamics which have been
treated extensively in the literature. In [5] we establish local and global existence
of smooth solutions for the nonlinear initial-boundary value problem introduced
in this paper. As the proof of local existence in [5] is dependent on a fixed-point
argument, we establish, in this paper, the existence and uniqueness result for the
relevant linearized hyperbolic-parabolic system; this is accomplished by first regu-
larizing this system by introducing an artificial viscosity parameter δ, establishing
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existence and uniqueness for the resulting problem by using a Galerkin argument,
and then employing energy estimates, which are independent of δ, that allow us to
let δ → 0 in the regularized problem. The basic difficulty which must be overcome
in both this paper, as well as in [5], is the influence of the time-dependent bound-
ary conditions associated with the influx of reactants into the pulse combustion
chamber.

2. Previous efforts at including spatial effects in pulse combustion
modeling

There have been a few attempts to develop a mathematical model of a pulse com-
bustor which incorporates spatial dependence of the physical quantities but there
have been no known attempts to mathematically analyze the aforementioned mod-
els; in particular, the existence and uniqueness of solutions of the relevant initial-
boundary value problems associated with these models has not been addressed.
Moreover, the initial-boundary value problems associated with pulse combustion
modeling differ from the majority of the gas-dynamics related initial boundary-value
problems in the literature; they are often defined on a bounded domain and lead
to situations involving time-dependent boundary conditions. In a pulse combustor
reactants are added, and products are removed, periodically. These properties are
not unique to pulse combustor modeling; similar initial-boundary value problems
arise in many other physical applications. Therefore, the mathematical analysis
presented in this paper may be of some significance for other physical problems as
well. We will now present a summary of the three mathematical models of pulse
combustion referenced above.

Many processes in a pulse combustor are three-dimensional and are dominated by
turbulent transport phenomena. However, since a typical pulse combustor system
has a large length to diameter ratio, the net influence of these processes results in
an unsteady, one-dimensional wave system. The flow field in a pulse combustor
can, over a large part of the combustor, be approximated by an oscillatory plug
flow, thus, indicating that the flow can be simplified to be one-dimensional.

In [26] a one-dimensional model was formulated and analyzed numerically; the
authors derive a coupled system of partial differential equations following the stan-
dard procedures of continuum mechanics; i.e., they begin with balance equations
with a three-dimensional spatial dependence, namely,

conservation of mass:

∂

∂t
ρ+∇ · (ρv) = 0 (2.1a)

conservation of momentum:

∂

∂t
(ρv) +∇ · (ρv ⊗ v) = ∇ ·T + ρb (2.1b)

conservation of energy:

∂

∂t
(ρε) +∇ · (ρεv) = T ·D−∇ · h + ρσ (2.1c)
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and the entropy inequality

∂

∂t
(ρη) +∇ · (ρηv) ≥ −∇ · (h/θ) + ρσ/θ (2.1d)

where ρ is the density, v is the velocity vector, ε is the specific internal energy, h
is the heat conduction vector, T is the stress tensor, b is the specific body force
vector, D is the deformation rate tensor, θ is the temperature, σ is the specific
radiation, η is the specific entropy, and ⊗ is the standard tensor product of vectors.

Assuming a one-dimensional dependence for all of the variables involved, and
introducing a heat conduction sink term q⊥c to account for heat loss in the direction
orthogonal to the axis of symmetry, the authors arrive at the system

∂

∂t
(ρA) +

∂

∂x
(ρAv) = 0 (2.2a)

∂

∂t
(ρAv) +

∂

∂x
(ρAv2) =

∂

∂x
(TA) (2.2b)

∂

∂t
(ρAε) +

∂

∂x
(ρAεv) = AT

∂v

∂x
− ∂

∂x
(Ah)− q⊥c + ρAσ +AQ̇ (2.2c)

where x is the variable along the axis of the pulse combustion chamber and the
tailpipe (see Figure 1), A is the cross sectional area of the pulse combustor, and Q̇
is the heat generated by combustion.

As initial values the authors [26] assume atmospheric pressure, zero velocity, and
room temperature; i.e.,

p(x, 0) = p0, v(x, 0) = v0, θ(x, 0) = θ0 (2.3a)

The outlet of the tailpipe is considered to be the open end of an organ pipe; i.e., at
x = L there is a pressure node and a maximum amplitude of the velocity:

p(L, t) = p0,
∂v

∂x
(L, t) = 0,

∂ρ

∂x
(L, t) = 0, (2.3b)

Fureby and Lundgren [26] also distinguish between closed and open valves at the
entrance to the pulse combustor; this results in two sets of boundary conditions at
x = 0. In the case of a closed valve the pressure amplitude has a maximum and
the mass transport is zero; i.e.,

∂p

∂x
(0, t) = 0, {ρAv}(0, t) = 0,

∂θ

∂x
(0, t) = 0 (2.3c)

In case of an open valve, the temperature and pressure are assumed to be the
same as that in the gas supply line, and the mass transport is modeled separately,
specifically,

p(0, t) = pg, {ρAv}(0, t) = ṁ(t) 6= 0, θ(0, t) = θg (2.3d)

To close the system of equations the following set of constitutive relations is em-
ployed:

T = (−p− λtrD)I + 2µD + νg ⊗ g, (2.4a)

h = (k + βtrD + δ(trD)2)g + γDg, (2.4b)

ε = ε(ρ, θ), (2.4c)

η = η(ρ, θ) (2.4d)

where g = ∇θ and λ, µ, ν, β, δ, γ, and k are material constants, e.g., µ is the viscos-
ity, and k is the thermal conductivity. It is, however, unclear as to what specific
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form of these constitutive relations was used in the numerical experiments reported
in [26]. In [26] submodels were also introduced to deal with the combustion pro-
cesses, e.g., for the energy release term Q̇ it was assumed that for some spatially
varying amplitude function K(x)

Q̇ = Q̇(x, t) = K(x) sin
(

2π
t

τ
− δ
)

(2.5)

where τ denotes the period and δ is the phase difference between the mass flow ṁ
and the energy release Q̇. A heat transfer submodel of the form

q⊥c = O(x)hr(x, t) (2.6)

was incorporated into the model, where O(x) is the circumference of the combustion
chamber at x, and hr(x, t) is the radial component of the heat conduction vector
h. Finally, the following valve model was also introduced:

ṁ(t) = {ρAv}(0, t) =
∂

∂x

∫ t+τ

t

(TA)(x, ξ)dξ
∣∣∣
x=0

(2.7)

where ṁ(t) is the mass flow rate through the valve.
The other well-known contribution to the literature on one-dimensional pulse

combustion modeling may be found in [3] where unsteady, one-dimensional equa-
tions of continuity, momentum, and energy were numerically solved; the model here
also allows for a variable area geometry, and assumes the perfect gas equation of
state. The full model has the form

∂(ρA)
∂x

= − ∂

∂x
(ρuA) (2.8a)

∂(ρuA)
∂x

= − ∂

∂x
(ρu2A+ pA) + p

dA

dx
− ρA4f

D

u2

2
u

|u|
(2.8b)

∂(ρAEs)
∂x

= − ∂

∂x
[u(ρAEs + pA)] + q̇ − 4Dh(T − Tair) (2.8c)

Es = cV T +
u2

2
, (2.8d)

p = ρRT (2.8e)

Here p, ρ, and T are, respectively, the pressure, density, and temperature of the
gas, cV is the specific heat at constant volume, u is the fluid velocity, D and A are
the local side and cross-sectional area of the square combustor, Tair is the external
temperature used to determine heat losses, f is the friction factor, and q̇ is the heat
generated due to the combustion process. The authors [3] use the following initial
and boundary conditions in their numerical computations:

p(x, 0) = patm, T (x, 0) = Tair, u(x, 0) = 0 (2.9a)

During injection, at the entrance, it was assumed that

∂p

∂x
(0, t) = 0, T (0, t) = Tair, u(0, t) =

ṁ(t)
ρA

(2.9b)

and for the case where valve is closed the boundary conditions were

∂p

∂x
(0, t) = 0,

∂T

∂x
(0, t) = 0, u(0, t) = 0 (2.9c)
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Finally, at the tailpipe exit, it was assumed that

p(L, t) = patm,
∂ρ

∂x
(L, t) = 0,

∂u

∂x
(L, t) = 0 (2.9d)

We note that, mathematically, only five boundary conditions are required in
each of the models governed by systems (2.2) and (2.8). Specifying six bound-
ary conditions makes these systems mathematically overdetermined; however, all
six boundary conditions are necessary for a numerical treatment of the problems
specified above and, indeed, these papers only employ numerical treatments of the
models. It is not surprising that some of the boundary conditions are slightly dif-
ferent in the models developed in [3, 26]. Indeed, in both [3] and [26] a version of
the McCormack predictor-corrector method is used to solve the system of partial
differential equations subject to boundary and initial conditions; this method is
mathematically equivalent to introducing an artificial viscosity parameter and then
using standard numerical methods for parabolic equations. In each case the special
pulse combustor data introduced for each model was used for calculations and many
of the parameters were chosen specific to the particular pulse combustor. While
[26] simply checks the consistency of the model with experiments, the authors of [3]
also attempted to find an optimal frequency of operation for the pulse combustor.

3. A one-dimensional, lumped parameter, pulse combustion model

The general form of the equations describing the motion of a reactive gas is based
on the following conservation laws:

(i) conservation of mass:

∂

∂t
(ρA) = − ∂

∂x
(ρuA) (3.1)

(ii) conservation of momentum:

∂

∂t
(ρuA) = − ∂

∂x

(
ρu2A− σA

)
(3.2)

and
(iii) conservation of energy:

∂

∂t
(ρAE) = − ∂

∂x
(uρAE +HA− uσA) + q̇ (3.3)

where, as in the previous section, ρ(x, t) is the density of the gas, u(x, t) is the
velocity, T (x, t) is the gas temperature, A(x) is the cross sectional area of the pulse
combustor, σ(x, t) is the stress tensor, E(x, t) is energy per unit mass, H(x, t)
is heat conduction in the axial direction, and q̇(x, t) is the heat released due to
chemical reactions per unit time. The system of equations (3.1)-(3.3) is consistent
with the system in [26] but there seems to be some inconsistency with the system in
[3]. In particular the conservation of momentum equation (2.8)b has a form which
seems to be inconsistent with the principles of continuum mechanics.

The system of conservation equations (3.1)-(3.3) are closed by the constitutive
relations:

E = cV T +
u2

2
, (3.4)

p = ρRT, (3.5)
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σ = −p+ µ
∂u

∂x
, (3.6)

H = −k∂T
∂x

(3.7)

where cV is specific heat of the gas, R is the gas constant, µ is the gas viscosity,
assumed to be constant, and k is the heat conduction coefficient, also assumed to
be constant. This specific form of the constitutive relations is consistent with the
forms proposed in [3, 26].

We choose as variables the density, velocity and temperature; all other func-
tions will be assumed to be functions of ρ, u, and T , with the specific dependence
expressed through the constitutive relations. Using the constitutive relations, we
obtain from (3.1)-(3.3) the following evolution equations

A
∂ρ

∂t
= −Au∂ρ

∂x
−Aρ∂u

∂x
− ∂A

∂x
(ρu) (3.8)

Au
∂ρ

∂t
+Aρ

∂u

∂t

= −∂ρ
∂x
u2A− ∂u

∂x
2ρuA− ∂(ρRT )

∂x
A+ µ

∂2u

∂x2
A− ∂A

∂x

(
ρu2 − ρRT + µ

∂u

∂x

) (3.9)

AρcV
∂T

∂t
+Aρu

∂u

∂t
+A

(
cV T +

u2

2

)∂ρ
∂t

= −AucV ρ
∂T

∂x
−Au2ρ

∂u

∂x
−Au

(
cV T +

u2

2

)∂ρ
∂x

−Aρ
(
cV T +

u2

2

)∂u
∂x
−A ∂

∂x

(
− ρRT ∂u

∂x
+ µ

(∂u
∂x

)2)+ q̇

(3.10)

Using (3.8) to substitute for A∂ρ
∂t in (3.9) we obtain

u
(
−Au∂ρ

∂x
−Aρ∂u

∂x
− ∂A

∂x
(ρu)

)
+Aρ

∂u

∂t

= −∂ρ
∂x
u2A− ∂u

∂x
2ρuA− ∂p

∂x
A+ µ

∂2u

∂x2
A− ∂A

∂x

(
ρu2 − p+ µ

∂u

∂x

) (3.11)

which can then be reduced to

Aρ
∂u

∂t
= −∂u

∂x
ρuA−

(
Rρ

∂T

∂x
+RT

∂ρ

∂x

)
A+µ

∂2u

∂x2
A− ∂A

∂x

(
−ρRT +µ

∂u

∂x

)
. (3.12)

We now use (3.8) and (3.12) to substitute for A∂ρ
∂t and Aρ∂u∂t , respectively, on

the right hand side of (3.10). Assuming ρ(x, t) > 0, we then obtain the following
system of three partial differential equations for ρ, u, and T :

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= −ρu ∂

∂x
(lnA), (3.13a)

∂u

∂t
+ u

∂u

∂x
+R

∂T

∂x
+
RT

ρ

∂ρ

∂x
=
µ

ρ

∂2u

∂x2
+
µ

ρ

∂u

∂x

∂

∂x
(lnA)−RT ∂

∂x
(lnA), (3.13b)

∂T

∂t
+ u

∂T

∂x
+
RT

cV

∂u

∂x
=

µ

cV

1
ρ

(
∂u

∂x

)2

+
k

cV

1
ρ

∂2T

∂x2
+

q̇

AcV

1
ρ

+
k

cV ρ

∂T

∂x

∂

∂x
(lnA) .

(3.13c)

Using the assumptions introduced in [5] it will be shown that the vacuum state
does not occur for initial data chosen sufficiently small; this will justify the assump-
tion that ρ > 0 in (3.13). The valves at the entrance to the pulse combustor are
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assumed to be designed in such a way as to allow control over the reactant gas flow
into the chamber. We assume, therefore, that the velocity of the gas entering the
pulse combustor chamber is a known function of time; i.e., at x = 0 we have

u(0, t) = α(t) (3.14)

for some function α(t). The model does not differentiate between open and closed
valves. We assume, instead that, due to valve inertia the valve never closes com-
pletely, which seems to be a physically realistic assumption; this allows for a con-
tinuous (although oscillating) flow of the reactants into the chamber. We impose
the following conditions on the function α:

α(t) ≥ α0 > 0, t ≥ 0, (3.15)

α(t) ∈ C3(0,∞) . (3.16)

The first condition reflects the fact that the flow is always directed towards the
chamber and the valves never close completely. The second condition guarantees
that the function α(t) is sufficiently smooth for the analysis to follow.

We also assume that we can control the temperature and pressure and, hence,
the density of the reactants flowing into the chamber; this assumption is equivalent
to the following entrance boundary conditions on ρ and T .

T (0, t) = Tin > 0, (3.17)

ρ(0, t) = ρin =
patm

RTin
> 0 . (3.18)

Remarks: The current model does not allow for flow reversal in the tailpipe. In
order to incorporate flow reversal, the mathematical domain of the problem would
need to be extended beyond the exit of the tailpipe, and some mixing mechanism
would need to be introduced, likely requiring a model with at least a two dimen-
sional spatial dependence.

As the system (3.13)a,b,c is first order ρ, no exit boundary condition can be
imposed with respect to ρ at x = L; introducing such a boundary condition will
result in an over determined system. The conditions for u and T at x = L are the
following: first of all, the flow of the gas exiting the tailpipe is incompressible; i.e.,

∂u

∂x
(L, t) = 0 (3.19)

Next, once a stable operating cycle of the pulse combustor has been established,
the temperature of the combustion products coming out of the tailpipe remains
constant, as it depends solely on the air-fuel ratio used. Therefore, we seek solutions
for which

T (L, t) = Tout = const. (3.20)

This latter condition may also be substantiated as follows: the set of exit boundary
conditions in the previous formulations of one-dimensional pulse combustion in
[3, 26]; i.e.,

ρx(L, t) = 0, ux(L, t) = 0, p(L, t) = patm

yield, as has been noted, an overdetermined problem and does not contain a bound-
ary condition for the temperature. However, for the exit boundary conditions in the
current model (3.19), (3.20), the boundary condition for the temperature follows as



EJDE-2013/46 A HYPERBOLIC-PARABOLIC SYSTEM 11

a consequence of the boundary conditions for the density and the pressure which
were used in [3, 26]. In fact, using the conservation of mass equation we obtain

ρt(L, t) + u(L, t)ρx(L, t) + ρ(L, t)ux(L, t) = −ρ(L, t)u(L, t)
Ax(L)
A(L)

(3.21)

If we then apply (3.19), and the fact that the cross-section has constant area along
the length of the tailpipe, we obtain ρt(L, t) = 0 which, when combined with (3.19),
implies that

ρ(L, t) = const (3.22)

As a consequence of the ideal gas law, however,

T (L, t) =
patm

Rρ(L, t)
= const.

which is (3.20).
For the initial conditions at t = 0 we assume the specification of sufficiently

smooth functions of x; i.e.,

u(x, 0) = u0(x) (3.23a)

ρ(x, 0) = ρ0(x) (3.23b)

T (x, 0) = T0(x) (3.23c)

where u0(x), ρ0(x), T0(x) ∈ C2[0, L].
The complete model considered in this paper, as well as in [5], consists of the

system of equations (3.13)a,b,c for ρ, u, T , the boundary conditions (3.14), (3.17),
(3.18), (3.19), and (3.20), and the initial data (3.23)a,b,c, a sketch of the pulse
combustor configuration associated with this model is presented in Figure 3.

4. Some related work on problems in gas dynamics

Initial-boundary value problems associated with pulse combustion modeling dif-
fer from the majority of the gas-dynamics related initial boundary-value problems
in the literature; such problems are often defined on a bounded domain and lead
to situations involving time-dependent boundary conditions. In a pulse combustor
reactants are added, and products are removed, periodically. These properties are
not unique to pulse combustor modeling; similar initial-boundary value problems
arise in other physical applications, e.g., blood flow [15] and the references contained
therein.

Existence and uniqueness for initial and initial-boundary value problems associ-
ated with the motion of viscous, compressible fluids has been covered extensively
in the literature [29, 30, 31, 33, 35, 43, 45, 46, 48, 49, 50, 53, 55, 57, 58, 59]. This
includes work related to the gas dynamics equations with a three-dimensional spa-
tial dependence [29, 45, 49, 53, 57]. In [45], the equations of motion of compressible
viscous and heat-conductive fluids were investigated for initial boundary value prob-
lems in a half space and in the exterior domain of any bounded region. A globally
unique solution (in time) was proved to exist and approach the stationary state as
t→∞, provided the prescribed initial data and the external force were sufficiently
small. The solutions, in fact, possess the following smoothness:

ρ ∈ C0(0,∞;H3(Ω)) ∩ C1(0,∞;H2(Ω)),

u, θ ∈ C0(0,∞;H3(Ω)) ∩ C1(0,∞;H1(Ω))
(4.1)
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Tani [57] establishes existence and uniqueness results for the first initial-boundary
value problem of compressible viscous fluid motion, and Itaya [29] provides a similar
result for the Cauchy problem.

The system of gas dynamics equations with a two-dimensional spatial dependence
was considered, for example, by Kazhikhov and Vaigant [58]. In particular the
existence of a unique solution

u(x, y, t) ∈ C2+α,1+α/2(Q̄T ), ρ(x, y, t) ∈ C1+α,1+α/2(Q̄T ) (4.2)

(QT = Ω× [0, T ], Ω being the spatial domain) was established, provided the initial
data were sufficiently small and satisfied

u0(x, y) ∈ C2+α(Ω̄), ρ0(x, y) ∈ C1+α(Ω̄) (4.3)

In [33], the existence of global classical solutions to initial boundary value prob-
lems in the dynamics of a one-dimensional, viscous, heat-conducting gas was estab-
lished; in this work nonlinear dissipative effects turn out to be sufficiently strong to
prevent the development of singularities. In [35], a system of equations for a viscous
heat-conducting perfect gas was studied for the case of a one-dimensional motion
with plane waves; the unique solvability of the problem of gas flow in a bounded
region with impermeable thermally insulated boundaries was proven for the class
of the both generalized (strong) and classical solutions. An existence theorem was
established by using a priori estimates to extended the local (in time) solution to
a global solution; a major role is played here by upper and lower bounds for the
density and temperature. Kanel [30] provided an existence result for the Cauchy
problem with one-dimensional spatial dependence. Finally, the review paper by
Solonnikov and Kazhikhin [55] provides a good survey of existence results for the
one-dimensional equations governing the motion of a compressible fluid.

All of the existence results cited above are, however, valid only for homogeneous
systems of partial differential equations with homogeneous boundary conditions.
For the case of the one-dimensional equations governing the motion of a compress-
ible fluid, a change of variables from density to specific volume can be introduced
(Lagrangian variables). This change of variables significantly simplifies the con-
servation equations; in particular, the conservation of mass equation reduces to
v,t − u,x = 0, where v = 1/ρ is the specific volume of the gas. However, this
change of variables assumes that the density remains strictly positive; the possibil-
ity of a vacuum state must be addressed separately [55]. The Lagrangian change
of variables can not be applied to the initial-boundary value problem formulated in
section 3 as the problem introduced there does not involve a homogeneous system
of equations, nor does it possess homogeneous boundary conditions. The analysis
presented in this paper, as well as in [5], is closest in spirit to that of the energy
argument employed in [54], albeit without the type of time-dependent boundary
conditions which appear in the present work.

5. Relation of the current model to the spatially independent model

If one assumes spatial independence, as well as the other assumptions of the
model described in section 3, we can expect the one-dimensional model to reduce to
the spatially independent model described in [8]. In this section we will demonstrate
that this, in fact, is the case.

The one-dimensional model is governed by the system of three conservation laws
which result from combining (3.1)-(3.3) with (3.6), assuming µ = 0; this procedure
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yields the system
∂

∂t
(ρA) = − ∂

∂x
(ρuA), (5.1)

∂

∂t
(ρuA) = − ∂

∂x

(
ρu2A+ pA

)
, (5.2)

∂

∂t
(ρAE) = − ∂

∂x
[u (ρAE + pA)] + q̇ (5.3)

We also append the constitutive relations (3.4), (3.5) for the total energy and the
pressure.

The spatially independent model involves two equations. The first one is a
consequence of energy balance in the combustion chamber and is the precursor to
(1.1), namely,

d

dt
[ρReRVR + ρP ePVP ] = hRṁR +

∆H
1 + r

ṁB − h0ṁ0 (5.4)

where ρR is the density of the reactants, ρP is the density of the combustion prod-
ucts, eR and eP are the internal energy of the reactants and products, respectively,
(per unit mass of the mixture), VR(VP ) is the chamber volume occupied by reac-
tants (products), ṁR is the mass flow rate of the reactants, ṁB is the mass burning
rate of the reactant mixture, ṁ0 is the mass flow rate of the combustion products
in the tailpipe, r is the air fuel (mass) ratio, ∆H is the heat of combustion per unit
mass of the fuel, hR is the enthalpy, per unit mass of the reactant mixture entering
the combustion chamber, and h0 is the enthalpy, per unit mass of the mixture of
combustion products leaving the chamber. We note that VB = VR + VP , where
VB is the combustion chamber volume. The second equation in the model is the
momentum equation in the tailpipe (1.2), which we repeat here as

ρ̄L
du

dt
= p− pa (5.5)

with ρ̄ the average density of the combustion products in the tailpipe, p the pressure
in the tailpipe, pa the atmospheric pressure, L the length of the tailpipe, and u the
velocity of the gas in the tailpipe.

We first consider the energy equation (5.3) and recall the following three rela-
tionships from thermodynamics

cP − cV = R (5.6)

where cP is the specific heat at constant pressure, per unit mass of the gas,

h = cPT (5.7)

where h is the enthalpy of the gas, per unit mass, and

e = cV T (5.8)

where e is internal energy of the gas, per unit mass. In the spatially independent
case the velocity inside the chamber is zero; therefore, in the chamber

E = cV T +
u2

2
= e (5.9)

which can also be rewritten using (5.7) and the ideal gas law (3.5) as

E = cV T = (cP −R)T = h−RT = h− p

ρ
(5.10)
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Substituting for E in (5.3) we obtain

∂

∂t
(ρAe) = − ∂

∂x

[
u
(
ρA(h− p

ρ
) + pA

)]
+ q̇ (5.11)

which yields
∂

∂t
(ρAe) = − ∂

∂x
(ρuAh) + q̇ (5.12)

We now integrate equation (5.12) along the length of the chamber with the entrance
of the chamber at x = 0 and the exit of the chamber at x = l:∫ l

0

∂

∂t
(ρAe)dx = −

∫ l

0

∂

∂x
(ρuAh)dx+

∫ l

0

q̇dx (5.13)

Remarks: In the model introduced in section 3, the entrance to the combustion
chamber is at x = 0 and the exit from the tailpipe is at x = L; here we assume
that the combustion chamber occupies the domain 0 ≤ x ≤ l and the tailpipe the
domain l < x ≤ l + L.

We now note that

e = cV T = cV RTνR + cV PTνP = cV RT
ρRVR
ρV

+ cV PT
ρPVP
ρV

(5.14)

where νR and νP are mass fractions of the reactants and products, respectively.
Since V = Al we can write

ρAe = cV RT
ρRVR
l

+ cV PT
ρPVP
l

=
1
l
(eRρRVR + eP ρPVP ) (5.15)

We have, from (5.13),

∂

∂t

∫ l

0

1
l
(eRρRVR + eP ρPVP )dx = (ρuAh) |l0 +

∫ l

0

q̇dx (5.16)

which yields

d

dt
(eRρRVR + eP ρPVP ) = (ρuA)inhin − (ρuA)outhout + q̇total (5.17)

where

q̇total =
∫ l

0

q̇dx (5.18)

is the total heat released in the chamber due to chemical reactions, per unit mass
of the gas mixture, per unit time. In the spatially independent model, combustion
of the fuel is completely achieved and hence

q̇total =
∆H
1 + r

ṁB (5.19)

Also, because of the assumptions in the spatially independent model we have
(ρuA)in = ṁR, (ρuA)out = ṁ0, hin = hR and hout = h0. Substituting these
assumptions into (5.17) we obtain the zero-dimensional energy equation (5.4).

To arrive at the spatially-independent momentum equation (5.5) we consider the
momentum equation (5.2) in the tailpipe. We integrate (5.2) along the length of
the tailpipe so as to obtain

∂

∂t

∫ l+L

l

(ρuA)dx = −
∫ l+L

l

∂

∂x

(
ρu2A+ pA

)
dx (5.20)
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where we used the fact that ∂A
∂x = 0 in the spatially independent case. In fact, as

A is constant in the tailpipe, while the velocity u of the gas is spatially constant,
we obtain

A
∂

∂t

(
u

∫ l+L

l

ρdx

)
= − ((ρuA)u+ pA) |l+Ll (5.21)

However, the mass flow rate ρuA = ṁ0 is constant along the length of the tailpipe,
therefore, with ρ̄ the average density in the tailpipe, it follows from (5.21) that

Aρ̄L
du

dt
= A(p(l)− p(L+ l)) (5.22)

which is, of course, equivalent to (5.5).

6. Existence and uniqueness for the linear system with artificial
viscosity

The initial-boundary value problem for the one-dimensional pulse combustion
model introduced in §3 consists of the mixed hyperbolic-parabolic system (3.13)
a,b,c, the boundary conditions (3.14), (3.15), (3.16), (3.19), and (3.20), and the
initial data (3.23) a,b,c.

We begin the analysis in this section by effecting a change of variables so as to
obtain a problem with homogeneous boundary conditions; more specifically, we set

û = u− α(t) (6.1a)

ρ̂ = ρ− ρin (6.1b)

T̂ = T − x

L
Tout −

L− x
L

Tin (6.1c)

and substitute (6.1)a,b,c in (3.13)a,b,c so as to obtain, after rearranging terms, the
system

ρ̂t + a(x, t)ûx + b(x, t)ρ̂x = c(x, t) (6.2a)

ût + b2(x, t)ûx +RT̂x + d(x, t)ρ̂x = f(x, t)ûxx + g(x, t) (6.2b)

T̂t + b3(x, t)T̂x + h(x, t)ûx = i(x, t)T̂xx + j(x, t) (6.2c)

The coefficients in (6.2)a,b,c are given, explicitly, by

a(x, t) = ρ̂+ ρin (6.3a)

b(x, t) = û+ α(t) (6.3b)

b2(x, t) = û+ α(t)− µ

ρ̂+ ρin
(lnA)x (6.3c)

b3(x, t) = û+ α(t)− k

cV (ρ̂+ ρin)
(lnA)x (6.3d)

c(x, t) = −(ρ̂+ ρin)(û+ α(t))(lnA)x (6.3e)

d(x, t) =
R

ρ̂+ ρin

(
T̂ +

x

L
Tout +

L− x
L

Tin

)
(6.3f)

f(x, t) =
µ

ρ̂+ ρin
(6.3g)

g(x, t) = −α′(t)− R

L
(Tout − Tin)−R

(
T̂ +

x

L
Tout +

L− x
L

Tin

)
(lnA)x (6.3h)
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h(x, t) =
µ

cV

ûx
ρ̂+ ρin

+
R

cV

(
T̂ +

x

L
Tout +

L− x
L

Tin

)
(6.3i)

i(x, t) =
k

cV (ρ̂+ ρin)
(6.3j)

j(x, t) = −(û+ α(t))
(Tout − Tin

L

)
+

q̇

cV (ρ̂+ ρin)
(6.3k)

We note that h(x, t) is the only coefficient containing a derivative of one of the
unknown functions. Also, in view of (6.1)a, b,c, the boundary data and initial
conditions assume the following form: For the boundary conditions at x = 0 we
have, for all t > 0,

û(0, t) = u(0, t)− α(t) = 0 (6.4a)

ρ̂(0, t) = ρ(0, t)− ρin = 0 (6.4b)

T̂ (0, t) = T (0, t)− Tin = 0 (6.4c)

while those at x = L assume the form

ûx(L, t) = 0 (6.4d)

T̂ (L, t) = T (L, t)− Tout = 0 (6.4e)

In terms of the new variables, the initial conditions are

û(x, 0) = u0(x)− α(0) = û0(x) (6.5a)

ρ̂(x, 0) = ρ0(x)− ρin = ρ̂0(x) (6.5b)

T̂ (x, 0) = T0(x)− x

L
Tout −

L− x
L

Tin = T̂0(x) (6.5c)

If we ignore the dependence of the coefficients in (6.3)a-k on ρ̂, û, T̂ and instead
assume that the coefficients a, b, b2, b3, c, d, f , g, h, i, j are known functions of x
and t only, then by dropping the hats on ρ̂, û, and T̂ , including those on ρ̂0, û0,
and T̂0, we obtain the linear initial-boundary value problem

ρt + aux + bρx = c (6.6a)

ut + b2ux +RTx + dρx = fuxx + g (6.6b)

Tt + b3Tx + hux = iTxx + j (6.6c)

with initial data on [0, L]

u(x, 0) = u0(x) (6.7a)

ρ(x, 0) = ρ0(x) (6.7b)

T (x, 0) = T0(x) (6.7c)

and, for all t > 0, the boundary data

ρ(0, t) = 0 (6.8a)

u(0, t) = 0 (6.8b)

T (0, t) = 0 (6.8c)

ux(L, t) = 0 (6.8d)

T (L, t) = 0 (6.8e)
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The purpose of this paper is to prove an existence and uniqueness theorem for
the system (6.6), (6.7), (6.8) (as well as for a regularized version of this system);
the latter result will serve as the starting point for the local and global existence
results for the original nonlinear problem (3.13)a,b,c, (3.14), (3.17)-(3.20), and
(3.23)a,b,c in [5]. In fact, the existence and uniqueness result for (6.6), (6.7), (6.8),
which is established in §7, depends on proving, in this section, a related result for
the regularized version of this system which is introduced below; this regularized
problem is treated by using the method of Galerkin approximations coupled with an
energy argument. For the problem (6.6), (6.7), (6.8), as well as for the regularized
version of this problem possessing an artificial viscosity, we will assume that

f(x, t) ≥ fc > 0, ∀(x, t) ∈ [0, t]× [0, L] (6.9a)

i(x, t) ≥ ic > 0, ∀(x, t) ∈ [0, t]× [0, L] (6.9b)

a, b, b2, b3, c, d, f, g, h, i, j ∈ C∞([0, t];C∞[0, L]) (6.9c)

To regularize the mixed, linear, hyperbolic-parabolic system (6.6) we add the
viscous term δρxx to (6.6)a where δ > 0 is an artificial viscosity; this produces the
uniformly parabolic system

ρt + aux + bρx = δρxx + c (6.10a)

ut + b2ux +RTx + dρx = fuxx + g (6.10b)

Tt + b3Tx + hux = iTxx + j . (6.10c)

For the system (6.10)a,b,c we retain the initial data (6.7)a,b,c but, as we have
increased the order of the equation governing the evolution of ρ, we append to the
boundary data (6.8) the additional boundary condition

ρx(L, t) = 0, t > 0 (6.8f)

The full regularized problem now consists of (6.10)a,b,c, (6.7)a,b,c, and (6.8)a-f; to
deal with this problem we begin by introducing the spaces which are used in the
Galerkin approximations; i.e., we have the following definition.

Definition 6.1. For m ∈ N define the finite dimensional spaces

Vm =
{
v(x, t) : v =

m∑
l=0

αl(t)

√
2
L

sin
(2l + 1)πx

2L
}
, , (6.11a)

Wm =
{
w(x, t) : w =

m∑
l=0

βl(t)

√
2
L

sin
lπx

L

}
, (6.11b)

where αl(τ), βl(τ) ∈ C1[0, t].

Recalling that the functions ρ, u, T which appear in (6.10)a,b,c, (6.7)a,b,c, and
(6.8)a-f are, in fact, the ρ̂, û, T̂ given by (6.1)a,b,c we state the following result.

Lemma 6.2. Suppose ρ(x, t), u(x, t) ∈ Vm and T (x, t) ∈ Wm for some m ∈ N, and

∫ L

0

(ρt + aux + bρx − δρxx − c)vdx = 0 (6.12a)∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)vdx = 0 (6.12b)



18 O. TERLYGA, H. BELLOUT, F. BLOOM EJDE-2013/46

for any v ∈ Vm, while∫ L

0

(Tt + b3Tx + hux − iTxx − j)wdx = 0 (6.12c)

for any w ∈ Wm; then, the following identity holds:

1
2
{‖ρ(·, t)‖2W 1,2 + ‖u(·, t)‖2W 1,2 + ‖T (·, t)‖2W 1,2}

+
∫ t

0

∫ L

0

{
i(T 2

xx + T 2
x ) + T 2

t + f(u2
xx + u2

x) + u2
t + δ(ρ2

xx + ρ2
x) + ρ2

t

}
dx dτ

+
1
2

∫ L

0

fu2
xdx+

1
2

∫ L

0

iT 2
xdx

=
1
2

∫ L

0

f(x, 0)u2
x(x, 0)dx+

1
2

∫ L

0

i(x, 0)T 2
x (x, 0)dx

+
1
2
{‖ρ(·, 0)‖2W 1,2 + ‖u(·, 0)‖2W 1,2 + ‖T (·, 0)‖2W 1,2}

+
∫ t

0

∫ L

0

{
− aρux − bρρx − b2uux −RuTx − duρx − b3TTx − hTux

+
1
2
ftu

2
x +

1
2
itT

2
x

}
dx dτ +

∫ t

0

∫ L

0

{
auxρxx + bρxρxx + b2uxuxx

+RTxuxx + dρxuxx + b3TxTxx − aρtux − bρtρx − b2utux −RutTx

− dutρx − b3TtTx − fxutux − ixTtTx − hTtux + huxTxx

}
dx dτ

+
∫ t

0

∫ L

0

{
cρ+ gu+ jT − cρxx − guxx

− jTxx + cρt + gut + jTt

}
dx dτ +

∫ t

0

∫ L

0

δρtρxx dx dτ

(6.13)

Remark 6.3. The hypotheses of Lemma 6.2 will hold for the Galerkin approxima-
tions to the solution of the regularized linear initial-boundary value problem which
are constructed below.

Proof. We observe that as ρ, u ∈ Vm and T ∈ Wm, all even order spatial derivatives
of ρ, u and T will be zero at x = 0, while odd order spatial derivatives of ρ, u and
even order spatial derivatives of T will vanish at x = L. As ρ ∈ Vm, it follows from
from (6.12)c that ∫ L

0

∫ t

0

(ρt + aux + bρx − δρxx − c)ρ dx dτ = 0 (6.14)

which, after integration by parts of the term δρρxx, becomes∫ L

0

1
2
ρ2(x, t)dx−

∫ L

0

1
2
ρ2

0(x)dx+
∫ t

0

∫ L

0

δρ2
x dx dτ

=
∫ t

0

∫ L

0

{−aρux − bρρx + cρ} dx dτ
(6.15)



EJDE-2013/46 A HYPERBOLIC-PARABOLIC SYSTEM 19

Also, as u ∈ Vm we have, as a consequence of (6.12)b∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)udx = 0 (6.16)

If we then integrate this last result over [0, t] we obtain∫ L

0

1
2
u2(x, t)dx−

∫ L

0

1
2
u2

0(x)dx+
∫ t

0

∫ L

0

fu2
x dx dτ

=
∫ t

0

∫ L

0

{−b2uux −RuTx − duρx + gu} dx dτ
(6.17)

Next, as T ∈ Wm, it follows from (6.12)c that∫ L

0

(Tt + b3Tx + hux − iTxx − j)Tdx = 0 (6.18)

and integrating this result over [0, t] we obtain∫ L

0

1
2
T 2(x, t)dx−

∫ L

0

1
2
T 2

0 (x)dx+
∫ t

0

∫ L

0

iT 2
x dx dτ

=
∫ t

0

∫ L

0

{−b3TTx − hTux + jT} dx dτ .
(6.19)

Since ρxx ∈ Vm, (6.12)a yields∫ L

0

(ρt + aux + bρx − c− δρxx)ρxxdx = 0 . (6.20)

Integration by parts in (6.20), coupled with the conditions ρx(L, t) = 0, ρt(0, t) = 0,
and followed by integration over [0, t], then yields∫ L

0

1
2
ρ2
x(x, t)dx−

∫ L

0

1
2
ρ2
x(x, 0)dx+

∫ t

0

∫ L

0

δρ2
xx dx dτ

=
∫ t

0

∫ L

0

(auxρxx + bρxρxx − cρxx) dx dτ

(6.21)

As uxx ∈ Vm, (6.12)b implies that∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)uxxdx = 0 (6.22)

If we integrate by parts in this last identity, use the conditions ux(L, t) = 0 and
ut(0, t) = 0, and then integrate over [0, t], we find that∫ L

0

1
2
u2
x(x, t)dx−

∫ L

0

1
2
u2
x(x, 0)dx+

∫ t

0

∫ L

0

fu2
xx dx dτ

=
∫ t

0

∫ L

0

(b2uxuxx +RTxuxx + dρxuxx − guxx) dx dτ .

(6.23)

Next, as Txx ∈ Wm, (6.12)c produces∫ L

0

(Tt + b3Tx + hux − iTxx − j)Txxdx = 0 . (6.24)
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Integrating by parts in (6.24), using the fact that Tt(0, t) = Tt(L, t) = 0, t > 0, and
then integrating over [0, t], we obtain∫ L

0

1
2
T 2
x (x, t)dx−

∫ L

0

1
2
T 2
x (x, 0)dx+

∫ t

0

∫ L

0

iT 2
xx dx dτ

=
∫ t

0

∫ L

0

(b3TxTxx + huxTxx − jTxx) dx dτ .

(6.25)

Since ρt ∈ Vm, (6.12)a yields∫ L

0

(ρt + aux + bρx − c− δρxx)ρtdx = 0 , (6.26)

so that∫ t

0

∫ L

0

ρ2
t dx dτ =

∫ t

0

∫ L

0

(−aρtux − bρtρx + cρt − δρtρxx) dx dτ (6.27)

Next, we note that as ut ∈ Vm, (6.12)b yields, after integration over [0, t],∫ t

0

∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)utdxdt = 0 . (6.28)

Integrating the next to the last term in (6.28) by parts, we find that∫ t

0

∫ L

0

fuxxut dx dτ = −
∫ L

0

1
2
fu2

xdx
∣∣∣t
0
+
∫ t

0

∫ L

0

1
2
ftu

2
x dx dτ−

∫ t

0

∫ L

0

fxuxut dx dτ

(6.29)
because ux(L, t) = ut(0, t) = 0. If we now substitute this last result back into
(6.29), we obtain∫ t

0

∫ L

0

u2
t dx dτ +

∫ L

0

1
2
fu2

xdx

=
∫ L

0

1
2
f(x, 0)u2

x(x, 0)dx

+
∫ t

0

∫ L

0

(−b2utux −RutTx − dutρx − fxutux +
1
2
ftu

2
x − gut) dx dτ .

(6.30)

Finally, as Tt ∈ Wm, (6.12)c produces, after integration over [0, t],∫ t

0

∫ L

0

(Tt + b3Tx + hux − iTxx − j)Ttdxdt = 0 . (6.31)

Integrating the next to the last term in (6.31) by parts yields∫ t

0

∫ L

0

iTxxTt dx dτ = −
∫ L

0

1
2
iT 2
xdx

∣∣∣t
0

+
∫ t

0

∫ L

0

1
2
itT

2
x dx dτ−

∫ t

0

∫ L

0

ixTxut dx dτ

(6.32)
as Tt(L, t) = Tt(0, t) = 0. Substituting this last result back into (6.31) we find that∫ t

0

∫ L

0

T 2
t dx dτ +

∫ L

0

1
2
iT 2
xdx

=
∫ L

0

1
2
i(x, 0)T 2

x (x, 0)dx

+
∫ t

0

∫ L

0

(−b3TtTx − hTtux − ixTtTx +
1
2
itT

2
x − jTt) dx dτ

(6.33)
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Adding together the results in equations (6.15), (6.17), (6.19), (6.21), (6.23), (6.25),
(6.27), (6.30), and (6.33), and grouping like terms together, we obtain the result
expressed by (6.13). �

We now introduce what will turn out to be an appropriate energy functional for
the regularized system (6.10)a,b,c with artificial viscosity δ > 0, namely, we have
the following definition.

Definition 6.4. For ρ(x, t), u(x, t), and T (x, t) we define the energy functional

Eδ(t) =
1
2
{
‖ρ(·, t)‖2W 1,2 + ‖u(·, t)‖2W 1,2 + ‖T (·, t)‖2W 1,2

}
+

1
2

∫ t

0

∫ L

0

{
ic(T 2

xx + T 2
x ) + T 2

t + fc(u2
xx + u2

x) + u2
t

+ δ(ρ2
xx + ρ2

x) + ρ2
t

}
dx dτ +

1
2

∫ L

0

fcu
2
xdx+

1
2

∫ L

0

icT
2
xdx

(6.34)

Lemma 6.5. Under the hypotheses of Lemma 6.2 we have for ρ, u ∈ Vm, T ∈ Wm,
and 0 < δ < 1,

Eδ(t) ≤ E(0) + Gt+K
∫ t

0

Eδ(τ)dτ , (6.35)

where G and K are positive constants.

Proof. By Lemma 6.2 the identity (6.13) holds. The terms on the right hand side
of (6.13) have been separated by { } into four distinct groups; we now proceed to
estimate these terms. In these estimates we will use generic positive constants Ci,
Ki, Gi.

The terms from the first group involve functions and/or first derivatives with
bounded coefficients; these can be estimated as in the following sample case:

∣∣ ∫ t

0

∫ L

0

aρux dx dτ
∣∣ ≤ K1

∫ t

0

∫ L

0

(ρ2 + u2
x) dx dτ, K1 =

sup |a|
2

. (6.36)

The second group of terms involve second derivatives or time derivatives of the
functions ρ, u, and T . These can be estimated as follows: for any η > 0,

∣∣ ∫ t

0

∫ L

0

aρxxux dx dτ
∣∣ ≤ η sup |a|

∫ t

0

∫ L

0

ρ2
xx dx dτ +

sup |a|
4η

∫ t

0

∫ L

0

u2
x dx dτ ,

(6.37)∣∣ ∫ t

0

∫ L

0

aρxxux dx dτ
∣∣ ≤ ηC1

∫ t

0

∫ L

0

ρ2
xx dx dτ +K2(η)

∫ t

0

∫ L

0

u2
x dx dτ

One further example of this type, in the first { }, would be

∣∣ ∫ t

0

∫ L

0

aρtux dx dτ
∣∣ ≤ η sup |a|

∫ t

0

∫ L

0

ρ2
t dx dτ +

sup |a|
4η

∫ t

0

∫ L

0

u2
x dx dτ

= ηC2

∫ t

0

∫ L

0

ρ2
t dx dτ +K4(η)

∫ t

0

∫ L

0

u2
x dx dτ .

(6.38)
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For the third group of { } terms on the right-hand side of (6.13) we have estimates
which conform to the pattern in the following two examples:∣∣ ∫ t

0

∫ L

0

cρ dx dτ
∣∣ ≤ 1

2

∫ t

0

∫ L

0

ρ2 dx dτ +
1
2

∫ t

0

∫ L

0

c2 dx dτ

≤ K3

∫ t

0

∫ L

0

ρ2 dx dτ +G1 · t ,
(6.39)

∣∣ ∫ t

0

∫ L

0

cρxx dx dτ
∣∣ ≤ η ∫ t

0

∫ L

0

ρ2
xx dx dτ +

1
4η

∫ t

0

∫ L

0

c2 dx dτ

≤ η
∫ t

0

∫ L

0

ρ2
xx dx dτ +G2(η) · t, G2(η) =

const.
η

(6.40)

Terms involving second order spatial derivatives or time derivatives on the right
hand side of, say, (6.40) can be moved to the left hand side of (6.13) to be absorbed
by those terms with a similar structure, if η is chosen sufficiently small.

Finally the last term on the right hand side of (6.13) may be estimated as follows:∣∣ ∫ t

0

∫ L

0

δρtρxx dx dτ
∣∣ ≤ ∫ t

0

∫ L

0

δ

2
ρ2
t dx dτ +

∫ t

0

∫ L

0

δ

2
ρ2
xx dx dτ . (6.41)

Both terms on the right-hand side of (6.41) can be brought over to the left-hand
side of (6.13) and absorbed by those terms with a similar structure; this is true for
the first term on the right-hand side of (6.41) provided δ < 2.

We observe that on the left-hand side of (6.13),∫ t

0

∫ L

0

iT 2
xx dx dτ ≥

∫ t

0

∫ L

0

icT
2
xx dx dτ (6.42a)

and similarly for term involving fu2
xx. Then, for η chosen small enough∫ t

0

∫ L

0

(ic − Cη)T 2
xx dx dτ ≥

∫ t

0

∫ L

0

1
2
icT

2
xx dx dτ (6.42b)∫ t

0

∫ L

0

(fc − Cη)u2
xx dx dτ ≥

∫ t

0

∫ L

0

1
2
fcu

2
xx dx dτ (6.42c)∫ t

0

∫ L

0

(
δ

2
− Cη

)
ρ2
xx dx dτ ≥

∫ t

0

∫ L

0

1
4
δρ2
xx dx dτ (6.42d)∫ t

0

∫ L

0

(1− Cη)T 2
t dx dτ ≥

∫ t

0

∫ L

0

1
2
T 2
t dx dτ (6.42e)∫ t

0

∫ L

0

(1− Cη)u2
t dx dτ ≥

∫ t

0

∫ L

0

1
2
u2
t dx dτ (6.42f)∫ t

0

∫ L

0

(
1
2
− Cη

)
ρ2
t dx dτ ≥

∫ t

0

∫ L

0

1
4
ρ2
t dx dτ , (6.42g)

where C =
∑
Ci. We note that once η is chosen, the Ki and Gi, i = 1, 2, . . . are

constants. Adding all our estimates, and making use of (6.42)a-g, we obtain (6.35)
with K =

∑
Ki and G =

∑
Gi. �

As a consequence of Lemma 6.5, we have the following a priori estimate for the
energy functional Eδ(t).
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Lemma 6.6. For some Ct0 > 0, and all t, 0 ≤ t ≤ t0, we have, under the
hypotheses of Lemma 6.5,

Eδ(t) ≤ Ct0
( G
K

+ E(0)
)

(6.43)

Proof. The proof is a consequence of Gronwall’s inequality [25]. By virtue of (6.35),

Eδ(t) +
G
K
≤ E(0) +

G
K

+ Gt+K
∫ t

0

Eδ(τ)dτ, 0 ≤ t ≤ t0 . (6.44)

If we set

Ēδ(t) = Eδ(t) +
G
K

(6.45)

it follows that

Ēδ(t) ≤ Ē(0) +K
∫ t

0

Ēδ(τ)dτ (6.46)

Applying Gronwall’s inequality to Ēδ we obtain

Eδ(t) ≤ Eδ(t) +
G
K
≤
( G
K

+ E(0)
)
eKt, 0 ≤ t ≤ t0 (6.47)

from which (6.43) follows, for 0 ≤ t ≤ t0, with Ct0 = exp(Kt0). �

As a prelude to the introduction of the Galerkin approximations, we first extend
the initial data symmetrically to [0, 2L]; i.e., for L ≤ x ≤ 2L we define

u0(x) = u0(2L− x) (6.48a)

ρ0(x) = ρ0(2L− x) (6.48b)

T0(x) = T0(2L− x) (6.48c)

and then extend u0, ρ0, T0 periodically to the entire line with period 2L. A complete
orthonormal set of functions on [0, 2L], with respect to the inner product < f, g >=∫ 2L

0
fgdx, is given by{ 1√

2L
,

1√
L

sin
lπx

2L
,

1√
L

cos
lπx

2L
; l = 1, 2, . . . } (6.49)

We also observe that the set

{
√

2
L

sin
(2l + 1)πx

2L
, l = 0, 1, 2, . . . } (6.50)

is a complete orthonormal set with respect to

{u(·)|u(·) ∈ L2[0, L], u(0) = 0, ux(L) = 0}.

in the trace sense [1, 25]. Similarly,

{
√

2
L

sin
lπx

L
, l = 0, 1, 2, . . . } (6.51)

is a complete orthonormal set with respect to

{u(·)|u(·) ∈ L2[0, L], u(0) = 0, u(L) = 0}.

in the trace sense.
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To proceed, we define candidate “approximate solutions”; i.e., Galerkin approx-
imations for the system consisting of (6.10)a,b,c, (6.7)a,b,c and (6.8)a-f of the form

ρm =
m∑
l=0

Alm(t)

√
2
L

sin
(2l + 1)πx

2L
(6.52a)

um =
m∑
l=0

Blm(t)

√
2
L

sin
(2l + 1)πx

2L
(6.52b)

Tm =
m∑
l=0

Clm(t)

√
2
L

sin
lπx

L
, (6.52c)

where for 0 ≤ l ≤ m,m = 0, 1, 2, . . . ,

Alm(0) = ξl (6.53a)

Blm(0) = ηl (6.53b)

Clm(0) = νl (6.53c)

and ξl, ηl, νl are determined as the coefficients in the following expansions of the
initial data:

m∑
l=0

ξl

√
2
L

sin
(2l + 1)πx

2L
→ ρ0(x), in L2(0, L) (6.54a)

m∑
l=0

ηl

√
2
L

sin
(2l + 1)πx

2L
→ u0(x), in L2(0, L) (6.54b)

m∑
l=0

νl

√
2
L

sin
lπx

L
→ T0(x), in L2(0, L), (6.54c)

as m → ∞. The ξl, ηl and νl are uniquely determined, once the functions ρ0(x),
u0(x), and T0(x) have been extended as described above. In (6.54)a,b,c, ρ0(x),
u0(x), and T0(x) are actually the functions ρ̂0(x), û0(x), T̂0(x), the hats having
been dropped. We now require that the coefficients Akm(t), Bkm(t), and Ckm(t)
satisfy the linear system of ordinary differential equations:

A′km(t) = −
m∑
l=0

Blm(t)
(2l + 1)π

2L2
〈a(x, t) cos

(2l + 1)πx
2L

, sin
(2k + 1)πx

2L
〉

−
m∑
l=0

Alm(t)
(2l + 1)π

2L2
〈b(x, t) cos

(2l + 1)πx
2L

, sin
(2k + 1)πx

2L
〉

−Akm(t)δ
(2l + 1)2π2

2L3
+ 〈c(x, t), 1√

L
sin

(2k + 1)πx
2L

〉 ,

(6.55a)
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B′km(t)

= −
m∑
l=0

Blm(t)
(2l + 1)π

2L2
〈b2(x, t) cos

(2l + 1)πx
2L

, sin
(2k + 1)πx

2L
〉

−
m∑
l=0

Alm(t)
(2l + 1)π

2L2
〈d(x, t) cos

(2l + 1)πx
2L

, sin
(2k + 1)πx

2L
〉

−
m∑
l=0

Clm(t)R
lπ

L2
〈cos

lπx

L
, sin

(2k + 1)πx
2L

〉+ 〈g(x, t),
1√
L

sin
(2k + 1)πx

2L
〉

−
m∑
l=0

Blm(t)
(2l + 1)2π2

4L3
〈f(x, t) sin

(2l + 1)πx
2L

, sin
(2k + 1)πx

2L
〉 ,

(6.55b)

C ′km(t) = −
m∑
l=0

Blm(t)
(2l + 1)π

2L2
〈h(x, t) cos

(2l + 1)πx
2L

, sin
kπx

L
〉

−
m∑
l=0

Clm(t)
lπ

L2
〈b3(x, t) cos

lπx

L
, sin

kπx

L
〉

−
m∑
l=0

Clm(t)
l2π2

L3
〈i(x, t) sin

lπx

2L
, sin

kπx

L
〉

+ 〈j(x, t), 1√
L

sin
kπx

L
〉

(6.55c)

and the initial conditions, for 0 ≤ l ≤ m,

Alm(0) = ξl (6.56a)

Blm(0) = ηl (6.56b)

Clm(0) = νl (6.56c)

By standard ODE theory the system (6.55)a,b,c, (6.56)a,b,c possesses a unique
solution. Moreover, we have the following result.

Lemma 6.7. Let {Akm(t), Bkm(t), Ckm(t)}, 0 ≤ k ≤ m, be the unique solution of
the initial value problem (6.55)a,b,c, (6.56)a,b,c. Then the “approximate solutions”
ρm, um and Tm, as defined by (6.52)a,b,c, satisfy the hypotheses of Lemma 6.2 (and,
hence, those of Lemma 6.5 as well).

Proof. We have

ρmt + aumx + bρmx − δρmxx − c

=
m∑
l=0

A′lm(t)

√
2
L

sin
(2l + 1)πx

2L
+

m∑
l=0

Blm(t)a(x, t)
(2l + 1)π

2L

√
2
L

cos
(2l + 1)πx

2L

+
m∑
l=0

Alm(t)b(x, t)
(2l + 1)π

2L

√
2
L

cos
(2l + 1)πx

2L

− c(x, t) +
m∑
l=0

Alm(t)δ
(2l + 1)2π2

4L2

√
2
L

sin
(2l + 1)πx

2L
(6.57)
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If we now multiply (6.57) by
√

2
L sin (2k+1)πx

2L , 0 ≤ k ≤ m, and integrate from 0 to
L, we obtain, for 0 ≤ k ≤ m,∫ L

0

(ρmt + aumx + bρmx − δρmxx − c)
√

2
L

sin
(2k + 1)πx

2L
dx

= A′km(t) +
m∑
l=0

Blm(t)
(2l + 1)π

2L
〈a(x, t)

√
2
L

cos
(2l + 1)πx

2L
,

√
2
L

sin
(2k + 1)πx

2L
〉

+
m∑
l=0

Alm(t)
(2l + 1)π

2L
〈b(x, t)

√
2
L

cos
(2l + 1)πx

2L
,

√
2
L

sin
(2k + 1)πx

2L
〉

+Akm(t)δ
(2l + 1)2π2

2L3
− 〈c(x, t),

√
2
L

sin
(2k + 1)πx

2L
〉 = 0

(6.58)
(for each 0 ≤ k ≤ m) as a consequence (6.55)a. Therefore, for any v ∈ Vm,∫ L

0

(ρmt + aumx + bρmx − δρmxx − c)vdx = 0 . (6.59)

Next, we compute that

umt + b2umx +RTmx + dρmx − fumxx − g

=
m∑
l=0

B′lm(t)

√
2
L

sin
(2l + 1)πx

2L
+

m∑
l=0

Blm(t)b2(x, t)
(2l + 1)π

2L

√
2
L

cos
(2l + 1)πx

2L

+
m∑
l=0

Clm(t)R
lπ

L

√
2
L

cos
lπx

L
+

m∑
l=0

Alm(t)d(x, t)
(2l + 1)π

2L

√
2
L

cos
(2l + 1)πx

2L

+
m∑
l=0

Blm(t)
(

(2l + 1)π
2L

)2

f(x, t)

√
2
L

sin
(2l + 1)πx

2L
− g(x, t)

(6.60)

Multiplying (6.60) by
√

2
L sin (2k+1)πx

2L , 0 ≤ k ≤ m, and integrating over [0, L], we
obtain, for 0 ≤ k ≤ m,∫ L

0

(umt + b2umx +RTmx + dρmx − fumxx − g)

√
2
L

sin
(2k + 1)πx

2L
dx

=
m∑
l=0

B′km(t)

+
m∑
l=0

Blm(t)
(2l + 1)π

2L
〈b2(x, t)

√
2
L

cos
(2l + 1)πx

2L
,

√
2
L

sin
(2k + 1)πx

2L
〉

+
m∑
l=0

Alm(t)
(2l + 1)π

2L
〈d(x, t)

√
2
L

cos
(2l + 1)πx

2L
,

√
2
L

sin
(2k + 1)πx

2L
〉

+
m∑
l=0

Clm(t)R
lπ

L
〈
√

2
L

cos
lπx

L
,

√
2
L

sin
(2k + 1)πx

2L
〉

− 〈g(x, t),

√
2
L

sin
(2k + 1)πx

2L
〉
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+
m∑
l=0

Blm(t)
(

(2l + 1)π
2L

)2

〈f(x, t)

√
2
L

sin
(2l + 1)πx

2L
,

√
2
L

sin
(2k + 1)πx

2L
〉

= 0 (6.61)

as a consequence of (6.55)b. Thus, for any v ∈ Vm,∫ L

0

(umt + b2umx +RTmx + dρmx− fumxx− g)

√
2
L

sin
(2k + 1)πx

2L
dx = 0 . (6.62)

Finally, we have

Tt + b3Tx + hux − iTxx − j

=
m∑
l=0

C ′lm(t)

√
2
L

sin
lπx

L
+

m∑
l=0

Blm(t)h(x, t)
(2l + 1)π

2L

√
2
L

cos
(2l + 1)πx

2L

+
m∑
l=0

Clm(t)
lπ

L
b3(x, t)

√
2
L

cos
lπx

L

+
m∑
l=0

Clm(t)
(
lπ

L

)2

i(x, t)

√
2
L

sin
lπx

2L
− j(x, t)

(6.63)

Multiplying (6.63) by
√

2
L sin kπx

L , 0 ≤ k ≤ m, and integrating over [0, L], we
obtain∫ L

0

(Tt + b3Tx + hux − iTxx − j)
√

2
L

sin
kπx

L
dx

=
m∑
l=0

C ′km(t)

+
m∑
l=0

Blm(t)
(2l + 1)π

2L
〈h(x, t)

√
2
L

cos
(2l + 1)πx

2L
,

√
2
L

sin
kπx

L
〉

+
m∑
l=0

Clm(t)
lπ

L
〈b3(x, t)

√
2
L

cos
lπx

L
,

√
2
L

sin
kπx

L
〉

+
m∑
l=0

Clm(t)
(
lπ

L

)2

〈i(x, t)
√

2
L

sin
lπx

2L
,

√
2
L

sin
kπx

L
〉

− 〈j(x, t),
√

2
L

sin
kπx

L
〉 = 0 ,

(6.64)

as a consequence of (6.55)c. Thus, we conclude that for any w ∈ Wm,∫ L

0

(Tt + b3Tx + hux − iTxx − j)wdx = 0 (6.65)

which completes the proof of Lemma 6.7 �

We are now in a position to state the main result of this section.

Theorem 6.8. The initial-boundary value problem (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f,
has a unique solution (ρ, u, T ), for any t > 0, such that

ρ, u, T ∈ L2([0, t]; W 2,2[0, L]), (6.66a)



28 O. TERLYGA, H. BELLOUT, F. BLOOM EJDE-2013/46

ρt, ut, Tt ∈ L2([0, t]; L2[0, L]) . (6.66b)

Proof. The approximations ρm, um, and Tm defined by (6.52)a,b,c satisfy the hy-
potheses of Lemma 6.6. Therefore, the a priori estimate (6.43) applies to ρm, um,
and Tm; i.e., on any interval [0, t0] we have

Eδm(t) ≤ Ct0
( G
K

+ Em(0)
)

(6.67)

Therefore,

ρm, um, Tm ∈ L2([0, t];W 2,2[0, L]); (6.68a)

ρm, um, Tm ∈W 1,2([0, t];L2[0, L]) (6.68b)

for 0 ≤ t ≤ t0, which implies that ρm, um, and Tm are continuous in both time and
space. By the choice at t = 0 of the coefficients in the Galerkin approximations; i.e.,
(6.53)a,b,c, ρm, um, and Tm converge as t→ 0 to ρ0(x), u0(x), and T0(x), so by the
continuity of ρm, um, and Tm with respect to time we conclude that Em(0)→ E(0).
Thus, Em(0) is a bounded sequence and (6.67) then implies that Eδm(t) is also a
bounded sequence, for 0 ≤ t ≤ t0. Therefore, as each of the sequences ρm, um,
and Tm is bounded in L2([0, t];W 2,2[0, L]) they have convergent subsequences ρmk

,
umk

, and Tmk
(which we will also denote as ρm, um, and Tm) that converge weakly

in L2([0, t];W 2,2[0, L]) to unique limits ρ, u, and T
We want to show that the limiting set {ρ, u, T} is a solution of the initial-

boundary value problem (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f, with (6.10)a,b,c being sat-
isfied in the sense of distributions. We observe that {ρm, um, Tm} satisfy∫ t

0

∫ L

0

(ρmt + aumx + bρmx − δρmxx − c)v dx dτ = 0, (6.69a)∫ t

0

∫ L

0

(umt + b2umx +RTmx + dρmx − fumxx − g)v dx dτ = 0 (6.69b)

for any v ∈ Vm with coefficients αl(t) ∈ C1(0, t0); while∫ t

0

∫ L

0

(Tmt + b3Tmx + humx − iTmxx − j)w dxdτ = 0 (6.69c)

for any w ∈ Wm, with coefficients β(t) ∈ C1(0, t0), for m = 1, 2, . . .. Consider an
arbitrary function ψ ∈ L2([0, t0];C∞0 [0, L]) with compact support on [0, t0]× [0, L];
this function can be expanded in a series

ψ(x, t) =
∞∑
l=0

pl(t)

√
2
L

sin
(2l + 1)πx

2L
(6.70)

which converges uniformly to ψ. The series obtained by differentiating (6.70) term
by term k times also converges uniformly to the respective kth derivative of ψ. For
the approximation to ψ given by

ψn(x, t) =
n∑
l=0

pl(t)

√
2
L

sin
(2l + 1)πx

2L
, (6.71)

we have ψn → ψ in L2([0, t0];C∞0 [0, L]), as n→∞. We observe that ψn ∈ Vm, for
m ≥ n, with pl(t) = 0, for n < l ≤ m, so that ψn satisfies, for each m = 1, 2, . . .∫ t

0

∫ L

0

(ρmt + aumx + bρmx − δρmxx − c)ψn dx dτ = 0 . (6.72)
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Letting m→∞ in (6.72) we obtain, in the limit,∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)ψn dx dτ = 0 . (6.73)

Taking the limit in (6.73) as n→∞ yields∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)ψ dx dτ = 0 . (6.74a)

In a similar manner it follows that∫ t

0

∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)ψ dx dτ = 0, (6.74b)∫ t

0

∫ L

0

(Tt + b3Tx + hux − iTxx − j)ψ dx dτ = 0 (6.74c)

for any arbitrary function ψ ∈ L2([0, t0];C∞0 [0, L]) with compact support in [0, t0]×
[0, L]. By a standard density argument we conclude that the limiting set {ρ, u, T}
is a distribution solution of (6.10)a,b,c in the interior of the rectangle [0, t0]× [0, L].
The boundary conditions (6.8)a-f are satisfied by each member of the sequence
{ρm, um, Tm}. However, each member {ρm, um, Tm} of this sequence is continuous
with respect to x at each t, 0 ≤ t ≤ t0, and therefore so is {ρ, u, T}. Thus, the
boundary conditions (6.8)a-f are also satisfied by {ρ, u, T}. Finally, the initial
conditions (6.7)a,b,c are satisfied by {ρ, u, T}, since each member {ρm, um, Tm} is
continuous with respect to t, at each 0 ≤ x ≤ L, and {ρm(x, 0), um(x, 0), Tm(x, 0)}
converges to the prescribed initial data as m→∞. �

To establish higher regularity for the solution (ρ, u, T ) of (6.10)a,b,c, (6.7)a,b,c,
(6.8)a-f, than that which is given by (6.6)a,b, we must differentiate the equations
(6.10)a,b,c; differentiation here is understood in the sense of distributions. As an
example of such differentiation consider equation (6.10)a. For any test function
ψ(x, t) the derivative ψx is also a test function and we have∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)ψx dx dτ = 0 . (6.75)

Integrating this last expression by parts (in space) we obtain∫ t

0

(ρt+aux+bρx−δρxx−c)ψ
∣∣∣L
0
dτ−

∫ t

0

∫ L

0

(ρt+aux+bρx−δρxx−c)xψ dx dτ = 0 .

(6.76)
In view of the compact support of ψ, in the rectangle [0, L]× [0, t], it follows from
(6.76) that ∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)xψ dx dτ = 0 (6.77)

for any test function ψ. Therefore, in the sense of distributions

(ρt + aux + bρx − δρxx − c)x = 0 (6.78)

and (6.78) implies, e.g., the validity of results such as∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)xρx dx dτ = 0, (6.79)
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because for any sequence of test functions ψn such that ψn → ρx we have∫ t

0

∫ L

0

(ρt + aux + bρx − δρxx − c)xψn dx dτ = 0 . (6.80)

Theorem 6.9. Let ρ, u, T ∈ L2([0, t];W 2,2[0, L]) be the unique solution of (6.10)
a,b,c, (6.7) a,b,c, (6.8) a-f, for t > 0, whose existence was established in Theorem
6.8. Then, in fact,

ρ, u, T ∈ C∞([0, t];C∞[0, L]) (6.81)

Proof. We rewrite system (6.10)a,b,c in the form

ρt − δρxx + aux + bρx = c (6.82a)

ut − fuxx + b2ux +RTx + dρx = g (6.82b)

Tt − iTxx + b3Tx + hux = j (6.82c)

As c, g, j ∈ L2([0, t];W 1,2[0, L]), standard parabolic theory [42] impplies that ρ, u, T
belong to L2([0, t];W 3,2[0, L]) and, because ρ, u, T ∈ L2([0, t];W 3,2[0, L]), we can
differentiate the equations in (6.10)a,b,c with respect to x to obtain the system

(ρx)t − δ(ρx)xx + a(ux)x + b(ρx)x = −axux − bxρx + cx (6.83a)

(ux)t − f(ux)xx + b2(ux)x +R(Tx)x + d(ρx)x = −fxuxx − b2xux − dxρx + gx
(6.83b)

(Tx)t − i(Tx)xx + b3(Tx)x + h(ux)x = −ixTxx − b3xTx − hxux + jx (6.83c)

which is a system of equations for ρx, ux, Tx with the same principal part as
(6.82)a,b,c. Also, each forcing term on the right hand side of (6.83)a,b,c is again
in L2([0, t];W 1,2[0, L]). Therefore, ρx, ux, Tx ∈ L2([0, t];W 3,2[0, L]), in which case
ρ, u, T ∈ L2([0, t];W 4,2[0, L]).

By differentiating (6.82)a,b,c with respect to time, we obtain a system of para-
bolic equations for ρt, ut and Tt which also has the same principal part as (6.82)a,b,c
and for this system each forcing term is, again, in L2([0, t];W 1,2[0, L]). This leads
to the result that ρt, ut, Tt ∈ L2([0, t];W 3,2[0, L]). By continuing this argument we
may establish that the spatial, time, and mixed derivatives of ρ, u, and T , of all
orders, are in L2([0, t];W 3,2[0, L]) which, in turn, implies the result (6.81). �

7. Existence of solutions to the Linear hyperbolic-parabolic
initial-boundary value problem

In this section we will establish existence of a unique solution for the mixed
hyperbolic-parabolic initial boundary value problem (6.6)a,b,c, (6.7)a,b,c, (6.8)a-e.
Our assumptions on the coefficients in (6.6)a,b,c are those stated as (6.9)a,b,c; in
addition, we will require that

c(0, t) = c(L, t) = 0, t > 0, (7.1a)

b(0, t) ≥ ζ, for some ζ > 0 and all t > 0. (7.1b)

For the coefficient c(x, t) defined by the nonlinear problem; i.e., (6.3)e, (7.1)a
is satisfied as (lnA)x = 0 at x = 0, L,∀t ≥ 0; however, (7.1)b is not satisfied for
b(x, t) as defined by (6.3)b. This is, however, of little concern here as the results
presented in [5], for the original nonlinear problem, depend only on the existence
and uniqueness theorem proven in §6 for the linear system with artificial viscosity
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without the hypotheses (7.1)a,b. In the present section, we will again prove an
existence and uniqueness theorem for the problem (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f;
however, the addition of the hypotheses (7.1)a,b will enable us to use an energy
functional which does not depend explicitly on the artificial viscosity parameter δ
and this, in turn, will allow us to extract the limit, as δ → 0, of the solutions of the
regularized problem so as to obtain the desired solution of (6.6)a,b,c, (6.7)a,b,c,
(6.8)a-e.

We begin with the following definition.

Definition 7.1. For ρ(x, t), u(x, t), and T (x, t) we define the energy functional

Êδ(t) =
1
2
{‖ρ(·, t)‖2W 1,2 + ‖u(·, t)‖2W 1,2 + ‖T (·, t)‖2W 1,2}

+
1
2

∫ t

0

∫ L

0

{ic(T 2
xx + T 2

x ) + T 2
t + fc(u2

xx + u2
x) + u2

t + ρ2
t} dx dτ

+
1
2

∫ L

0

fcu
2
xdx+

1
2

∫ L

0

icT
2
xdx

(7.2)

We note that Êδ(t) is almost identical with Eδ(t) in (6.34), except that in Êδ(t)
the term

δ

2

∫ t

0

∫ L

0

(ρ2
x + ρ2

xx) dx dτ

has been deleted; thus Êδ(t) depends, implicitly, on δ because ρ, u, T eventually will
(as solutions of the regularized linear problem) but Êδ does not depend explicitly
on δ. With Vm and Wm defined as in §6; i.e., (6.11)a,b we now have the following
counterpart to Lemma 6.2:

Lemma 7.2. Suppose ρ(x, t), u(x, t) ∈ Vm and T (x, t) ∈ Wm for some m ∈ N, and

∫ L

0

(ρt + aux + bρx − δρxx − c)vdx = 0 (7.3a)∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)vdx = 0 (7.3b)

for any v ∈ Vm, while∫ L

0

(Tt + b3Tx + hux − iTxx − j)wdx = 0 (7.3c)

for any w ∈ Wm; then the following identity holds:

1
2
{‖ρ(·, t)‖2W 1,2 + ‖u(·, t)‖2W 1,2 + ‖T (·, t)‖2W 1,2}

+
∫ t

0

∫ L

0

{i(T 2
xx + T 2

x ) + T 2
t + f(u2

xx + u2
x) + u2

t + δ(ρ2
xx + ρ2

x) + ρ2
t} dx dτ

+
1
2

∫ L

0

fu2
xdx+

1
2

∫ L

0

iT 2
xdx+

1
2

∫ t

0

b(0, τ)ρx(0, τ)2dτ

= −
∫ t

0

a(0, τ)ux(0, τ)ρx(0, τ)dτ +
1
2

∫ L

0

f(x, 0)u2
x(x, 0)dx
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+
1
2

∫ L

0

i(x, 0)T 2
x (x, 0)dx+

1
2
{‖ρ(·, 0)‖2W 1,2 + ‖u(·, 0)‖2W 1,2 + ‖T (·, 0)‖2W 1,2}

+
∫ t

0

∫ L

0

{
− aρux − bρρx − b2uux −RuTx − duρx − b3TTx − hTux

+
1
2
ftu

2
x +

1
2
itT

2
x −

1
2
bxρ

2
x

}
dx dτ +

∫ t

0

∫ L

0

{
− auxxρx + b2uxuxx

+RTxuxx + dρxuxx + b3TxTxx − aρtux − bρtρx − b2utux −RutTx

− dutρx − b3TtTx − fxutux − ixTtTx − hTtux + huxTxx

}
dx dτ

+
∫ t

0

∫ L

0

{cρ+ gu+ jT − cρxx − guxx − jTxx + cρt + gut + jTt} dx dτ

+
∫ t

0

∫ L

0

δρtρxx dx dτ . (7.4)

Proof. We observe that as ρ, u ∈ Vm and T ∈ Wm, all even order spatial derivatives
of ρ, u and T will be zero at x = 0, while odd order spatial derivatives of ρ, u and
even order spatial derivatives of T will vanish at x = L.

As ρ ∈ Vm, it follows from (7.3)a that∫ L

0

∫ t

0

(ρt + aux + bρx − δρxx − c)ρ dx dτ = 0

or ∫ L

0

1
2
ρ2(t, x)dx−

∫ L

0

1
2
ρ2

0(x)dx =
∫ t

0

∫ L

0

{−aρux − bρρx + cρ+ δρxxρ} dx dτ

which, after integration by parts of the term δρρxx, becomes∫ L

0

1
2
ρ2(t, x)dx−

∫ L

0

1
2
ρ2

0(x)dx+
∫ t

0

∫ L

0

δρ2
x dx dτ

=
∫ t

0

∫ L

0

{−aρux − bρρx + cρ} dx dτ
(7.5)

Also, as u ∈ Vm we have, as a consequence of (7.3)b∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)udx = 0 .

If we then integrate this last result over [0, t] we obtain∫ L

0

1
2
u2(t, x)dx−

∫ L

0

1
2
u2

0(x)dx+
∫ t

0

∫ L

0

fu2
x dx dτ

=
∫ t

0

∫ L

0

{−b2uux −RuTx − duρx + gu} dx dτ
(7.6)

Next, as T ∈ Wm, it follows from (7.3)c that∫ L

0

(Tt + b3Tx + hux − iTxx − j)Tdx = 0
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and integrating this result over [0, t] we obtain∫ L

0

1
2
T 2(t, x)dx−

∫ L

0

1
2
T 2

0 (x)dx+
∫ t

0

∫ L

0

iT 2
x dx dτ

=
∫ t

0

∫ L

0

{−b3TTx − hTux + jT} dx dτ .
(7.7)

Since ρxx ∈ Vm, (7.3)a yields∫ L

0

(ρt + aux + bρx − c− δρxx)ρxxdx = 0,

and an integration by parts produces

ρtρx
∣∣L
0
−
∫ L

0

ρxρxtdx+
∫ L

0

(auxρxx + bρxρxx − cρxx − δρ2
xx)dx = 0 . (7.8)

Integrating by parts the first three terms in last integral in (7.8) we obtain∫ L

0

(
auxρxx +

1
2
b(ρx)2

x − cρxx
)
dx

=
(
auxρx +

1
2
bρ2
x − cρx

)∣∣∣L
0
−
∫ L

0

(
auxxρx +

1
2
bxρ

2
x − cxρx

)
dx .

But ρx(L, t) = 0, and c(0, t) = c(L, t) = 0, so (7.8) and this last identity yields

ρtρx
∣∣L
0
−
∫ L

0

ρxρxtdx+
∫ L

0

(
− auxxρx −

1
2
bxρ

2
x + cxρx − δρ2

xx

)
dx

− a(0, t)ux(0, t)ρx(0, t)− 1
2
b(0, t)ρ2

x = 0
(7.9)

The first term on the left-hand side of (7.9) vanishes as ρx(L, t) = ρt(0, t) = 0, for
all t ≥ 0, and this reduces (7.9) to∫ L

0

ρxρxtdx = −a(0, t)ux(0, t)ρx(0, t)− 1
2
b(0, t)ρ2

x

+
∫ L

0

(
− auxxρx −

1
2
bxρ

2
x + cxρx − δρ2

xx

)
dx

which after integration over [0, t] becomes the identity∫ L

0

1
2
ρ2
x(t, x)dx−

∫ L

0

1
2
ρ2
x(x, 0)dx+

∫ t

0

∫ L

0

δρ2
xx dx dτ +

1
2

∫ t

0

b(0, τ)ρx(0, τ)2dτ

= −
∫ t

0

a(0, τ)ux(0, τ)ρx(0, τ)dτ +
∫ t

0

∫ L

0

(
− auxxρx −

1
2
bxρ

2
x + cxρx

)
dx dτ .

(7.10)
We note that, in (7.10), we have b(0, τ) ≥ ζ > 0, 0 ≤ τ ≤ t. As uxx ∈ Vm, (7.3)b
yields ∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)uxxdx = 0 .

Integrating by parts in this last result, and using the fact that ux(L, t) = ut(0, t) =
0, t ≥ 0, yields∫ L

0

uxuxtdx =
∫ L

0

(b2ux +RTx + dρx − fuxx − g)uxxdx
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which upon integration over [0, t] produces the identity∫ L

0

1
2
u2
x(t, x)dx−

∫ L

0

1
2
u2
x(x, 0)dx+

∫ t

0

∫ L

0

fu2
xx dx dτ

=
∫ t

0

∫ L

0

(b2uxuxx +RTxuxx + dρxuxx − guxx) dx dτ .

(7.11)

Next, as Txx ∈ Wm, (7.3)c produces∫ L

0

(Tt + b3Tx + hux − iTxx − j)Txxdx = 0 .

In this last equation we integrate by parts, apply the conditions Tt(0, t) = Tt(L, t) =
0, t ≥ 0, and then integrate over [0, t] so as to obtain∫ L

0

1
2
T 2
x (t, x)dx−

∫ L

0

1
2
T 2
x (x, 0)dx+

∫ t

0

∫ L

0

iT 2
xx dx dτ

=
∫ t

0

∫ L

0

(b3TxTxx + huxTxx − jTxx) dx dτ

(7.12)

Since ρt ∈ Vm, (7.3)a yields∫ L

0

(ρt + aux + bρx − c− δρxx)ρtdx = 0 ;

so that∫ t

0

∫ L

0

ρ2
t dx dτ =

∫ t

0

∫ L

0

(−aρtux − bρtρx + cρt + δρtρxx) dx dτ . (7.13)

Next, we note that as ut ∈ Vm, (7.3)b yields∫ t

0

∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)ut dx dτ = 0 . (7.14)

Integrating the next to last term in this integral by parts we find that, as ux(L, t) =
ut(0, t) = 0,∫ t

0

∫ L

0

fuxxut dx dτ = −
∫ L

0

1
2
fu2

xdx
∣∣t
0
+
∫ t

0

∫ L

0

1
2
ftu

2
x dx dτ−

∫ t

0

∫ L

0

fxuxut dx dτ

and if we now substitute this last result back into (7.14) we obtain∫ t

0

∫ L

0

u2
t dx dτ +

∫ L

0

1
2
fu2

xdx

=
∫ L

0

1
2
f(x, 0)u2

x(x, 0)dx

+
∫ t

0

∫ L

0

(
− b2utux −RutTx − dutρx − fxutux +

1
2
ftu

2
x − gut

)
dx dτ .

(7.15)

Using the fact that Tt ∈ Wm we obtain from (7.3)c∫ t

0

∫ L

0

(Tt + b3Tx + hux − iTxx − j)Tt dx dτ = 0 . (7.16)
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Integration of the next to the last term in (7.16) by parts, and use of the conditions
Tt(L, t) = Tt(0, t) = 0, produces the identity∫ t

0

∫ L

0

iTxxTt dx dτ = −
∫ L

0

1
2
iT 2
xdx

∣∣t
0

+
∫ t

0

∫ L

0

1
2
itT

2
x dx dτ −

∫ t

0

∫ L

0

ixTxut dx dτ

which, when substituted in (7.16) yields∫ t

0

∫ L

0

T 2
t dx dτ +

∫ L

0

1
2
iT 2
xdx

=
∫ L

0

1
2
i(x, 0)T 2

x (x, 0)dx

+
∫ t

0

∫ L

0

(
− b3TtTx − hTtux − ixTtTx +

1
2
itT

2
x − jTt

)
dx dτ .

(7.17)

Adding together the results in (7.5), (7.6), (7.7), (7.10), (7.11), (7.12), (7.13), (7.15),
and (7.17), and then grouping like terms together, we obtain the identity (7.4). �

From the energy identity (7.4) we are now able to obtain for Êδ(t) an energy
inequality entirely analogous to (6.35) for Eδ(t).
Lemma 7.3. Under the conditions in Lemma 7.2, we have for ρ, u ∈ Vm, T ∈ Wm,
and 0 < δ < 1,

Êδ(t) ≤ Ê(0) + Gt+K
∫ t

0

Êδ(τ)dτ (7.18)

for some positive constants G and K, where Êδ(0), being independent of δ, has been
denoted as Ê(0).

Remarks: (i) In view of the definition of Êδ(t), Ê(0) is independent of δ. (ii) The
terms on the right-hand side of (7.4) have been grouped by { } into four distinct
subsets of terms; estimates for typical terms in each of these four groupings are
derived in the proof of Lemma 7.3 and generic positive constants Ci,Ki, Gi will be
used in these estimates. (iii) For δ, satisfying 0 < δ < 1, a stronger result than
(7.18) actually follows from the proof of the Lemma, namely,

Êδ(t) + I ≤ Ê(0) + Gt+K
∫ t

0

Ê(τ)dτ (7.19)

with

I =
1
2

∫ t

0

∫ L

0

δρ2
xx dx dτ (7.20)

Proof of Lemma 7.3. The terms in the first grouping on the right-hand side of (7.4)
involve functions and/or first derivatives of functions with bounded coefficients;
these may be estimated as in the following sample case:

∣∣∣ ∫ t

0

∫ L

0

aρux dx dτ
∣∣∣ ≤ sup |a|

2

∫ t

0

∫ L

0

(ρ2 + u2
x) dx dτ = K1

∫ t

0

∫ L

0

(ρ2 + u2
x) dx dτ .

(7.21)
The second group of terms involves second derivatives or time derivatives of the
functions ρ, u, and T . These can be estimated as follows: for any η > 0,∣∣∣ ∫ t

0

∫ L

0

RuxxTx dx dτ
∣∣∣ ≤ ηR ∫ t

0

∫ L

0

u2
xx dx dτ +

R

4η

∫ t

0

∫ L

0

T 2
x dx dτ, (7.22a)
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0

∫ L

0

RuxxTx dx dτ
∣∣∣ ≤ ηC1

∫ t

0

∫ L

0

u2
xx dx dτ +K2(η)

∫ t

0

∫ L

0

T 2
x dx dτ (7.22b)

where K2(η) indicates that the constant K2 depends on the choice of the parameter
η. One further example of this type would be∣∣∣ ∫ t

0

∫ L

0

aρtux dx dτ
∣∣∣ ≤ η sup |a|

∫ t

0

∫ L

0

ρ2
t dx dτ +

sup |a|
4η

∫ t

0

∫ L

0

u2
x dx dτ

= ηC2

∫ t

0

∫ L

0

ρ2
t dx dτ +K4(η)

∫ t

0

∫ L

0

u2
x dx dτ .

(7.22c)
The estimates for the third group of terms are similar to those in the following two
examples:∣∣∣ ∫ t

0

∫ L

0

cρ dx dτ
∣∣∣ ≤ 1

2

∫ t

0

∫ L

0

ρ2 dx dτ +
1
2

∫ t

0

∫ L

0

c2 dx dτ

≤ K3

∫ t

0

∫ L

0

ρ2 dx dτ +G1 · t ,
(7.23a)

∣∣∣ ∫ t

0

∫ L

0

guxx dx dτ
∣∣∣ ≤ η ∫ t

0

∫ L

0

u2
xx dx dτ +

1
4η

∫ t

0

∫ L

0

g2 dx dτ

≤ η
∫ t

0

∫ L

0

u2
xx dx dτ +

const.
4η

· t

= ηC4

∫ t

0

∫ L

0

u2
xx dx dτ +G2(η) · t .

(7.23b)

Finally, the last term on the right-hand side of (7.4); i.e.,
∫ t

0

∫ L
0
δρtρxx dx dτ is

estimated exactly as in (6.41), which we rewrite here as∣∣∣ ∫ t

0

∫ L

0

δρtρxx dx dτ
∣∣∣ ≤ ∫ t

0

∫ L

0

δ

2
ρ2
t dx dτ + I . (7.24)

Now, terms which appear on the right-hand sides of estimates such as (7.22)a,b,c,
(7.23)b, et.al., and which are multiplied by η, may be absorbed by the similar terms
on the left-hand side of (7.4) because of (6.9)a,b; in particular, for η sufficiently
small, ∫ t

0

∫ L

0

(ic − Cη)T 2
xx dx dτ ≥

∫ t

0

∫ L

0

1
2
icT

2
xx dx dτ (7.25a)∫ t

0

∫ L

0

(fc − Cη)u2
xx dx dτ ≥

∫ t

0

∫ L

0

1
2
fcu

2
xx dx dτ (7.25b)∫ t

0

∫ L

0

(1− Cη)T 2
t dx dτ ≥

∫ t

0

∫ L

0

1
2
T 2
t dx dτ (7.25c)∫ t

0

∫ L

0

(1− Cη)u2
t dx dτ ≥

∫ t

0

∫ L

0

1
2
u2
t dx dτ (7.25d)∫ t

0

∫ L

0

(1
2
− Cη

)
ρ2
t dx dτ ≥

∫ t

0

∫ L

0

1
4
ρ2
t dx dτ , (7.25e)

where C =
∑
Ci. Note that once η is chosen, the Ki and Gi, i = 1, 2, . . . are

constants.
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In (7.24), the term

J =
1
2
δ

∫ t

0

∫ L

0

ρ2
t dx dτ (7.26)

may be absorbed by the similar term on the left-hand side of (7.4) and, as 0 < δ < 1,
we will have 1 − δ

2 >
1
2 . Also, the integral I, on the right-hand side of (7.24) will

be absorbed by the term

δ

∫ t

0

∫ L

0

ρ2
xx dx dτ ≡ 2I

on the left-hand side of (7.4) leaving a balance of I among the terms on the left-hand
side of (7.4). After all the above-referenced terms are absorbed (on the left-hand
side of (7.4)) we see that as a lower bound for the left-hand side of (7.4) we have
the expression

Êδ(t) + I +
1
2

∫ t

0

b(0, t)ρx(0, τ)2dτ (7.27a)

while, adding all the estimates referenced above, yields an upper bound for the
remaining terms on the right-hand side of (7.4) of the form

Ê(0) + Gt+K
∫ t

0

Êδ(τ)dτ , (7.27b)

where K =
∑
Ki and G =

∑
Gi. Combining the lower bound for the left-hand

side of (7.4); i.e., (7.27)a, with the upper bound for the surviving terms on the
right-hand side of (7.4), and taking note of the fact that b(0, t) ≥ ζ > 0 in (7.27)a,
we are led to the estimate (7.19). �

From (7.18) and Gronwall’s inequality we may now conclude, as in Lemma 6.6,
the following result.

Lemma 7.4. Under the conditions stated in Lemma 7.2 we have for ρ, u ∈ Vm, T ∈
Wm, 0 < δ < 1, and all t, 0 ≤ t ≤ t0, that there exists Ĉt0 > 0 such that

Êδ(t) ≤ Ĉt0
( G
K

+ Ê(0)
)

(7.28)

To obtain the required existence and uniqueness result for the regularized prob-
lem consisting of (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f, we proceed exactly as in §6,
namely, (i) we introduce the Galerkin approximations (6.52)a,b,c with coefficients
Alm, Blm, Clm satisfying (6.53)a,b,c, where ζl, ηl, γl satisfy (6.54)a,b,c, (ii) we re-
quire that the coefficients in the Galerkin approximations satisfy the coupled system
of ordinary differential equations (6.55)a,b,c, (iii) we invoke the result of Lemma 6.7
and show that the approximate solutions ρm, um, Tm defined by (6.52)a,b,c satisfy
the hypotheses of Lemma 7.2 and 7.3, and (iv) using the estimate for (ρm, um, Tm);
i.e., on any interval [0, t0]

Êδm(t) ≤ Ĉt0
( G
K

+ Êm(0)
)
, (7.29)

we conclude that ρm, um, Tm satisfy (6.68)a,b for 0 ≤ t ≤ t0. The remaining parts
of the proof of Theorem 6.8 remain unchanged in the present circumstances and,
thus, we are able to conclude, once again, that the regularized initial-boundary
value problem (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f has, for each δ > 0, a unique solution
(ρδ, uδ, T δ), for any t > 0, such that (6.66)a,b are satisfied; furthermore, the higher
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regularity result expressed by Theorem 6.9; i.e., (6.81), also holds in the present
circumstances in which we have imposed the hypothesis (7.1)a,b.

As the Galerkin approximations ρm, um, Tm, converge in W 1,2([0, t];L2[0, L]) ∩
L2([0, t];W 2,2[0, L]) to the unique solution of (6.10)a,b,c, (6.7)a,b,c, (6.8)a-f, we
have for the limit ρδ, uδ, T δ of these sequences the estimate

Êδ(t) ≤ Ĉt0
( G
K

+ Ê(0)
)
≡ C′t0 (7.30)

for all δ > 0 and t ∈ (0, t0). Therefore, the solution set (ρδ, uδ, T δ) for the problem
(6.10)a,b,c, (6.7)a,b,c, (6.8)a-f satisfies the following estimates:

‖ρδ‖2L2([0,t];W 1,2([0,L])) + ‖ρδ,t‖2L2([0,t];L2([0,L])) ≤ C1 , (7.31a)

‖uδ‖2L2([0,t];W 2,2([0,L])) + ‖uδ,t‖2L2([0,t];L2([0,L])) ≤ C2 , (7.31b)

‖T δ‖2L2([0,t];W 2,2([0,L])) + ‖T δ,t‖2L2([0,t];L2([0,L])) ≤ C3 (7.31c)

for positive generic constants Ci, i = 1, 2, 3, which are independent of δ. From
(7.31)a,b,c it follows that there exists a triplet (ρ, u, T ) with

ρ ∈ L2([0, t];W 1,2([0, L]), ρt ∈ L2([0, t];L2([0, L])) , (7.32a)

u ∈ L2([0, t];W 2,2([0, L])), ut ∈ L2([0, t];L2([0, L])) , (7.32b)

T ∈ L2([0, t];W 2,2([0, L])), Tt ∈ L2([0, t];L2([0, L])) (7.32c)

and a sequence (ρδk , uδk , T δk) of solutions to the problem (6.10)a,b,c, (6.7)a,b,c,
(6.8)a-f such that

ρδk ⇀ ρ weakly in L2([0, t];W 1,2([0, L])) (7.33a)

ρδk
,t ⇀ ρt weakly in L2([0, t];L2([0, L])) (7.33b)

uδk ⇀ u weakly in L2([0, t];W 2,2([0, L]) , (7.34a)

uδk
,t ⇀ ut weakly in L2([0, t];L2([0, L]) (7.34b)

and

T δk ⇀ T weakly in L2([0, t];W 2,2([0, L]) , (7.35a)

T δk
,t ⇀ T,t weakly in L2([0, t];L2([0, L]) . (7.35b)

However, the triplet (ρδk , uδk , T δk), satisfies (6.74)a, (6.74)b, (6.74)c, with δ = δk

for any ψ ∈ L2([0, t]; C∞0 ([0, L])); letting δk → 0 we conclude that

(ρ, u, T ) = lim
δk→0

(ρδk , uδk , T δk) (7.36)

satisfies ∫ t

0

∫ L

0

(ρt + aux + bρx − c)ψ dx dτ = 0 , (7.37a)∫ t

0

∫ L

0

(ut + b2ux +RTx + dρx − fuxx − g)ψ dx dτ = 0 , (7.37b)∫ t

0

∫ L

0

(Tt + b3Tx + hux − iTxx − j)ψ dx dτ = 0 (7.37c)
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for all ψ ∈ L2([0, t]; C∞0 ([0, L]). Thus, (ρ, u, T ) is a weak solution of the problem
(6.6)a,b,c. Furthermore, by virtue of the usual trace theorem and (7.31)a,b,c we
can conclude that (ρ, u, T ) also satisfies the initial conditions (6.7)a,b,c as well as
the boundary conditions (6.8)a-e. The argument delineated above has established
the following result.

Theorem 7.5. Given the hypotheses (6.8)a,b,c and (7.1)a,b, the mixed hyperbolic-
parabolic initial boundary-value problem (6.6)a,b,c, (6.7)a,b,c, (6.8)a-e has a unique
solution (ρ, u, T ) which satisfies (7.32)a,b,c.
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Figure 1. The limit of the integrand does not exist
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